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A B S T R A C T

We describe an effective and efficient strategy building steganography detector for patch synthesis based ste-
ganography, one case of which is reversible texture synthesis based steganography method proposed by Wu et al.
(2015). By exploiting the observation that steganography destroys optimization of matching extent between the
synthetic patch and optimal candidate patch, we reconstruct the two patches from an overlapped region to
extract the existence of optimality, which are distinct between cover and stego images, to form features. Support
vector machine (SVM) is implemented for classification. Meanwhile, a variant of Wu et al.’s steganographic
method is proposed with reinforced security, by padding redundant regions carrying no message around the
periphery of the synthesized image and generating additional candidate patches to increase capacity.
Experiments demonstrate that the modified algorithm offers not only better resistance against the state-of-the-art
steganalysis methods and steganalytic attack we developed, but also a larger embedding capacity.

1. Introduction

Steganography is a technique for covert communication and privacy
protection, which is now a fairly standard concept in computer science.
The process of modern steganography is that a steganographic system
embeds hidden content in unremarkable cover media so as not to
arouse the suspicion of an eavesdripper [1].

Currently, the majority of image steganographic methods adopt
natural images as cover images to embed data, where the most suc-
cessful approach to design content adaptive steganography is based on
minimizing the distortion between the cover and the corresponding
stego object, which is acquired by assigning a cost of changing each
cover element. Syndrome-Trellis Codes (STCs) [2] are used to embed
messages after minimizing the total distortion as a sum of costs of all
modified elements. The principle of distortion’s definition is that pixels
that are easily modelable in regions should be assigned high costs.
Methods such as HUGO [3], WOW [5], UNIWARD [7], HILL [8],
MiPOD [9] and CPP [23] are brought up successively based on the
principle.

However, steganography may be attacked by steganalysis which
aims to expose the presence of hidden data. In general, steganalytic
approaches are classified into two categories: specific and universal.

The former detects the presence of a message embedded by a particular
steganographic algorithm, while the latter targets at message detection
on comprehensive steganographic algorithms with varying embedding
strategies. As for universal image steganalyzers, much have been well-
studied in the literature. It is noteworthy that since plenty of practical
steganographic algorithms perform embedding by applying a mutually
independent embedding operation to all or selected elements of the
cover, the effect of embedding is equivalent to adding to the cover an
independent noise-like signal called the stego noise [4]. Steganalyzer’s
features are usually generated by exploiting correlations between the
predicted residuals of neighboring pixels [10]. Fridrich et al. [17] and
Ker [18] propose methods specifically for the detection of LSB re-
placement. Early feature-based steganalysis algorithms used only a few
dozen features, e.g., 72 higher order moments of coefficients obtained
by transforming an image using quadratic mirror filters [16]. The SPAM
[4] set for the second-order Markov model of pixel differences has a
dimensionality of 686. Whereafter, SRM [6] is proposed with 34,671
dimensions to have a better performance in steganalysis, and maxSRM
[25] forms the co-occurrence matrices considering the maximum esti-
mated modification probability of a group of pixels as a weight coef-
ficient, for which the steganalytic feature is inclined to extract features
from targeted region.
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Since the demand for synthetic texture images boosts greatly with
the development of computer graphic, applications of which include
online games, cinefex, 3D roads, virtual reality, etc., texture images can
serve as favorable carriers for secret message. The first attempt to de-
sign texture synthesis based steganography appeared in [19,20] by
Otori and Kuriyama with pixel-based texture synthesis combining data
coding. Secret messages are encoded into colored dotted patterns
picked from textures and they are directly painted on a blank image.
The rest of the pixels are filled using pixel-based texture synthesis
method, where the capacity is determined by the dotted patterns. Wu
et al. [12] proposed a reversible texture synthesis based steganography
method, which resamples a smaller texture image and synthesizes a
new texture image with a similar local appearance and an arbitrary
size. Message is embedded by the selection of candidate regions gen-
erated from the source image. Qian et al. [21] proposed a robust ste-
ganography that can counter JPEG compression at the cost of low ca-
pacity.

