
Chapter 1
Introduction

1.1 What Is k · p Theory?

Bir and Pikus [1] made the interesting observation, since the physics of semicon-
ductors is (for the most part) governed by the carriers in the extrema of the various
energy bands, that: first, only the neighborhoods of the band extrema are important
and, second, the qualitative physics should be governed by the shape of these energy
surfaces – a property that should be readily obtainable from symmetry arguments.
The first observation has led to the common view of k · p theory as a perturbative
theory as explified by the seminal work of Dresselhaus et al. [2] and Kane [3], while
the second one has manifested itself through the power of symmetry analysis such
as the method of invariants introduced by Luttinger [4].

The fact that one can go beyond the neighborhood of band extrema (by not using
perturbation theory) was already demonstrated by Cardona and Pollak in 1966 [5],
when they obtained realistic band structures for Si and Ge using a full-zone k · p
theory. Thus, k · p theory is an empirical band-structure method with a basis of
band states. This definition can be extended to nonperiodic systems such as impuri-
ties [6] and nanostructures [7] by replacing the Bloch phase factor by an envelope
function.

1.2 Electronic Properties of Semiconductors

The subtitle of the book is the electronic properties of semiconductors. Specifically,
we will show how the k · p method can be used to obtain the band structure of
four types of semiconductors: those with a diamond, a zincblende, and a wurtzite
structure, and of their nanostructures (Fig. 1.1). For those not familiar with their
band structures, we hereby present a very brief description.

Diamond and zincblende are closely related and they will, therefore, be discussed
together. They both have cubic symmetry with two atoms per primitive unit cell
(see Appendix B for details). They are mostly the group-IV elements such as Si, the
III-V compounds such as GaAs, and a few II-VI compounds such as CdTe. Most
of them are direct-gap semiconductors, though some are indirect (e.g., Si and GaP)
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Fig. 1.1 Band structures to be studied in this book: diamond (DM), zincblende (ZB), wurtzite
(WZ), and their nanostructures

and others are semimetallic (e.g., Sn [8] and HgTe [9] have a negative gap). For
the semiconductors, the band gap tends to separate a valence band derived from
atomic-like p orbitals and a conduction band derived from atomic-like s orbitals.
The maximum of the valence band is, for most materials, at the zone center of the
Brillouin zone (k = 0). In the absence of spin-orbit coupling and spin degeneracy,
the highest valence band is, therefore, three-fold degenerate while the lowest con-
duction band is nondegenerate. With spin-orbit coupling, the valence band consists
of a four-fold degenerate band at the zone center (though the degeneracy is reduced
for finite wave vectors into either two two-fold degenerate bands—so-called light
and heavy-hole bands—or further splittings into nondegenerate states due to the
phenomenon of spin splitting for zincblende) and a two-fold spin-hole split (also
known as spin-orbit split) band.

Wurtzite has a primitive unit cell with four atoms and is the stable structure for
many of the II-VI compounds (e.g., ZnO) and a few of the III-V compounds (e.g.,
GaN). A useful picture of the wurtzite structure is to envision it as a zincblende one
strained along the [111] direction. Hence, the band structure can also be derived
from the zincblende case by adding a crystal-field splitting. The main consequence
is that the six highest valence states of zincblende are mixed and split into three
three-fold degenerate states at the zone center.

The above band pictures and their modifications in external fields and in nanos-
tructures are what we will be describing in this book.
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1.3 Other Books

This book is about the k · p method and the resulting electronic structure of semicon-
ductor bulk and nanostructure. Our approach differs significantly from other recent
books and review articles where some exposition of the k · p theory has been given
but with the emphasis on the application to, e.g., modeling devices or interpret-
ing various types of experiments. While bits of k · p theory can be found in most
textbooks [7, 10–19], we now give a brief outline of some of the more advanced
presentations of the k · p theory and how they differ from ours.

First, the only books that place a heavy emphasis on developing the k · p theory
appear to be those by Bir and Pikus [1], Ivchenko and Pikus [20] and Winkler [21].
They are all very useful books in their own rights and would be worth consulting
together with the current one. For example, the book by Bir and Pikus [1] was a
milestone in that it finally provided the first compendium in English of the sem-
inal research by russian physicists in using symmetry to develop the k · p theory,
particularly in two areas not previously considered by Luttinger: the impact of defor-
mations and the study of hexagonal crystals. The book by Ivchenko and Pikus [20]
follows along the same lines but the focus is on applications to heterostructures and
their optical properties. Taken together, they cover a lot of the k · p theory and its
applications. However, the book by Bir and Pikus is a little bit dated while the one by
Ivchenko and Pikus only devotes a chapter to explaining k · p theory. Furthermore,
both books are currently out of print. The book by Winkler [21] is rather more
focused and is probably the most comprehensive exposition of the spin-splitting
theory. Zeiger and Pratt [12] give a very detailed discussion of the Luttinger–Kohn
theory, particularly as applied to the magnetic problem. A significant part of the
modern use of the k · p theory is applied to semiconductor heterostructures so it is
not surprising that the newer books focus on such applications [7, 14, 15, 17–22].

In many ways, the current book is a combination of all of the above work (and
of the work cited throughout, of course). Thus, we present a comprehensive and,
for that reason, both a historical and modern exposition of the k · p theory for both
bulk crystals and nanostructures, taking into account deformations, impurities, and
external static electric and magnetic fields. One can also use this book as an aid to
reading the original literature. Certainly, the book is aimed at people who wishes to
learn how to derive k · p Hamiltonians.
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Chapter 2
One-Band Model

2.1 Overview

Much of the physics of the k · p theory is displayed by considering a single isolated
band. Such a band is relevant to the conduction band of many semiconductors and
can even be applied to the valence band under certain conditions. We will illustrate
using a number of derivations for a bulk crystal.

2.2 k · p Equation

The k · p equation is obtained from the one-electron Schrödinger equation

Hψnk (r) = En(k)ψnk (r) , (2.1)

upon representing the Bloch functions in terms of a set of periodic functions:

ψnk (r) = eik·runk(r). (2.2)

The Bloch and cellular functions satisfy the following set of properties:

〈ψnk|ψn′k′ 〉 ≡
∫

dV ψ∗
nk (r) ψn′k′ (r) = δnn′δ(k − k′), (2.3)

〈unk|un′k〉 ≡
∫

dΩ u∗
nkun′k = δnn′

Ω

(2π )3
, (2.4)

where V (Ω) is the crystal (unit-cell) volume.
Let the Hamiltonian only consists of the kinetic-energy operator, a local periodic

crystal potential, and the spin-orbit interaction term:

H = p2

2m0
+ V (r) + �

4m2
0c2

(σ × ∇V ) · p . (2.5)
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8 2 One-Band Model

Here, we only give the formal exact form for a periodic bulk crystal without external
perturbations.

