LG-GAN: Label Guided Adversarial Network for Flexible Targeted Attack of Point Cloud-based Deep Networks

Hang Zhou1 Dongdong Chen2 Jing Liao3 \\
Kejiang Chen1 Xiaoyi Dong1 Kunlin Liu1 \\
Weiming Zhang1 Gang Hua4 Nenghai Yu1

1University of Science and Technology of China \quad 2Microsoft Research \\
3City University of Hong Kong \quad 4Wormpex AI Research
Problem

Point shifting/adding/dropping

Neural network

Adversarial example attack

car

house

Threat!
Motivation

Related work

Current attack methods:
• Optimization-based:
 High attack success rate/slow runtime/visible outliers
• Gradient-based:
 Fast runtime/low attack success rate

Motivation

Generation based adversarial examples will avoid creating outliers and be fast in generation with high attack success rates.
Objective loss functions

Generator:
\[
L_g = L_{cls} + \alpha L_{rec} + \beta L_{dis}
\]
\[
L_{cls} = - \left[t \log H(\hat{P}) + (1 - t) \log (H(1 - \hat{P})) \right]
\]
where \(\hat{P} = G_\theta(P, t) \)

\(L_{rec} \) is \(\ell_2 \) distance

\[
L_{dis}(\hat{P}) = \|1 - D_\theta(\hat{P})\|_2^2
\]

Discriminator:
\[
L_D(P, \hat{P}) = \frac{1}{2} \|D_\theta(\hat{P})\|_2^2 + \frac{1}{2} \|1 - D_\theta(P)\|_2^2
\]
Results

- clean plane
- C&W L2 attack
- C&W chamfer attack
- C&W hausdorff attack
- C&W cluster attack
- C&W object attack
- IFGM attack (to toilet)
- Single-layered LG-GAN attack (to vase)
- LG attack (to sofa)
- LG-GAN attack (to lamp)
Results

<table>
<thead>
<tr>
<th>Target</th>
<th>Defense (SRS)</th>
<th>Defense (DUP-Net)</th>
<th>l_2 dist (meter)</th>
<th>Chamfer dist (meter)</th>
<th>Time (second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C&W + l_2</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0.006</td>
</tr>
<tr>
<td>C&W + Hausdorff</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>0.005</td>
</tr>
<tr>
<td>C&W + Chamfer</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>0.005</td>
</tr>
<tr>
<td>C&W + 3 clusters</td>
<td>94.7</td>
<td>2.7</td>
<td>0</td>
<td>—</td>
<td>0.120</td>
</tr>
<tr>
<td>C&W + 3 objects</td>
<td>97.3</td>
<td>3.1</td>
<td>0</td>
<td>—</td>
<td>0.064</td>
</tr>
<tr>
<td>FGSM</td>
<td>12.2</td>
<td>5.2</td>
<td>2.8</td>
<td>0.15</td>
<td>0.129</td>
</tr>
<tr>
<td>IFGM</td>
<td>73.0</td>
<td>14.5</td>
<td>3.3</td>
<td>0.31</td>
<td>0.132</td>
</tr>
</tbody>
</table>

LG + Chamfer (ours)	96.1	75.4	13.9	0.63	0.137	0.037
single-layered LG-GAN (ours)	97.6	80.2	37.8	0.27	0.032	0.053
LG (ours)	97.1	85.0	72.0	0.25	0.028	0.033
LG-GAN (ours)	**98.3**	**88.8**	**84.8**	0.35	0.038	0.040

Table: Attack success rate (%, second to fourth column), distance (fifth-sixth column) between original sample and adversarial sample (meter per object) and generating time (second per object) on attacking PointNet. “Target” stands for white-box attacks. The hyper-parameter setting of two gray-box attacks is: for the simple random sampling (SRS) defense model, percentage of random dropped points is 60%~90%; for DUP-Net defense model, $k = 50$ and $\alpha = 0.9$ from [39]. The default LG-GAN (ours) consists of multi-layered label embedding, l_2 loss and GAN loss.
Thank You