The design of texture image features is more challenging since it has
similar complexity between cover and stego texture images. As far as
we know, steganography will break down the correlation among ad-
jacent pixels, and it is more noticeable to find the modifications in
smooth areas than in textural areas after steganography. Therefore, it
will be less effective for steganalysts to extract prominent features of
pixels in texture areas. Zhou et al. [22] proposed a specific steganalytic
algorithm on Wu’s method by inspecting mirroring region and re-
constructing the original texture image. However, steganographers can
fix the flaw by finding a substitute for mirroring region to avoid in-
formation leakage during steganography. To the best of our knowledge,
there is no literature that related texture image with steganalysis.

The revised method of Wu [12] represents state-of-the-art texture
steganography. We further analyze the approach [12] through specific
steganalysis to evaluate its security, explore possible security holes and
put forward security-enhanced steganography on texture images.

In this paper, we propose a specific steganalytic algorithm for de-
termining whether the synthesized image generated by the method
proposed by Wu et al. contains message, which is now a superior ste-
ganographic algorithm on texture images. Such steganography makes
the optimality between two adjacent patches to be synthesized drop to a
certain extent, while it is expected to be optimal without stegano-
graphy. We have improved the expression by the following modifica-
tions: Specifically, we reconstruct the original adjacent two patches
from synthesized regions, and exploits the suitability degree of
matching between them to conduct steganalysis. Thus we coin a new
acronym ReSid standing for Reconstructed Similarity Degree detector.

We also propose a security-enhanced texture steganographic algo-
rithm with improved undetectability and larger capacity over Wu
et al’s. The new algorithm pads redundant regions carrying no message
around the periphery of the synthesized image by identical image
quilting technique [13]. It is nearly impossible for attackers to estimate
the sizes of redundant regions and determine the actual size of syn-
thesized image and then implement steganalysis algorithm that we put
forward. We even improve the maximum capacity of a single patch by
generating more candidate patches to form a larger candidate set. Ex-
perimental results show that the proposed addition of redundant re-
gions offers improved performance against the proposed steganalytic
attack and traditional state-of-the-art steganalytic methods.

The rest of the paper is organized as follows: Section 2 starts with
some notations, a brief review of Wu et al.’s texture synthesis based
steganography and proposed steganalytic method. Section 3 illustrates
the security-enhanced steganographic algorithm. Some implementation
issues and performance comparison are discussed in Section 4. The
conclusions and further directions are drawn in Section 5.

2. Steganalytic algorithm on Wu et al.’s method

In this section, we first briefly describe the texture steganographic

algorithms by Wu et al. [12] and then present in detail the proposed
steganalytic method against the algorithm. Throughout this paper, the
calligraphic font will be used solely for sets. Vectors will be always
typeset in boldface lower case, while we reserve the blackboard style
for matrices (e.g., Aij is the ijth element of matrix A).

2.1. Wu et al.’s texture synthesis steganography

This section contains an overview of candidate sorting based ste-
ganographic algorithm using texture synthesis [12]. We denote the
source image by A, the synthetic image by S and the embedded message
by m. A patch represents a user-specified block of the source image, the
size of which is denoted by ×P Pw h, as shown in Fig. 1(a). A patch
contains the central kernel region with a size of ×K Kw h and the
boundary region with a depth of Pd. We denote the size of A by ×S Sw h

and the size of S by ×T Tw h.
The course of steganography is elaborated as follows. First, divide A

into same-sized non-overlapped kernel blocks. A kernel-centered ex-
pansion with a depth of Pd is operated, as illustrated in Fig. 1(b). The
four boundaries of a patch are replicated from the nearby kernels. The
expansion on the boundary of A is implemented with a mirroring

Fig. 1. The structure of patches and kernels in a source image A and a synthetic
image S. (a) A patch consists of a kernel and boundary regions. (b) Source
patches generated by expanding or mirroring the boundary regions of kernel
blocks in A. (c) S after a random padding step. (d) Zigzag padding pattern of
synthesizing S. (e) Two regions Bl and Br from two patches to be synthesized
together using image quilting technique. The OLR represents the spliced region.
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operation. To synthesize an image with a given size, a random padding
step is first carried out by employing the total source patches with a
user-specific secret key, as shown in Fig. 1(c). The number of patches nT

in S is acquired by
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And then, in A, a sliding window is employed with stride size of one
pixel following the scan-line order to create candidate patches to pad
into S. The number of candidate patches nC are derived by