In terms of the cellular functions, Schrödinger’s equation becomes

H (k) unk = En (k) unk, (2.6)

where

H (k) ≡ H + Hk·p, (2.7)

Hk·p = �

m0
k · π , (2.8)

π = p + �

4m0c2
(σ × ∇V ) , (2.9)

En (k) = En(k) − �
2k2

2m0
. (2.10)

Equation (2.6) is the k · p equation. If the states unk form a complete set of periodic
functions, then a representation of H (k) in this basis is exact; i.e., diagonalization
of the infinite matrix

〈unk|H (k) |umk〉

leads to the dispersion relation throughout the whole Brillouin zone. Note, in par-
ticular, that the off-diagonal terms are only linear in k. However, practical imple-
mentations only solve the problem in a finite subspace. This leads to approximate
dispersion relations and/or applicability for only a finite range of k values. For GaAs
and AlAs, the range of validity is of the order of 10% of the first Brillouin zone [7].

An even more extreme case is to only consider one unk function. This is then
known as the one-band or effective-mass (the latter terminology will become clear
below) model. Such an approximation is good if, indeed, the semiconductor under
study has a fairly isolated band—at least, again, for a finite region in k space. This
is typically true of the conduction band of most III–V and II–VI semiconductors.
In such cases, one also considers a region in k space near the band extremum. This
is partly driven by the fact that this is the region most likely populated by charge
carriers in thermal equilibrium and also by the fact that linear terms in the energy
dispersion vanish, i.e.,

∂ En (k0)

∂ki
= 0.

A detailed discussion of the symmetry constraints on the locations of these extremum
points was provided by Bir and Pikus [1]. In the rest of this chapter, we will discuss
how to obtain the energy dispersion relation and analyze a few properties of the
resulting band.



2.4 Canonical Transformation 9

2.3 Perturbation Theory

One can apply nondegenerate perturbation theory to the k · p equation, Eq. (2.6), for
an isolated band. Given the solutions at k = 0, one can find the solutions for finite
k via perturbation theory:

En (k) = En (0) + �
2k2

2m0
+ �k

m0
· 〈n0|π |n0〉 + �

2

m2
0

′∑
l

|〈n0|π |l0〉 · k|2
En(0) − El(0)

(2.11)

to second order and where

〈n0|π |l0〉 = (2π )3

Ω

∫
dΩ u∗

n0πul0. (2.12)

This is the basic effective-mass equation.

2.4 Canonical Transformation

A second technique for deriving the effective-mass equation is by the use of the
canonical transformation introduced by Luttinger and Kohn in 1955 [6]. Here, one
expands the cellular function in terms of a complete set of periodic functions:

unk(r) =
∑

n′
Ann′ (k) un′0(r). (2.13)

Then the k · p equation, Eq. (2.6), becomes

∑
n′

Ann′ (k)
[
H + Hk·p

]
un′0(r) =

∑
n′

Ann′ (k)
[
En′ (0) + Hk·p

]
un′0(r)

= En(k)
∑

n′
Ann′ (k) un′0(r). (2.14)

Multiplying by (2π )3/Ω
∫
Ω

d3r u∗
n0 gives

En (0) Ann +
∑

n′

�k
m0

· pnn′ Ann′ (k) = En (k) Ann, (2.15)

where

pnn′ ≡ pnn′ (0) = (2π )3

Ω

∫
dΩ u∗

n0pun′0, (2.16)
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and we have left out the spin-orbit contribution to the momentum operator for
simplicity. Now one can write (dropping one band index)

H (k)A = E(k)A, A =

⎛
⎜⎜⎝

...
An
...

⎞
⎟⎟⎠ . (2.17)

The linear equations are coupled. The solution involves uncoupling them. This can
be achieved by a canonical transformation:

A = T B, (2.18)

where T is unitary (in order to preserve normalization). Then

H (k)B = E(k)B, (2.19)

where

H (k) = T −1 H T . (2.20)

Writing T = eS, T −1 = e−S = T †,

H =
(

1 − S + 1

2!
S2 − · · ·

)
H (k)

(
1 + S + 1

2!
S2 + · · ·

)

= H (k) + [H (k), S] + 1

2!
[[H (k), S], S] + · · ·

= H + Hk·p + [H, S] + [Hk·p, S]

+ 1

2!
[[H, S], S] + 1

2!

[
[Hk·p, S], S

] + · · · (2.21)

Since Hk·p induces the coupling, one would like to remove it to order S by

Hk·p + [H, S] = 0, (2.22)

or, with |n〉 ≡ |un0〉,

〈n|Hk·p|n′〉 +
∑

n′′

[
〈n|H |n′′〉〈n′′|S|n′〉 − 〈n|S|n′′〉〈n′′|H |n′〉

]
= 0,

�

m0
k · pnn′ + En(0)〈n|S|n′〉 − 〈n|S|n′〉En′ (0) = 0,

giving, for n 	= n′,
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〈n|S|n′〉 = − �

m0

k · pnn′

[En(0) − En′ (0)]
. (2.23)

Now, Eq. (2.21) becomes

H (k) = H + 1

2
[Hk·p, S] + 1

2
[[Hk·p, S], S] + · · ·

and, to second order,

〈n| H (k)|n′〉 ≈ 〈n|H |n′〉 + 1

2

∑
n′′

[
〈n|Hk·p|n′′〉〈n′′|S|n′〉 − 〈n|S|n′′〉〈n′′|Hk·p|n′〉

]

= En(0)δnn′ + �
2

2m2
0

∑
n′′

[
k · pnn′′ k · pn′′n′

[En′(0) − En′′ (0)]
+ k · pnn′′ k · pn′′n′

[En(0) − En′′ (0)]

]

=
⎡
⎣En(0) + �

2

2

∑
αβ

kα

(
1

mn

)
αβ

kβ

⎤
⎦ δnn′ + interband terms of order k2,

which is, of course, the same as Eq. (2.11).
We now restrict ourselves to zincblende and diamond crystals for which n = s =

Γ1 (see Appendix B for the symmetry properties), pnn = 0, and

E(k) = EΓ1 + �
2k2

2m0
+ �

2

m2
0

′∑
l

|pΓ1l · k|2
EΓ1 − El

. (2.24)

Note that, for conciseness, we are also only using the group notation for the elec-
tron states in a zincblende crystal. The standard state ordering for zincblende and
diamond is given in Fig. 2.1. There are exceptions to these such as the inverted band
structure of HgTe [9] and the inverted conduction band of Si. Thus, the interaction
of the Γ1 state with other states via pΓ1l changes the dispersion relation from that of
a free-electron one. The new inverse effective-mass tensor is

ZB

Γ1v

Γ15v

Γ1c

Γ15c

s

p

s

p

DM

Γ +
1

Γ +
25

Γ2

Γ15

s

p

s

p

Fig. 2.1 Zone-center states for typical zincblende (ZB) and diamond (DM) crystals
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(
1

m∗

)
i j

= 1

m0
δi j + 2

m2
0

′∑
l

pi
Γ1l p j

lΓ1

EΓ1 − El
. (2.25)

Equation (2.11) or Eqs. (2.24) and (2.25) define the one-band, effective-mass model.
The band dispersion can be calculated given the momentum matrix elements and
band gaps. Note that Eq. (2.24) is only approximate, giving the parabolic approxi-
mation. Constraints on the effective mass can now be written from Eq. (2.25).

2.5 Effective Masses

One can write down simple expressions for the effective masses of nondegenerate
bands.

