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A. Overview
This document provides additional quantitative results,

technical details and more qualitative test examples to the
main paper.

In Sec. B we provide more details on neural network ar-
chitectures and training parameters. In Sec. C we extend the
attack performance on PointNet++ [4] with ModelNet40. In
Sec. D we extend the attack performance on PointNet [1]
with ShapeNet. In Sec. E we design a new metric for eval-
uating adversarial point cloud effect. In Sec. F we put
forward a construction for adaptively designing adversarial
point clouds with different deformation degrees. In Sec. G
we design an alternative attack based on geometric transla-
tion, and in Sec. H we give more visualization results.

B. Details of Network Architectures
The details of our network architecture are described as

follows:
In the hierarchical feature learning component of

the point cloud encoder, we utilize 4 levels to ex-
tract local features. Following the notations in Point-
Net++ [4], we utilize (m, r, [l1, ..., ld]) to represent a
level with m local regions of ball radius r with 32 ad-
jacent points, and [l1, ..., ld] represents the dth FC layers
with width li(i = 1, ..., d). Therefore, the parameters
we use are (N, 0.05, [32, 32, 64]), (N2 , 0.1, [64, 64, 128]),
(N4 , 0.2, [128, 128, 256]) and (N8 , 0.3, [256, 256, 512]).

In the decoder side, we utilize interpolation to restore
the feature of each level and use a convolution to reduce the
restored feature to 64 dimensions. We then utilize aggrega-
tion to merge multiple layers extracted from different scales
together. We utilize three FC layers which in between con-
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Target [4]
Defense

(SRS) [8]
Defense

(DUP-Net) [8]

C&W + `2 [6] 100 0 0
C&W + Hausdorff [6] 100 0 0
C&W + Chamfer [6] 100 0 0
C&W + 3 clusters [6] 93.3 3.5 0
C&W + 3 objects [6] 97.3 0.4 0

FGSM [2, 7] 0.1 0 0
IFGM [2, 7] 4.9 0 0

LG-GAN (ours) 50.4 40.8 45.1

Table 1: Attack success rate (%, second to fourth column) on attacking
PointNet++ [4] from ModelNet40. “Target” stands for white-box attacks.
The hyper-parameter setting of two gray-box attacks is: for the simple ran-
dom sampling (SRS) defense model, percentage of random dropped points
is 60%∼90%; for DUP-Net defense model, k = 50 and α = 0.9 from [8].
The default LG-GAN (ours) consists of multi-layered label embedding, `2
loss and GAN loss.

catenated with label features, and the output feature channel
numbers are 256, 128 and 64, respectively. Finally, we uti-
lize a FC layer with 3 output channels to reconstruct the
final coordinates. Note that the convolution layers and FC
layers are followed by the ReLU activation layers, except
for the last coordinate reconstruction layer.

The details of the baseline architectures are illustrated in
Fig. 1.

C. Comparing with State-of-the-art Methods
Generated from PointNet++

Results of attacking PointNet++ [4] are summarized in
Table 1. FGSM and IFGM have 0.1% and 4.0% attack suc-
cess rates respectively, which are much lower than attack-
ing PointNet [1]. LG-GAN outperforms IFGM methods by
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Figure 1: The generator part of the network architecture of LG-GAN.

at least 45.1% of attack success rates. C&W based meth-
ods still can reach near 100% attack success rates when
attacking PointNet++, but LG-GAN can only reach 50%
attack success rate, which can be attributed to the fact
that PointNet++ has more complicated network structures
which is more difficult to attack. In terms of gray-box at-
tacks, LG-GAN still has better attack ability, with 40.8%
and 45.1% attack success rates on simple random sampling
(SRS) and DUP-Net [8] defense model, respectively; while
for optimization-based C&W methods and gradient-based
FGSM and IFGM, they all fail to attack. It should be noted
that LG-GAN is still the fastest attack method among them.

D. Comparing with State-of-the-art Methods
Generated from PointNet under ShapeNet

The results are summarized in Table 2. Similar to the re-
sults on ModelNet40, LG-GAN has more than 90% white-
box attack success rates, and performs better than existing
attacks in terms of attack success rates on defense models.