= − + − +n S P S P( 1)( 1),C w w h h (2)

where each candidate patch is marked with a sequence number.
Image quilting technique [13] is adopted to reduce the visual arti-

fact during the synthesis period, which targets to find a seam line be-
tween two blocks on the pixels where the two textures match best. We
denote two regions by Bl and Br that overlap along their vertical di-
rection respectively, as shown in Fig. 1(e). The synthesized region is
called an OverLapped Region (abbreviated to OLR). Let D denote some
perceptual distance between two patches, which is a normalized sum of
squared differences metric. Denote vertical seam line by
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The shortest path problem can be solved by dynamic programming
algorithms. Similar procedure can be applied to horizontal overlaps.

Virtually the process of padding is a zigzag pattern for message
embedment, as is shown in Fig. 1(d). Since there exist OLRs when
padding a candidate patch to one blank space in S in an iterative way,
descending sort of the mean square error (MSE) of the OLRs between
the candidate patch and synthesized area is obtained to form a rank
table. The smaller the MSE, the more similar the candidate is to the
synthesized area. After we produce the rank table above, the decimal
number of the embedding message decides the selection of the candi-
date patch whose rank equals the value of message.

As for the receiver side, a legal recipient can recover A with the
secret key. By simulating the process of synthesizing S, candidate pat-
ches and a new synthetic image ′S are generated. In a zigzag way of
padding candidate patches onto ′S , each time we compute the MSEs of
OLR between the current patch and candidate patches, and generate a
sequence of MSE values in descending order. On the other hand, we
calculate the MSE of the OLR between the electee in S with the current
patch. By observing the position of the patch in the sequence, we ex-
tract the message carried on this electee. Thus we retrieve message m.
As for attackers without key, they cannot recover A, hence can hardly
get any message directly.

For brevity, Wu et al.’s method, Candidate Sorting based texture
synthesis steganography is abbreviated to CASO.

2.2. Proposed steganalytic algorithm

CASO is insecure for its construction, which may be attacked by
eavesdroppers. Since steganography destroys the optimization of
matching degree between the synthetic patch and optimal candidate
patch, by reconstructing the two patches from synthesized images and
extracting the existence of optimality, we can conduct efficient stega-
nalysis. It is noteworthy that five shapes1 of OLR occur in S, where each
shape can be decomposed to several rectangle regions. If every rec-
tangle region is the optimized matched patch, then the shape possesses
optimality. What it comes down to is to capture the existence of

optimality between two rectangle patches.
CASO employs Bl as the fixed region to be synthesized and Br se-

lected from sorted candidate patch list = …B B B{ , , , }n1 2 CB with MSE
metric. The chosen ∗B is decided by the rank of sorted MSEs equal the
value of the message. Suppose that attackers are able to extract the
hidden message that equals the rank given the same Bl and B , we aim
at recovering Bl and B . However, it is impossible to reconstruct the
process of synthesization losslessly. For attackers, since they do not own
the key to find the source patches generated by expansion or mirroring,
potentialB cannot be recovered to the original version; since Bl and Br

have been synthesized together, they cannot recover Bl and Br directly.
Next we describe the recovery of B and Bl individually.

It is clear thatB can only be generated from A; without key,B can
no longer be generated. Thus we use a substitute to approximate B to
reproduce the process of MSEs’ numeration, denoted by ′B . A sliding
window with a size of ×K Ph d (assume that Kh and Pd are given) and a
stride size of one pixel is employed in all the kernels collected from S,
producing large amount of candidate regions, which represent the ap-
proximation of candidate patches, as shown in Fig. 3(a) and (b). We
denote the number of candidate ′B patches by ′nC. It is evident that a
larger relative payload will cause a larger rank in the statistic point of
view, making the substitution feasible.