2.5.1 Electron

Because of the energy denominator, distant bands are expected to be less important.
The two closest bands to the Γ1c state for cubic semiconductors are the Γ15 states
∼ X, Y, Z . Since Γ1c ∼ S, and

〈S|px |X〉 = 〈S|py |Y 〉 = 〈S|pz|Z〉,

the conduction mass me is isotropic:

1

me
= 1

m0
+ 2

m2
0

|〈S|px |Xv〉|2
EΓ1c − EΓ15v

+ 2

m2
0

|〈S|px |Xc〉|2
EΓ1c − EΓ15c

≡ 1

m0
+ 2P2

�2 E0
− 2P ′2

�2 E ′
0

, (2.26)

where

P2 = �
2

m2
0

|〈S|px |Xv〉|2, (2.27)

P ′2 = �
2

m2
0

|〈S|px |Xc〉|2. (2.28)

For diamond,

P ′ = 0 =⇒ 0 < me < m0.
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For zincblende, typically

P ′2

E ′
0

<
P2

E0
=⇒ 0 < me < m0.

Hence, the electron effective mass is usually smaller than the free-electron mass.

2.5.2 Light Hole

Of the three-fold degenerate Γ15v states, only one couples with Γ1c along a given
Δ direction, giving rise to the light-hole (lh) mass. Consider k = (kx , 0, 0). Then,
since the lh state can now be assumed nondegenerate, again mlh is isotropic (though
a more accurate model will reveal them to be anisotropic):

1

mlh
= 1

m0
+ 2

m2
0

|〈S|px |Xv〉|2
EΓ15v

− EΓ1c

= 1

m0
− 2P2

�2 E0
≡ 1

m0

(
1 − EP

E0

)
, (2.29)

with

EP ≡ 2m0 P2

�2
(2.30)

known as the Kane parameter. Typically, E p ∼ 20 eV, E0 ∼ 0–5 eV. Hence, −m0 <

mlh < 0. Note that, contrary to the electron case, the lh mass does not contain the
P ′ term.

To compare the lh and e masses,

1

me
+ 1

mlh
= 2

m0
− 2P ′2

�2 E ′
0

= 1

m0

(
2 − E ′

P

E ′
0

)
.

For diamond, E ′
P = 0, giving

1

me
+ 1

mlh
> 0 (always), (2.31)

and

|mlh| > me. (2.32)

For zincblende, E ′
P ∼1–10 eV, E ′

0 ∼3–5 eV, and the masses are closer in magnitude.
The qualitative effect of the e–lh interaction on the effective masses is sketched in
Fig. 2.2. This is also known as a two-band model.
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mlh

me

m0

m0

Fig. 2.2 Two-band model. The k · p interaction changes the curvatures

2.5.3 Heavy Hole

One may define the heavy-hole (hh) states as the partners in the Γ15v representation
which do not couple to the conduction s electron. In so far as the Γ15c states are
not considered, the hh state has the free-electron mass. Including the Γ15c state and
again assuming that the Γ15v states are nondegenerate, the isotropic mass is

1

mhh
= 1

m0
− 2

m2
0

|〈Yv|px |Zc〉|2
E0 + E ′

0

= 1

m0

(
1 − EQ

E0 + E ′
0

)
. (2.33)

Typically, EQ ∼20–25 eV, E0 + E ′
0 ∼ 10 eV, and 0 > mhh > −m0.

We have seen how the simple one-band model can provide a semi-quantitative
description of various bands for zincblende and diamond semiconductors, particu-
larly the sign and relative magnitudes of the associated effective masses. The neces-
sity of describing the band structure quantitatively and more accurately (such as
nonparabolicity and anisotropy) leads to the consideration of multiband models.

2.6 Nonparabolicity

So far, we have presented the simplest one-band model in order to illustrate the
theory; it does allow for anisotropy via an anisotropic effective mass. Still, a one-
band model can be made to reproduce more detailed features of a real band including
nonparabolicity, anisotropy and spin splitting. An example of such a model is the k4

dispersion relation given by Rössler [23]:

E (k) = �
2k2

2m∗ +αk4 + β
(
k2

yk2
z + k2

z k2
x + k2

x k2
y

)
± γ

{
k2 (k2

yk2
z + k2

z k2
x + k2

x k2
y

) − 9k2
x k2

yk2
z

}1/2
. (2.34)

The first term on the right-hand side is the familiar isotropic and parabolic effective-
mass term. The remaining terms give nonparabolicity, warping and spin splitting,
respectively. We will derive them later in the book.
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2.7 Summary

We have set up the fundamental k · p equation and shown, using a variety of tech-
niques, how a one-band model (the so-called effective-mass model) can be obtained
from it. This model was then used to derive a semi-quantitative understanding of
the magnitude of the effective masses of band-edge states for cubic semiconductors.
In particular, it was shown that the simplest effective-mass model for electrons and
light holes gives isotropic masses.



Chapter 3
Perturbation Theory – Valence Band

3.1 Overview

Degenerate perturbation theory is presented in order to derive the valence-band
Hamiltonian. This will be illustrated in detail for the Dresselhaus–Kip–Kittel Hamil-
tonian for diamond and for the valence-band Hamiltonian for wurtzite.

3.2 Dresselhaus–Kip–Kittel Model

We first give the derivation of the 3 × 3 (i.e., no spin) Dresselhaus–Kip–Kittel
(DKK) Hamiltonian using the original second-order degenerate perturbation theory
approach [2]. The theory applies to the valence band of diamond.

3.2.1 Hamiltonian

The starting equation is the k · p equation, Eq. (2.6), without the spin-orbit term:

[
p2

2m0
+ V (r) + �

m0
k · p

]
unk(r) = En(k)unk(r).

The unperturbed ur
n0(r) ≡ ε+

r are the three-fold degenerate solutions at the zone
center or Γ point. They transform according to the Γ +

25 irreducible representation
(Fig. 3.1). The three states are: ε+

1 ∼ yz, ε+
2 ∼ zx , ε+

3 ∼ xy; they are even with
respect to the inversion operator. An atomistic description of the transformation
properties of some of the states of the DM structure is given in Table 3.1. Since the
unperturbed states are degenerate, we have to use degenerate perturbation theory to
find the solutions at finite k.

The first-order correction is given by the matrix elements

∼ 〈ε+
r |k · p|ε+

s 〉 = 0

L.C. Lew Yan Voon, M. Willatzen, The k · p Method,
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25 ~+

Fig. 3.1 Three-band model for diamond-type semiconductors

Table 3.1 Symmetries of states at the Γ point for diamond structure [5, 24]. The second column
gives the orbitals on the two atoms in the basis. The far-right column gives the corresponding
plane-wave states

Cardona and Pollak [5]

Γ +
1 sa + s ′

a Γ l
1 s+ [000]

Γ +
25 pa − p′

a ∼ yz, zx, xy Γ l
25′ p+ [111]

Γ −
2 sa − s ′

a ∼ xyz Γ l
2′ s− [111]

Γ −
15 pa + p′

a ∼ x, y, z Γ15 p− [111]

Γ −
12 da − d ′

a ∼ √
3
(
y2 − z2

)
, 3x2 − r2 Γ12′ d− [200]

Γ +
1 sa + s ′

a Γ u
1 s+ [111]

Γ +
25 da + d ′

a ∼ yz, zx, xy Γ u
25′ d+ [200]