E. Perturbation Metric Comparison

We design a kurtosis based perturbation metric to evalu-
ate adversarial effect more accurately. Although C&W at-
tacks have smaller `2 distances than LG-GAN’s attack, they
will create distinct visual outliers. To effectively measure
visual distortion, we have designed a point-density based
evaluation function K(P), i.e. the kurtosis (the sharpness
of the peak of a frequency-distribution curve) of the sorted

Target [1]
Defense

(SRS) [8]
Defense

(DUP-Net) [8]

C&W + `2 [6] 100 0.6 0.1
C&W + Hausdorff [6] 100 0.4 0.1
C&W + Chamfer [6] 100 0.5 0.1
C&W + 3 clusters [6] 100 0.5 0.1
C&W + 3 objects [6] 100 0.5 0.1

FGSM [2, 7] 0 0 0
IFGM [2, 7] 67.5 2.6 2.3

LG-GAN (α = 1000) 98.6 98.4 62.1
LG-GAN (α = 5000) 93.9 92.9 58.9

Table 2: Attack success rate (%, second to fourth column), distance
(fifth-sixth column) between original sample and adversarial sample
(meter per object) and generating time (second per object) on attack-
ing PointNet from ShapeNet. “Target” stands for white-box attacks. The
hyper-parameter setting of two gray-box attacks is: for the simple random
sampling (SRS) defense model, percentage of random dropped points is
60%; for DUP-Net defense model, k = 50 and α = 0.9 from [8]. The
default LG-GAN (ours) consists of multi-layered label embedding, `2 loss
and GAN loss.

Clean
data IFGM CW+`2

CW+
Chamfer

LG-GAN
(α = 1000)

`2 — 0.31 0.01 0.1 0.35
Kurtosis 5.3 48.3 48.9 72.4 44.1

Table 3: Perturbation metric comparison among CW, IFGM and LG-
GAN.

set of nearest distances of all the points. Specifically,

K(P) = kurtosis(sort(nearest_`2(P))). (1)



ε (meter) PointNet [3] PointNet++ [4] DGCNN [5]

0 88.6 89.5 87.9
0.01 88.5 89.5 87.8
0.1 77.2 89.6 87.2
0.5 13.2 89.7 57.9
1 3.5 86.4 14.4
2 1.7 61.9 4.1
10 2.0 6.0 2.6

Table 4: Detection accuracy (%) of point-cloud translation attacks on
deep networks [3, 4, 5] of ModelNet40. ε is the maximum stride size of
translating one whole point cloud along X-axis, Y-axis and Z-axis.

We have verified that KIFGM (P) > KC&W (P) >
KLG−GAN (P) > KORIG(P). The numerical results is
given in Table 3.

F. Adaptive Deformation Degree
In general, training multiple models with different α is

one most straightforward way to tune the deformation de-
gree. But the proposed framework is very general and can
support it in a smarter way. Specifically, we can input α as
the extra condition into the encoder El and train one single
LG-GAN with randomly sampled α.

G. Translation Attack
We have designed an alternative attack based on geomet-

ric translation. It is observed that the centroids of generated
adversarial point clouds are not on the origin of the Carte-
sian coordinate system compared with the original point
clouds. We proceed with a second analysis by translating
a whole point cloud to random direction and find that the
networks are fragile to monolithic translation. We move
the normal point cloud along XYZ directions with different
stride size following the uniform distribution between 0 and
maximum stride size ε, where ε is 0, 0.01, 0.1, 0.5, 1, 2 and
10. These are untargeted attacks, which deviate the network
prediction from the original label. The results are summa-
rized in Table 4. Larger point-cloud offset tends to deteri-
orate the classification result even more. It is shown that
PointNet++ is more robust against translation attack com-
pared with PointNet and DGCNN, but still fails to defend
against adversarial point clouds with a large offset (ε > 1).

H. More Visualizations
We present more results of adversarial point clouds by

attacking PointNet [1] compared with the original samples
on ModelNet40 in Fig. 2.
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Figure 2: Qualitative results of targeted attacks on ModelNet40. We attack PointNet to random arbitrary labels (except for the original label). The
odd-numbered lines are the original point clouds and the even-numbered lines are the corresponding adversarial point clouds. Enlarge to see details.