Most of Bl and Br can be recovered, yet not directly. The keystone
and difficulty of this paper are the reconstruction of Bl and Br . Owing to
the fact that a sliding window moves over A with a stride of one pixel,
the chosen candidate patch ∗B may be located over 4 kernel regions in
most instances, which is shown in Fig. 3(c). The left boundary Br of the
patch is made up of Br and Bdr in A. Since source patches have already
been randomly padded into S, in most cases, Br is located in two parts
in S, that is the upper region Br and the lower region Bdr , as shown in
Fig. 3(d). Therefore, the reconstruction of Br is equivalent to the process
of finding residual chips Br and Bdr in the kernels from S. With that said,
we search some cells of Br or Bdr in kernels to find matched ones, and
extend them to make up ′Br . The recovered ′Br is same with Br in most
cases. ′Bl is recovered in the same way.

After we reconstruct ′Bl and ′B , we are able to get an approximative
rank from each OLR and form a rank set = = …r i N{ | 1,2, , }iR , where N is
the amount of ranks. Parenthetically, two types of priority locations for
strategy of patch distribution in [12], L1 and L2 based resolution, are
treated in the same manner. As far as we are aware, a cover synthetic
image has all near-zero ranks while a stego synthetic image has much
larger ranks. This is why we take the ranks as features to distinguish
stego images from cover images. We aggregate the ranks and extract
features to implement support vector machine (SVM) training and
classification. Four statistics including mean (μr), median (mr), variance
(δr) and kurtosis (kr) of the ranks are chosen for representation. These
statistics are exploited to form the feature vector vr ,

= μ m δ kv [ , , , ] ,r r r r r
T (4)

representing a given synthetic image.
If we are unaware of P P,w h and Pd, a traversal process is implemented

first to find the three scaling parameters. To gain possible values, Eq.
(1) is adjusted to solve an integer programming problem with a linear
equations group:

− × + =P P T P T( )w d pw d w (5)

and

− × + =P P T P T( ) .h d ph d h (6)

Since they are underdetermined linear equations, there are several
possible solutions. By traversing all the solutions, we have t groups of
P P P{ , , }w h d , where the matched group of parameters is homologous to the
situation that kernels patitioned from synthetic images are from the
original kernels or formed by four kernel fragments in source images
that contain no OLRs, as shown in Fig. 3(c) and (d). In comparison,
kernels generated from mismatched groups more or less contain OLRs.1 The five shapes of OLR are not shown for lack of space (see [12]).
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Such evaluation is effective in discriminating cover images from stego
images.

The procedure of steganalysis contains five steps, as shown in Fig. 2.
In Fig. 5(a), the CASO-ReSid pair (black rhombic solid line) shows the
effectiveness of proposed ReSid feature. We have provided the source
codes for steganalysis on the website.2

3. Security-enhanced texture steganography

In a bid to improve the anti-steganalytic properties of CASO algo-
rithm, we develope a steganographic algorithm utilizing padding
technique with redundant areas carrying no data. The four peripheries
of synthetic image are broadened with key-specified depths respec-
tively.

Regarding capacity, security and generality, the following insights
are given:

• Instead of synthesizing texture images with precalculated sizes
under fixed pattern, we are able to set synthesized texture image

Fig. 3. (a) Structure of synthetic images. Squares represent kernels that are not modified. (b) A sliding window with a size of ×K Ph d and a stride size of one pixel in a
kernel. (c) The chosen candidate patch ∗B is located over 4 kernel regions in a source image. (d) Br is separated into two parts (Bdr and Br) in a synthetic image.

Fig. 2. An overview of feature extraction and steganographic texture image detection flowchart. ′ ′B B,l r and ′B are reconstructed from OLRs to simulate the process of
image synthesis. We then obtain a re-ranking MSE list to get a corresponding rank. Traversing all the OLRs, we aggregate all the ranks to form a rank set. Features of
the proposed steganalyzer are extracted from the rank set, followed by a linear SVM for cover/stego image classification.

2 Available: http://home.ustc.edu.cn/∼zh2991/.
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with arbitrary size and preserve high steganalysis-resistant ability.

• Since CASO uses sliding windows to generate a certain number of
candidate patches to carry messages which are restrained by sizes of
patches and source image, the maximum embedding payload is
⌊ ⌋nlog C2 . By considering that any synthesized patch by two original
similar patches are similar to the original ones but not identical, we
augment the quantity of candidate patches by synthesizing similar
candidate patches to increase the embedding rate.