Γ −
2 sa − s ′

a ∼ xyz Γ u
2′ s− [200]

since the ε+
r ’s have the same parity and p is odd under inversion. In the language of

group theory, one says that Γ +
25 ⊗ Γ −

15 ⊗ Γ +
25 does not contain Γ +

1 .
One, therefore, needs second-order degenerate perturbation theory. The correc-

tions to the cellular functions and matrix elements are:

ur
nk = ε+

r + �

m0
k ·

′∑
lαν

|lαν〉〈lαν|p|r〉
EΓ +

25
− Elα

, (3.1)

Hrs ≡ 〈r |H (k)|s〉 = �
2

m2
0

′∑
lαν

〈r |k · p|lαν〉〈lαν|k · p|s〉
EΓ +

25
− Elα

(3.2)

= �
2

m2
0

ki k j

′∑
lαν

〈r |pi |lαν〉〈lαν|p j |s〉
EΓ +

25
− Elα

,

where |r〉 = ur
n0, lαν denotes the state ν (in case of degeneracy) belonging to the

α representation in the band l; Elα is the energy of that state at k = 0. EΓ +
25

is the
energy of the ε+

r states. The diagonal perturbation matrix elements are given by

Hrr = �
2

m2
0

ki k j

′∑
lαν

〈r |pi |lαν〉〈lαν|p j |r〉
EΓ +

25
− Elα

.
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In the group of DM, there are operators that invert all three coordinates or just one;
taking, e.g., r = xy (the others follow by permutation),

〈xy|pi |lαν〉〈lαν|p j |xy〉

is nonzero only if all coordinates appear pairwise. For example, in

〈xy|px |lαν〉〈lαν|p j |xy〉,

using an operator that only changes the sign of x requires p j = px (equivalently for
py), while in

〈xy|pz|lαν〉〈lαν|p j |xy〉,

using an operator that only changes the sign of z requires p j = pz . Thus, pi = p j

and two independent choices are pi = py(= px ), pz . Therefore,

H33 = �
2

m2
0

′∑
lαν

{
k2

z

|〈xy|pz|lαν〉|2
EΓ +

25
− Elα

+ (
k2

x + k2
y

) |〈xy|py|lαν〉|2
EΓ +

25
− Elα

}
.

For the off-diagonal matrix elements, one again requires the coordinates to appear
pairwise. For example, for r = xy and s = yz,

〈xy|px |lαν〉〈lαν|p j |yz〉,

using an operator that only changes the sign of x requires p j = py or pz but, in
addition, using an operator that only changes the sign of y requires p j = pz only.
One, therefore, gets

H31 = �
2

m2
0

kx kz

′∑
lαν

{
〈xy|pz|lαν〉〈lαν|px |yz〉 + 〈xy|px |lαν〉〈lαν|pz|yz〉

EΓ +
25

− Elα

}
.

Thus, one can introduce three independent parameters:

L ≡ �
2

m2
0

′∑
lαν

|〈xy|pz|lαν〉|2
EΓ +

25
− Elα

,

M ≡ �
2

m2
0

′∑
lαν

|〈xy|py|lαν〉|2
EΓ +

25
− Elα

, (3.3)

N ≡ �
2

m2
0

′∑
lαν

〈xy|pz|lαν〉〈lαν|px |yz〉 + 〈xy|px |lαν〉〈lαν|pz|yz〉
EΓ +

25
− Elα

,
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giving rise to the DKK Hamiltonian:

HDKK(k) =

⎛
⎜⎜⎜⎝

|yz〉 |zx〉 |xy〉
Lk2

x + M(k2
y + k2

z ) Nkx ky Nkx kz

Nkx ky Lk2
y + M(k2

z + k2
x ) Nkykz

Nkx kz Nkykz Lk2
z + M(k2

x + k2
y)

⎞
⎟⎟⎟⎠ . (3.4)

The band energies are then given by

En(k) = EΓ +
25

+ �
2k2

2m0
+ λ,

where λ are the eigenvalues of the DKK Hamiltonian. Luttinger and Kohn (LK) [6]
came up with a slightly different notation for the Hamiltonian, which includes the
free-electron term. They give the matrix as D with matrix elements

Dmn = Di j
mnki k j , (3.5)

Di j
mn = �

2

2m0

[
δmnδ j j ′ + 1

m0

B∑
l

pi
ml p j

ln + p j
ml pi

ln

EΓ +
25

− El

]
. (3.6)

Then

D =

⎛
⎜⎜⎜⎝

|yz〉 |zx〉 |xy〉
ALk2

x + BL
(
k2

y + k2
z

)
CLkx ky CLkx kz

CLkx ky ALk2
y + BL

(
k2

z + k2
x

)
CLkykz

CLkx kz CLkykz ALk2
z + BL

(
k2

x + k2
y

)

⎞
⎟⎟⎟⎠,

(3.7)
with

AL = �
2

2m0
+ �

2

m2
0

∑
l

px
1l px

l1

EΓ +
25

− El
,

BL = �
2

2m0
+ �

2

m2
0

∑
l

py
1l py

l1

EΓ +
25

− El
, (3.8)

CL = �
2

2m2
0

∑
l

px
1l py

l2 + py
1l px

l2

EΓ +
25

− El
.

Thus, the LK parameters are related to the DKK ones via

AL = L + �
2

2m0
,
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BL = M + �
2

2m0
, (3.9)

CL = N .

Terms of higher order, for example, k4, have been considered by some authors [25]
but will not be discussed in this book as they are not commonly used in the
literature.

3.2.2 Eigenvalues

The DKK Hamiltonian cannot be diagonalized analytically throughout the first Bril-
louin zone (FBZ). However, analytical solutions exist when there is double degen-
eracy (e.g., along L − Γ − X ). We now obtain those solutions:

∣∣∣∣∣∣∣

Lk2
x + M

(
k2

y + k2
z

) − λ Nkx ky Nkx kz

Nkx ky Lk2
y + M

(
k2

z + k2
x

) − λ Nkykz

Nkx kz Nkykz Lk2
z + M

(
k2

x + k2
y

) − λ

∣∣∣∣∣∣∣
= [

Lk2
x + M

(
k2

y + k2
z

) − λ
] [

Lk2
y + M(k2

x + k2
z ) − λ

] [
Lk2

z + M
(
k2

y + k2
x

) − λ
]

− [
Lk2

x + M
(
k2

y + k2
z

) − λ
]

N 2k2
yk2

z − [
Lk2

z + M
(
k2

x + k2
y

) − λ
]

N 2k2
x k2

y

− [
Lk2

y + M
(
k2

x + k2
z

) − λ
]

N 2k2
x k2

z + 2N 3k2
x k2

yk2
z = 0.