3.1. Synthesized image with arbitrary size

Additional redundant regions contribute to the security of synthe-
sized texture images, since it is hard for attackers to estimate the size of
patches and depth of kernel to further implement steganalysis. Hence,
one way to invalid steganalysis is adding redundant regions around the
periphery of the synthesized image. Assume the anticipated synthesized
texture image R (slightly larger than S) by ×R Rw h, thus the total ac-
cessorial width is = − + −L R T R T( ) ( )w w h h . To increase the width, two
regions are synthesized, as shown in Fig. 4, where the redundant widths
of left, right, up and down side are L L L, ,l r u and Ld respectively.

Markov Random Field (MRF) is used for texture synthesis. We as-
sume that the probability distribution of values for a region given the
values of its spatial neighborhood is independent of the rest of the
image. Let ∈Bs B be the patch to be synthesized. The neighborhood of
Bs is modeled as several rectangles windows around that region. Let

⊂w SB( )s be the adjacent regions of Bs. To synthesize patch Bs, we first
construct an approximation to the conditional probability distribution
P wB B( | ( ))s s and then sample from it.

Based on our MRF model we assume that Bs is independent of
⧹S w B( )s given Bs. The closest match ∗Bs is acquired by

=∗ D w wB Bargmin ( ( ), ),s
w

s (7)

and the patch is padded on R. Likewise, other peripheries are padded
until R is synthesized. Of course, the artifacts of peripheries are fairly
mild in that the best matched patches are synthesized.

3.2. Capacity enlargement

The relative embedding payload γ is measured in bit length of
message per patch (in bpp), which is related to the performance of
steganography. The maximum γmax of CASO algorithm depends on the
size of source image and depth of kernel region, which is

= ⌊ ⌋γ nlogmax C2 . To enlarge the capacity, quantity of candidate patches
should be increased without causing certain artifact. Under the

assumption that patches with similar complexity share approximate
texture structures, one solution is to generate additive candidate pat-
ches from the set of existing candidate patches B .

Formally, we cluster the elements of B to create a new set sB with
more candidate patches. Let nD be the number of elements in the subset
representing the degree of cluster, and the subset is denoted by

⊂ = … = … ⎢
⎣

⎥
⎦+ + +R R B B B i, { , , , }, 1,2, ,s s i n i n i n

n
n· 1 · 2 ( 1)i i D D D

C
D

B . Texture synthesis
is implemented between any two elements in each subset Rsi, and the
total quantity of candidate patches nS is obtained by

= + ⎢
⎣⎢
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n
n
2 .S C
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Thus the maximum embedding rate = ⌊ ⌋γ nlogmax S2 , whose upper bound
approaches
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To adequately express the message in a patch, we have the following
limiting constraint:
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S C
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The decision threshold ∗nD is given by:
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Thus given an arbitrary embedding rate γ , degree of cluster ∗nD can be
decided.

The total capacity C of the anticipated synthesized texture image R
is

⎜ ⎟= ⎛
⎝

− ×
×

⎞
⎠

C n S S
K K

γ,T
w h

w h (12)

and the enlarged capacity CΔ compared with that of CASO is

⎜ ⎟= ⎛
⎝

− ×
×

⎞
⎠

⌊ ⌋−⌊ ⌋C n S S
K K

n nΔ ( log log ),T
w h

w h
S C2 2 (13)

with the overhead of accessorial width L which takes up additional area
= × − ×S R R T TΔ w h w h.
Notice that the enlarged synthetic image R has more patches than S,

showing that with the same length of embedded message R has a
slightly smaller relative payload ̂γ , which has to be aligned to the ori-
ginal relative payload γ . The calibrated relative payload is obtained by

̂ = ×
×

γ S S
R R

γ· .w h

w h (14)

It is stated in [12] that no significant visual difference exists among
pure synthetic image and stego synthetic textures with varying relative
payloads. Since the visual artifact around the image periphery is milder
than other region with best fit regions padded, we can infer that the
anticipated synthesized texture images preserve equal visual quality.
We coin a new acronym CASY standing for Candidate Synthesis based
texture synthesis steganography.

3.3. Security analysis

In this subsection we discuss the probability of hitting the exact
patch size P P P{ , , }w h d . Once these parameters are perceived, with the
proposed steganalytic algorithm, CASY algorithm can be broken down.

The eavesdroppers try to crop out redundant width L0 of image
periphery to further conduct steganalysis, where the constraint condi-
tion lies on that the scope of ⩾L L0. The probability of revealing the
correct S from R is calculated by

Fig. 4. Anticipated synthesized image R with redundant regions around ori-
ginal synthesized image S. Peripheries are in order generated by MRF-based
image quilting method.
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1 4 4 4
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4 1
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As aforementioned, t candidate scaling parameters are concatenated
to each P P P{ , , }w h d , causing the ultimate probability of breaking down
CASY:

=
∑

=
∑= =
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P L

t t
( ) 1 1 ,b

i
Ps L

i i

L

i1

1
( )

1

4 1 1
3 (16)

where ti is the number of candidate sizes of the ith tentative synthetic
image.

We present an example to provide more insight for the security of
CASY. Suppose = =L L 160 , and on average 4 widths increase of pixels
on each periphery of synthetic image is created, and mostly smaller

than Pd, which has an opportunity of ≈ × −P (16) 2 10s
10 to retrieve the

exact synthetic texture image. Since ⩾t 1i as an integer varies dissim-
ilarly among sizes, <P P(16) (16)b s , manifesting that such a brute-force
attack on acquiring the accurate P P P{ , , }w h d is fairly difficult.

In addition, mismatched case: locating the correct position with
biased size of S is experimentally described in Section 4.3, the result of
which shows that only the accurately estimated parameter P P P{ , , }w h d and
L provide the most accurate steganalysis results.

4. Experiments

The performance of ReSid against Wu et al.’s method CASO and the
security-enhanced version CASY is validated in Sections 4.2 and 4.3,
respectively.

4.1. Setups

(1) Database: All experiments are conducted on Brodatz Textures
[14]. First, we use the CASO steganographic method to generate syn-
thetic images. Since texture images are comparatively rare in Brodatz
Database, we create some images by cropping and zooming techniques.
Finally, we take 10,000 proper images ( ×128 128) as source images.3

Though CASO tests four texture images that are color images, it is un-
influential to the steganalysis if we consider grayscale images, since a
preprocessing including transforming color images into grayscale
images or adopting one color channel is available. Let us suppose that
we wish to design a synthesis and embedment mechanism with a re-
lative payload of γ varying from 1 bpp to 13 bpps, 10,000 embedded
synthetic images with each relative payload and identical number of
synthetic images that are not embedded with messages are generated.
In the procedure of texture image steganalysis, we use the same para-
meters employed in CASO: = = =T T P488, 8pw ph d and = =P P 48w h .
And the configuration makes =n 6561C .

(2) Training and classification: The texture image steganalysis is
evaluated empirically using binary classifiers trained on a given cover
source and its stego version embedded with a fixed relative payload.
Fivefold cross validation of SVM is employed to conduct training and
classification. Each test is repeated 10 times, and results are averaged to
evaluate the final performance. Soft-margin SVMs with the Gaussian
kernel = − − >k x y γ x y γ( , ) exp( ‖ ‖ ), 02

2 is used. The values of the penali-
zation parameter =C 5 and the kernel parameter =γ 0.5. Our experi-
ments show that Radial Basis Function (RBF) SVM has competitive re-
sults, and LIBSVM [15] is utilized here as the classifier for low
computing complexity.

We compare results of our features on the generated database with
the popular steganalytic features, SPAM [4], SRM [6] and maxSRM
[25]. The classifier is implemented using the ensemble [11] with Fisher
linear discriminant as the base learner. A number of 5000 randomly
selected cover images and their stego counterparts are used for training,
while the rest 5000 cover images and their stego counterparts are used
for testing. The security is quantified using the ensemble’s ‘out-of-bag’

Table 1
Detectability in terms of PE versus relative embedding payload size in bits per patch (bpp) for CASO and CASY on texture database with three feature sets.