Using

[a − λ][b − λ][c − λ] = abc − (ac + bc + ab)λ + (a + b + c)λ2 − λ3,

we have

λ3 − (L + 2M)k2λ2

+
{ [

Lk2
x + M

(
k2

y + k2
z

)] [
Lk2

y + M
(
k2

x + k2
z

)]
+ [

Lk2
x + M

(
k2

y + k2
z

)] [
Lk2

z + M
(
k2

x + k2
y

)]

+ [
Lk2

y + M
(
k2

x + k2
z

)] [
Lk2

z + M
(
k2

x + k2
y

)] − N 2
(
k2

x k2
y + k2

x k2
z + k2

yk2
z

) }
λ

−
{ [

Lk2
x + M

(
k2

y + k2
z

)] [
Lk2

y + M
(
k2

x + k2
z

)] [
Lk2

z + M
(
k2

x + k2
y

)]

+N 2
[
Lk2

x + M
(
k2

y + k2
z

)]
k2

yk2
z + N 2

[
Lk2

y + M
(
k2

x + k2
z

)]
k2

x k2
z

+N 2
[
Lk2

z + M
(
k2

y + k2
x

)]
k2

x k2
y − 2N 3k2

x k2
yk2

z

}
= 0. (3.10)

This general characteristic equation is too complicated to be of much use. However,
when there is a degenerate pair of eigenvalues,
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(λ − a)2(λ − b) = λ3 − (2a + b)λ2 + (2ab + a2)λ − a2b = 0.

Comparing with Eq. (3.10), one has

2a + b = (L + 2M)k2, (3.11)

2ab + a2 = (
L2 − N 2 + 3M2 + 2M L

)
kxyz + (

M2 + 2L M
) (

k4
x + k4

y + k4
z

)
≡ α (3.12)

where kxyz = k2
x k2

y + k2
yk2

z + k2
z k2

x . Eliminating b from Eqs. (3.11) and (3.12) gives

3a2 − 2(L + 2M)k2a + α = 0,

and

a = (L + 2M)

3
k2 ±

[
(L + 2M)2

9
k4 − α

3

]1/2

= (L + 2M)

3
k2 ±

[
(L − M)2

9
k4 + 1

3

[
N 2 − (L − M)2

] (
k2

x k2
y + k2

yk2
z + k2

z k2
x

)]1/2

.

Hence,

E(k) = Ak2 ± [
B2k4 + C2

(
k2

yk2
z + k2

z k2
x + k2

x k2
y

)]1/2
, (3.13)

where

A ≡ (L + 2M)

3
+ �

2

2m0
, B2 ≡ (L − M)2

9
, C2 ≡ 1

3

[
N 2 − (L − M)2] . (3.14)

This (restricted) result will turn out to be identical to the spin case. Note that the
dispersion is both anisotropic (if C 	= 0) and nonparabolic (if B, C 	= 0); the first
property is also known as warping. A careful study of warping was given in [26].

3.2.3 L, M, N Parameters

We next study the L , M, N parameters more closely. The matrix elements involved
are

〈r |p|l〉 ∼ Γ +
25 ⊗ Γ −

15 ⊗ Γ l .

From Table 3.2, one deduces that

Γ +
25 ⊗ Γ −

15 ∼ Γ −
12 ⊕ Γ −

15 ⊕ Γ −
2 ⊕ Γ −

25 ; (3.15)
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in effect, all the odd-parity representations except for Γ −
1 . In order, to be able to

get Γ +
1 in the decomposition, Γ l must clearly have odd parity; however, Γ −

1 is not
appropriate since the decomposition will then not include Γ +

1 . Otherwise, all of the
four irreducible representations on the right-hand side of Eq. (3.15) can interact with
the valence-band edge.

Table 3.2 Character table of the group Oh

Oh E 8C3 3C2 6C4 6C ′
2 I

8S6 =
I C3

3σh =
I C2

4

6S4 =
I C4

6σd =
I C2

Γ +
1 1 1 1 1 1 1 1 1 1 1

Γ +
2 1 1 1 –1 –1 1 1 1 –1 –1

Γ +
12 2 –1 2 0 0 2 –1 2 0 0

Γ +
15 3 0 –1 1 –1 3 0 –1 1 –1

Γ +
25 3 0 –1 –1 1 3 0 –1 –1 1

Γ −
1 1 1 1 1 1 –1 –1 –1 –1 –1

Γ −
2 1 1 1 –1 –1 –1 –1 –1 1 1

Γ −
12 2 –1 2 0 0 –2 1 –2 0 0

Γ −
15 3 0 –1 1 –1 –3 0 1 –1 1

Γ −
25 3 0 –1 –1 1 –3 0 1 1 –1

The band-edge structure for diamond-type semiconductors is believed to be as
given in Fig. 3.2. The state Γ −

12 was reported by von der Lage and Bethe [27] to
have as smallest l = 5. However, Herman [28] showed that it originates from 〈200〉
plane waves and as having the symmetry of d− states. The discrepancy is likely due
to the fact that von der Lage and Bethe were really studying the cubic group with
a single atom (ion) per unit cell whereas Herman considered the case of two atoms
per unit cell. Thus, one expects the maximum perturbation from the Γ −

2 , Γ −
12, Γ

−
15

bands; in particular, there is no perturbation from, e.g., Γ +
1 .

Similarly, not all states appear in the summation for the DKK parameters. Hence,
instead of writing the DKK Hamiltonian in terms of the L , M, N , one can also write
it in terms of interband parameters between states of given symmetries; furthermore,
this will provide relations among the L , M, N parameters.

3.2.3.1 L Parameter

Starting with L , only Γ −
2 and Γ −

12 can contribute. This can be ascertained by looking
at the reflection properties of the matrix element. Consider, e.g., |r〉 = |yz〉. Then

px |yz〉 ∼ xyz ∼ Γ −
2 .

Under an I C2
4 reflection, Γ −

15 and Γ −
25 are even, while Γ −

2 is odd (see Table 3.2).
This eliminates the former two representations from the matrix elements for L . This
can be shown more explicitly, e.g., for the Γ −

15 representation (∼ x, y, z):

〈yz|px |x, z〉 = 0
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C

Γ +
1–22

Γ +
250

Γ −
155

Γ −
216

Γ +
124

Γ −
1226

Γ +
2532

Si

Γ +
1 ∼ s+–13

Γ +
250

Γ −
153

Γ −
24

Γ +
17

Γ −
1210

Γ +
2513

Γ +
214

Ge

Γ +
1 ∼ s+–10

Γ +
25 ∼ yz,zx,xy ∼ p+0

Γ −
2 ∼ xyz ∼ s−3

Γ −
15 ∼ x,y,z ∼ p−5

Γ −
12 ∼ d−13

Γ +
1 ∼ s ∼ s+15

Γ +
25 ∼ yz,zx,xy ∼ d+17

Γ −
2 ∼ xyz ∼ s−25

Fig. 3.2 Schematic of zone-center energy (in eV) ordering for diamond-structure semiconductors
(not to scale; C from Willatzen et al. [29], Si from Cardona and Pollak [5], Ge from DKK [2])

using I C2y and

〈yz|px |y〉 = 0

using I C2x . We now wish to consider how many independent interband terms there
are. Consider first

L = �
2

m2
0

′∑
l

{
|〈yz|px |β−

l 〉|2
EΓ +

25
− El

+
∑

ν

|〈yz|px |γ −
νl 〉|2

EΓ +
25

− El

}
, (3.16)

where β−
l ∈ Γ −

2 and γ −
νl ∈ Γ −

12 . DKK showed that each representation only con-
tributes one matrix element per band, independent of its dimension. We will now
obtain this result. Let