Feature Embedding method 1 3 5 7 9 11 13

SPAM CASO .4288± .0016 .4350± .0015 .4669± .0017 .4588± .0021 .4550± .0028 .4509± .0015 /
CASY .4630± .0012 .4422± .0015 .4720± .0022 .4811± .0020 .4670± .0015 .4637± .0015 .4570± .0014

SRM
CASO .3116± .0035 .3138± .0051 .3105± .0067 .2451± .0052 .1929± .0023 .1413± .0020 /
CASY .3935± .0023 .3406± .0042 .3741± .0161 .3180± .0109 .2526± .0061 .1908± .0051 .1252± .0041

maxSRM
CASO .2402± .0017 .2009± .0042 .1831± .0057 .1153± .0043 .0739± .0012 .0453± .0017 /
CASY .3935± .0023 .3406± .0042 .3741± .0161 .3180± .0109 .2526± .0061 .1908± .0051 .1252± .0041

ReSid
CASO .4240± .0014 .2700± .0033 .1840± .0031 .1400± .0101 .1110± .0067 .0500± .0032 /
CASY .4970± .0031 .4870± .0043 .4640± .0021 .4450± .0024 .4200± .0032 .3880± .0019 .3390± .0059

Fig. 5. (a) Detection error PE for CASO and CASY schemes when steganalyzing
with SPAM [4], SRM [6], maxSRM [25] and ReSid for varying relative pay-
loads. The plot corresponds to the results given in Table 1. (b) Global detection
error GlobalPE for CASO and CASY schemes for varying relative payloads.

3 Texture Database is open to download: http://home.ustc.edu.cn/∼zh2991/.
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(OOB) error EOOB, which is an unbiased estimate of the minimal total
testing error under equal priors [11],

= +P P Pmin 1
2

( ),
P

E FA MD
FA (17)

where PFA and PMD are the false-alarm probability and the missed-de-
tection probability respectively.

4.2. Steganalytic algorithm validation on CASO

We conduct an adaptive search approach to find P P P{ , , }w h d . By sol-
ving Eq. 5,6, we get candidate scaling parameters

= …P P P{( , , )|(15,15,4),(15,26,4), ,(108,108,32)}w h dT and =‖ ‖ 150T . The
result is effectual with a detection accuracy of greater than 97% finding
the matched scaling parameters in both cover and stego images.

Table 1 shows the average total probability of error PE and its
standard deviation for a range of relative payloads for CASO and CASY
steganographic schemes described in the previous section. The pro-
posed detector ReSid provides a substantial improvement in detection
accuracy over SPAM, SRM and maxSRM feature sets with a linear SVM
classifier (see solid lines in Fig. 5(a)). For small relative payload with

=γ 1, ReSid is not as effective as SRM, which is most likely because
SRM’s 34,671-dimentional feature set collects more comprehensive
minus difference between cover and stego image than ReSid’s 4-di-
mentional feature set. Throughout the figure, the diversity between
cover and stego is imperceptible to SPAM feature, the reason of which
might be that the second-order Markov residuals are insensitive to the
discrepancy of the two carriers, causing the detection error to be around
45%. Compared with SRM, the performance improvement of ReSid
averaged over relative payloads is 5.6%, exhibiting valid and impact
feature set over the CASO algorithm.

To make a fair comparison when we consider the scaling parameter

as prior knowledge, maxSRM should replace SRM and be considered.
We define the map of maxSRM by the following rule: the weights of
kenel regions are set by 0 and weights of synthesized regions are set by
1. From Fig. 5(a), we can conclude that once steganalyzer has prior of
synthesized regions, the detection accuracy increases; our proposed
ReSid does not exceed maxSRM but still share near performance when
payload is large, but since the dimension of features of ReSid vs.
maxSRM is 5 vs. 34,671, the average computation time of maxSRM is
1455 times much longer than ReSid over varying payloads, showing the
superiority of proposed method. As for CASY-maxSRM, map is difficult
to acquire and thus the performance of CASY-maxSRM is similar to
CASY-SRM. From another perspective, both scaling parameter estima-
tion and ReSid utilize global matching of similar cells to form synthe-
sized region, and to some extent could be set down as a whole.

4.3. Security-enhanced steganographic algorithm validation

Fig. 6 displays visual quality of cover and stego synthetic images
generated by CASY algorithm with corresponding source images4 with
a size of ×512 512 and thus =L 160 . To have a maximum relative
payload of =γ 13max , by Eq. (11), we get the number of clusters =∗n 2D ,
thus by Eq. (8), number of candidate patches is =n 9841S . Clearly, the
enlarged capacity =CΔ 128 bits. The advantage of CASY’s assignable
size might be that since the size information will leak to the eaves-
droppers, a normal image size (e.g. ×512 512) is more noteless than
patch property specified image size (e.g. ×488 488). No vision disparity
exists between cover and stego image.

Steganalysis is executed on CASO and CASY methods, which are

Fig. 6. Source texture images and corresponding synthetic texture images. (a)–(d) are the source images. (e)–(h) are the synthesized texture images containing no
secret messages. (i)–(l) are the synthesized texture images containing secret messages, relative payloads of which are 5 bpps.

4 The four demonstration image (a–d) are randomly selected from Texture Base we
collected, which are ‘1.bmp’, ‘4.bmp’, ‘3110.bmp’ and ‘8762.bmp’ respectively.
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shown in Fig. 5(a). To make a fair comparison, we use the calibrated
relative payload ̂γ given in Eq. (14). To align to the original

̂ =γ γ γ, 0.908 . The CASY based scheme improves the level of security
under SPAM, SRM and maxSRM, contributing to the manipulation that
adjacent similar patches are synthesized. While ReSid cannot be di-
rectly utilized in steganalysis on CASY, a preprocessing with rough
estimations of size of S are implemented before using ReSid. We take

= =T T 489w h to conduct steganalysis, and the selection region is lo-
cated on the center of R, which shows the steganalysis results with a
little deviation of estimation of parameters P P P{ , , }w h d and L. Values of
parameter P P P{ , , }w h d are thus estimated: {45,45,8}. The results show that
ReSid is capable of detecting CASO than SPAM and SRM features, and a
biased estimation of Tw and Th is still unable to conduct effective ste-
ganalysis on CASY than SRM feature.

Note that one steganographic method is broken as long as there
exists one steganalytic algorithm that can detect it with a high accuracy
rate. Therefore, we introduce another measurement GlobalPE to depict
the comprehensive undetectable ability of the steganographic method
[24]:

=
∈

GlobalP Pmin ,
i

i
F

E E (18)

where F represents the set of used steganalysis algorithms. Pi
E is the

value of PE under the attack of the ith steganalysis algorithm.
The comprehensive security performance on resisting SPAM, SRM,

maxSRM and ReSid is shown in Fig. 5(b). It can be seen that the pro-
posed CASY outperforms CASO method with an average improvement
of more than 10%. Apart from SPAM, Steganalysis algorithm SRM and
ReSid attack the steganographic methods based on two different re-
spects. SRM is designed using the statistical characteristics change in
local regions and ReSid utilizes the optimality between adjacent syn-
thesized patches. In our proposed CASY method, we not only invalidate
ReSid feature with obscure P P P{ , , }w h d , but also preserve the optimality of
synthesized patches with increased similar patches and suppress the
associated prediction error during data embedding. Meanwhile, the
inability of acquiring map makes maxSRM degenerate to SRM. There-
fore, the proposed method can obtain a better comprehensive security
performance than CASO method.

5. Conclusion

As demonstrated by the experimental results, the developed stega-
nalysis (ReSid) is able to detect the parameters of patches by Wu et al.’s
[12] algorithm (CASO) with an accuracy of 97%, and with a computa-
tional time 1455 times faster than maxSRM detector under some de-
gradation of detection error. While the proposed steganalytic algorithm
was specifically designed to target Wu et al.’s algorithm, the main idea
could be applied on several other algorithms that embed data with
patch synthesis based steganography since a preprocessing of patch
parameter estimation is proposed with a high accuracy.

The proposed steganographic algorithm (CASY) is based on a
random padding carrying no message around the periphery of the
synthesized image to invalidate the parameter estimation of patches. To
enhance security and improve capacity, additional candidate patches
are generated through synthesizing similar original candidate patches.
The experimental results demonstrate that it outperforms Wu et al.’s
algorithm in terms of security and capacity.

In the future, we will work to apply the proposed steganography
method to texture synthesis related applications such as online games,
3D roads, and virtual reality.
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