F ≡ �
2

m2
0

′∑
l∈Γ −

2

|〈yz|px |β−
l 〉|2

EΓ +
25

− El
, (3.17)
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G ≡ �
2

m2
0

′∑
l∈Γ −

12

|〈yz|px |γ −
1l 〉|2

EΓ +
25

− El
. (3.18)

Since Γ −
2 is one dimensional, there is only one such term. On the other hand, Γ −

12 is
two dimensional; it turns out this still only contributes one distinct term. To establish
this result, we need the basis functions. One could choose the d-like functions (as
done by von der Lage and Bethe); however, the latter do not generate a unitary
irreducible representation [2]. Hence, we follow DKK in choosing γ −

νl such that

γ −
1 = x2 + ωy2 + ω2z2, (3.19)

γ −
2 = x2 + ω2 y2 + ωz2, (3.20)

where ω3 = 1 and γ −
ν = γν − γ ′

ν . To verify that they are basis functions for the Γ −
12

irreducible representation, one can generate the representation matrices and show
that they have the right character vector. We use

O(R) fi (r) = f (R−1r) =
∑

j

f j (r)R j i ,

where R is a rotation. For example (note that we only need the matrix for one ele-
ment in each class):

O(C4x )γ −
1 = C−1

4x γ −
1 = C−1

4x

(
x2 + ωy2 + ω2z2

)− xzy= (
x2 + ωz2 + ω2 y2

)− = γ −
2 ,

O(C4x )γ −
2 = γ −

1 ,

=⇒ C4x =
(

0 1
1 0

)
,

O(C−1
4y )γ −

1 = C4y
(
x2 + ωy2 + ω2z2

)− zyx= (
z2 + ωy2 + ω2x2

)−

= 1

ω

(
x2 + ω2 y2 + ωz2

)− = 1

ω
γ −

2 ,

O
(

C−1
4y

)
γ −

2 = C4y
(
x2 + ωz2 + ω2 y2

)− = (
z2 + ωx2 + ω2 y2

)−

= 1

ω2

(
x2 + ωy2 + ω2z2

)− = 1

ω2
γ −

1 ,

=⇒ C−1
4y =

(
0 1

ω
1
ω2 0

)
,

O(C2)γ −
i = γ −

i ,

=⇒ C2 =
(

1 0
0 1

)
,



26 3 Perturbation Theory – Valence Band

O
(
C3xyz

)
γ −

1 = C−1
3xyz

(
x2 + ωy2 + ω2z2

)− zxy= (
z2 + ωx2 + ω2 y2

)−

= 1

ω2

(
x2 + ωy2 + ω2z2

)− = 1

ω2
γ −

1 ,

O
(
C3xyz

)
γ −

2 = (
z2 + ωy2 + ω2x2

)− = 1

ω
γ −

2 ,

=⇒ C3xyz =
( 1

ω2 0
0 1

ω

)
=
(

ω 0
0 ω2

)
.

C ′
2 is similar to C4, and so on. In order to get the characters, we have, for example

for C3xyz

χ (C3xyz) = ω + ω2 = −1,

since ω + ω2 + ω3 = 0 and ω3 = 1. Also, one should check that the representation
is indeed unitary (i.e., U † = U−1). For example, given C−1

4y above and assuming
unitarity,

C†
4y = C−1

4y =
(

0 1
ω∗2

1
ω∗ 0

)
=
(

0 1
ω

1
ω2 0

)
,

since

ω3 = 1 =⇒ 1

ω∗2 = ω∗,

and

ω = eiθ =⇒ ω∗ = 1/ω.

Also

C4y = (C†
4y)† =

(
0 1

ω
1
ω2 0

)
,

and

C4yC−1
4y = C4yC†

4y =
(

0 1
ω

1
ω2 0

)(
0 1

ω
1
ω2 0

)
=
( 1

ω3 0
0 1

ω3

)
=
(

1 0
0 1

)
.

Thus γ −
νl ∼ Γ −

12 .
Now, following DKK, let

〈yz|px |γ −
1 〉 ≡ R. (3.21)
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We will show that 〈yz|px |γ −
2 〉 is related. To wit,

C4x 〈yz|px |γ −
2 〉 = C4x 〈yz|px |(x2 + ω2 y2 + ωz2)−〉 = −〈yz|px |(x2 + ωy2 + ω2z2)−〉

= −R.

The two matrix elements with respect to the two degenerate states are, therefore, the
same up to a sign giving

L = F + 2G. (3.22)

3.2.3.2 M Parameter

Similarly, one can show that M only has contributions from Γ −
15 and Γ −

25 (lowest
l = 3 [27]). Again, taking the Γ −

15 representation as example:

〈yz|py|x〉 = 0

using I C2x ,

〈yz|py|y〉 = 0

using I C2y , but

〈yz|py|z〉 	= 0 ∀ I C2.

Then,

M = �
2

m2
0

′∑
lv

{
|〈yz|py|lv〉|2
EΓ +

25
− EΓ −

15

+ |〈yz|py|lv〉|2
EΓ +

25
− EΓ −

25

}
. (3.23)

Let

H1 ≡ �
2

m2
0

′∑
l

|〈yz|py|δ−
3l〉|2

EΓ +
25

− EΓ −
15

, (3.24)

where δ−
3l ∈ Γ −

15 . There are no matrix elements with δ−
1l and δ−

2l , where δ−
1l , δ

−
2l , δ

−
3l ∼

x, y, z:

〈yz|py |y〉 I C2y= 0,

〈yz|py |x〉 I C2z= 0,

but

〈yz|py |z〉 	= 0.
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Similarly, let

H2 ≡ �
2

m2
0

′∑
l

|〈yz|py|ε−
3l〉|2

EΓ +
25

− EΓ −
25

. (3.25)

Let Γ −
25 ∼ da − d ′

a [e.g., (yz)a − (yz)′a]; except for operations with inversion, the
matrix elements behave as for Γ +

25 . Then

〈yz+|py|yz−〉 = 0,

using C2x and

〈yz+|py|ε−
2l〉 = 0,

using C2y but

〈yz+|py|xy−〉 	= 0.

Thus,

M = H1 + H2. (3.26)

3.2.3.3 N Parameter

Finally, we study N :

N = �
2

m2
0

′∑
lνα

〈yz|px |lνα〉〈lνα|py|yz〉 + 〈yz|py|lνα〉〈lνα|px |yz〉
EΓ +

25
− El

∼ Γ −
2 + Γ −

12 + Γ −
15 + Γ −

25 . (3.27)

We will consider the two matrix elements 〈yz|px |l〉〈l|py|yz〉 and 〈yz|py|l〉〈l|px |yz〉
separately. For Γ −

2 , we have first the matrix element 〈yz|px |β−
l 〉〈β−

l |py|yz〉, where
β−

l ∼ xyz. Now,

〈β−
l |py|yz〉 = 〈xyz|py |zx〉 I C2x y= 〈xyz|px |yz〉 = 〈β−

l |px |yz〉,
〈yz|py |lα〉 = 〈yz|py |xyz〉 = 0.

Hence,

�
2

m2
0

′∑
l∈Γ −

2

〈yz|px |l〉〈l|py|yz〉 + 〈yz|py|l〉〈l|px |yz〉
EΓ +

25
− El

= �
2

m2
0

′∑
l∈Γ −

2

|〈yz|px |β−
l 〉|2

EΓ +
25

− El
≡ F.

(3.28)
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For Γ −
12 , we need the following:

〈γ −
2 |py |yz〉 =

〈(
x2 + ω2 y2 + ωz2

)− |py |zx
〉

C4z (yxz)= −
〈(

y2 + ω2x2 + ωz2
)− |px |zy

〉

= − 1

ω∗
〈(

x2 + ωy2 + ω2z2
)− |px |yz

〉
= −ω〈γ −

1 |px |yz〉,

〈γ −
1 |py |yz〉 = 1

ω2
〈γ −

2 |px |yz〉 = − R

ω2
= −ωR,

=
〈(

x2 + ωy2 + ω2z2
)− |py |zx

〉
C2xz (zyx)= −

〈(
z2 + ωy2 + ω2x2

)− |py |xz
〉

= − 1

ω

〈(
x2 + ω2 y2 + ωz2

)− |py |zx
〉
= −ω2

〈
γ −

2 |py |yz
〉
,

〈
zx |py |γ −

1

〉 =
〈
zx |py |

(
x2 + ωy2 + ω2z2

)−〉 I C2x y (yxz)= −
〈
zy|px |

(
y2 + ωx2 + ω2z2

)−〉

= − 1

ω2

〈
yz|px |(x2 + ω2 y2 + ωz2)−

〉 = − 1

ω2
〈yz|px |γ −

2 〉,

or

〈
yz|px |γ −

2

〉 = R = 〈
yz|px |γ −

1

〉
,

〈γ −
2 |py|yz〉 = 1

ω

〈
γ −

1 |px |yz
〉
,

=⇒ 〈yz|px |γ −
2 〉〈γ −

2 |py|yz〉 = 1

ω
〈yz|px |γ −

1 〉〈γ −
1 |px |yz〉 = 1

ω
|R|2.

Next

〈yz|px |γ −
1 〉〈γ −

1 |py |yz〉 = 〈yz|px |γ −
2 〉 1

ω2
〈γ −

2 |px |yz〉 = 1

ω2
|〈yz|px |γ −

2 〉|2 = 1

ω2
|R|2.

Finally, in 〈yz|py|l〉〈l|px |yz〉, e.g.,

〈yz|py |(x2 + ωy2 + ω2z2)−〉 C2y= 0.

Hence,

�
2

m2
0

∑
ν

〈yz|px |γ −
ν 〉〈γ −

ν |py |yz〉
EΓ +

25
− El

= �
2

m2
0

(
1

ω
+ 1

ω2

)∑
ν

|R|2
EΓ +

25
− El

= (ω2 + ω)
�

2

m2
0

∑
ν

|R|2
EΓ +

25
− El

= − �
2

m2
0

∑
ν

|R|2
EΓ +

25
− El

≡ −G.
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For Γ −
15 ∼ x, y, z, we have

〈yz|px |δ−
νl〉〈δ−

νl |py|yz〉 = 〈yz|px |x, y, z〉〈x, y, z|py |zx〉 = 0 ∀ ν,

〈yz|py |δ−
νl〉〈δ−

νl |px |yz〉 = 〈yz|py |z〉〈z|px |zx〉 	= 0.

Indeed,

〈yz|px |z〉 = 〈yx |py |x〉 = 〈xy|py |δ−
1l〉,

〈z|py|zx〉 = 〈x |py |xy〉 = 〈δ−
1l |py|xy〉,

giving

∑
Γ −

15

= H1. (3.29)

For Γ −
25 ∼ da − d ′

a , we have

〈yz|px |ε−
νl〉〈ε−

νl |py|zx〉 = 0.

We already have that

〈yz|py|ε−
1,2l〉 = 0.

Thus, the only non-zero element is

〈yz|py |ε−
3l〉〈ε−

3l |px |zx〉 C4z= −〈yz|py |xy−〉〈xy−|py|yz〉 = −H2.

Finally,

N = F − G + H1 − H2. (3.30)

3.2.4 Properties

Rewriting the DKK Hamiltonian, Eq. (3.4), as

Mk2 +
⎛
⎝ (L − M)k2

x Nkx ky Nkx kz

Nkx ky (L − M)k2
y Nkykz

Nkx kz Nkykz (L − M)k2
z

⎞
⎠ ,

one observes that if (L − M) = N , the energy dispersion is isotropic. This is known
as the spherical approximation; it was first introduced by Baldereschi and Lipari in
their study of acceptor states in cubic semiconductors [30].
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Note that a minimal basis (sp3) tight-binding model will give an isotropic dis-
persion for small wave vector [24]. In this respect, k · p theory gives a better rep-
resentation of the symmetry group (if enough interactions are retained). Indeed, if
one only retains the lowest interaction (assumed to be of symmetry Γ −

2 ∼ xyz), and
defines a Kane parameter analogously to the ZB case [Eq. (2.30)],

2

m0
|〈xyz|pz|xy〉|2 ≡ EP ,

then

L = �
2

m2
0

|〈xy|pz|xyz〉|2
EΓ +

25
− E−

2

= �
2

2m0

(
EP

−E0

)
,

M = 0,

N = L ,

giving an isotropic dispersion (and effective mass).

Table 3.3 DKK parameters in units of �
2/2m0 [2]

L M N F G H1 H2

Si −1.9 −6.7 −7.5 −1.2 −0.4 −6.7 0

Ge −31.8 −5.1 −32.1 −28.6 −1.4 −5.1 0

The band structures for Si and Ge along L → Γ → X are plotted in Fig. 3.3,
using the parameters from Table 3.3. H2 was chosen zero since it involves interac-
tion with Γ −

25 states and those are far from the valence band (Fig. 3.2). The warping
is evident from the difference in dispersion along the two directions. Also, the sig-
nificant failure of the k · p for large k is evident in the unnaturally large bandwidths.
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Fig. 3.3 Si and Ge band structures from DKK model
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3.3 Six-Band Model for Diamond

We now add the spin-orbit coupling to the previous model.

3.3.1 Hamiltonian

First we recall that the k · p perturbation was present to second order. However, the
spin-orbit interaction is nonzero even to first order. There are two contributions in
the k · p equation:

Hso(k) = �

4m2
0c2

(σ × ∇V ) · p + �
2

4m2
0c2

(σ × ∇V ) · k = Hso + Hso,k . (3.31)

The second, k-dependent spin-orbit term is usually much smaller than the first
one [3]; we will ignore it for now. Hence, we will be adding the matrix elements
of Hso in the Γ +

25 subspace and we rewrite the first term of Eq. (3.31) as

Hso = �

4m2
0c2

(σ × ∇V ) · p = �

4m2
0c2

(∇V × p) · σ ≡ Hs,iσi . (3.32)

One can show that there exists only one independent spin-orbit matrix element since
∇V × p is an axial vector. Then

〈s|∇V × p|x〉 = 〈x |∇V × p|x〉 = 0,

and

〈x |(∇V × p)z|y〉 	= 0.

Historically, one writes

Δ0 ≡ 3i�

4m2
0c2

〈
x

∣∣∣∣∂V

∂x
py − ∂V

∂y
px

∣∣∣∣ y

〉
. (3.33)

Kane [31] wrote it differently, as

Δ ≡ − 3i�

4m2
0c2

〈x |(∇V × p)y |z〉,

but one can show both forms lead to equivalent Hso matrices.
It is necessary to include the spin functions to the basis states leading to a six-

dimensional basis: ε+
1 ↑, ε+

2 ↑, ε+
3 ↑, ε+

1 ↓, ε+
2 ↓, ε+

3 ↓. In this L S representation,
Hso is not diagonal. Equivalently, it mixes the states and can lead to a splitting of
the degeneracy. Indeed, the six states transform according to (Table B.6)

Γ +
25 ⊗ Γ +

6 = Γ +
8 ⊕ Γ +

7 ,

and split into a quadruplet and a doublet. The double-group notation is that of Dres-
selhaus [32] as opposed to that of Koster et al. [33].
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However, if one transforms to the J MJ basis, Hso is diagonal. That this is so can
be seen from the fact that Hso behaves as

L · S = 1

2
(J 2 − L2 − S2) = 1

2
[ j( j + 1) − l(l + 1) − s(s + 1)] .

Combining the p-like orbitals (l = 1) with the spinors (s = 1
2 ) leads to j = 3

2

(four-fold degenerate) or j = 1
2 (two-fold degenerate) states. We choose phases

following Bastard [7] (Table 3.4). Our next task is to transform the Hamiltonian
into the new JMJ basis and then attempt to find exact solutions. We do expect, from
Kramer’s degeneracy, that all the states will be doubly degenerate.

Table 3.4 |J MJ 〉 states. The
phase factors given agree
with, e.g., Bastard [7] and
Foreman [34]

∣∣∣∣3

2

3

2

〉
= 1√

2
|(x + iy) ↑〉,

∣∣∣∣3

2

1

2

〉
= 1√

6
|(x + iy) ↓〉 −

√
2

3
|z ↑〉,

∣∣∣∣3

2
−1

2

〉
= − 1√

6
|(x − iy) ↑〉 −

√
2

3
|z ↓〉,

∣∣∣∣3

2
−3

2

〉
= 1√

2
|(x − iy) ↓〉,

∣∣∣∣1

2

1

2

〉
= 1√

3
|(x + iy) ↓〉 + 1√

3
|z ↑〉,

∣∣∣∣1

2
−1

2

〉
= − 1√

3
|(x − iy) ↑〉 + 1√

3
|z ↓〉,

i|s ↑〉,
i|s ↓〉.

3.3.1.1 Hso

Consider first the spin-orbit term. We need the Pauli spin matrices:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (3.34)

In the J MJ basis, Hso is diagonal; furthermore, the matrix elements are only depen-
dent upon J . For example,〈

3

2

3

2
|Hso| 3

2

3

2

〉
=
〈

3

2

3

2

〉 ∣∣∣∣ �

4m2
0c2

∣∣∣∣ (∇V × p) · σ

∣∣∣∣32
3

2

〉

= 1

2
〈(x + iy) ↑| �

4m2
0c2

(∇V × p) · σ |(x + iy) ↑〉
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= 1

2
〈(x + iy)| �

4m2
0c2

(∇V × p) |(x + iy)〉 · 〈↑|σ |↑〉

= i〈x | �

4m2
0c2

(∇V × p) |y〉 · 〈↑ |σ | ↑〉

= i〈x | �

4m2
0c2

(∇V × p)z |y〉 ≡ Δ0

3
, (3.35)

using Eq. (3.33). Similarly, one finds

〈
1

2

1

2
|Hso|1

2

1

2

〉
= −2Δ0

3
.

A more formal procedure is to transform Hso in L S to H ′
so in JMJ . In L S, we have

Hso = 1

3
Δ0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε+
1 ↑ ε+

2 ↑ ε+
3 ↑ ε+

1 ↓ ε+
2 ↓ ε+

3 ↓
0 −i 0 0 0 1

i 0 0 0 0 −i

0 0 0 −1 i 0

0 0 −1 0 i 0

0 0 −i −i 0 0

1 i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.36)

We now need the transformation matrix S connecting the L S states to the JMJ ones.
The equations in Table 3.4 can be rewritten in column vector form as

|J MJ 〉T = ST · |L S〉T , (3.37)

or in row vector form

〈J MJ | = 〈L S| · S, (3.38)

which defines the matrix S as

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

| 3
2

3
2 〉 | 3

2
1
2 〉 | 3

2 − 1
2 〉 | 3

2 − 3
2 〉 | 1

2
1
2 〉 | 1

2 − 1
2 〉

|ε+
1 ↑〉 1√

2
0 − 1√

6
0 0 − 1√

3

|ε+
2 ↑〉 i√

2
0 i√

6
0 0 i√

3

|ε+
3 ↑〉 0 −

√
2
3 0 0

√
1
3 0

|ε+
1 ↓〉 0 1√

6
0 1√

2
1√
3

0

|ε+
2 ↓〉 0 i√

6
0 − i√

2
i√
3

0

|ε+
3 ↓〉 0 0 −

√
2
3 0 0

√
1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.39)
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Note that this differs from Eq. (10) of Kane [3] in an overall sign and also in a
different ordering of the JMJ basis. We can state that his |JMJ 〉 states differ from
ours by an overall sign (Table C.2). The spin-orbit Hamiltonian in the JMJ basis is

H ′
so = S†HsoS = Δ0

3

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −2 0
0 0 0 0 0 −2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.40)

3.3.1.2 Hk· p

We now consider the representation of the k · p perturbation in the JMJ basis:

Hrs =
∑

lα

〈r |Hk·p|lα〉〈lα|Hk·p|s〉
E0 − Elα

. (3.41)

In principle, one would need to transform all the states. In Eq. (3.41), the combi-
nation |lα〉〈lα| is invariant under a unitary transformation; hence, they can be left
unchanged. Their energies Elα would, in general, experience spin-orbit splittings.
Following DKK, we will neglect the latter effect. The Hamiltonian in the L S basis is

(
HDKK 0

0 HDKK

)
.

One can now obtain the Hamiltonian in the JMJ basis by performing a unitary trans-
formation

S−1 H (k)S,

The small size of the Hamiltonian together with hermiticity makes the direct
transformation to the JMJ basis fairly straightforward. Furthermore, if left in terms
of the matrix elements Hi j of HDKK, the result reflects the choice of Clebsch-Gordan
coefficients, i.e., the latter (together with hermiticity) govern the structure of the
matrix. For example,

〈
3

2

3

2
|H (k)|3

2

3

2

〉
= 1

2
〈(x + iy) ↑ |H (k)|(x + iy) ↑〉

= 1

2
(H11 + H22) =

〈
3

2
−3

2
|H (k)|3

2
−3

2

〉
≡ P ′,

〈
3

2

1

2
|H (k)|3

2

1

2

〉
=
〈

1√
6

(x + iy) ↓ −
√

2

3
z ↑ |H (k)| 1√

6
(x + iy) ↓ −

√
2

3
z ↑

〉
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= 1

6
〈x + iy|H (k)|x + iy〉 + 2

3
〈z|H (k)|z〉

= 1

6
(H11 + H22) + 2

3
H33 =

〈
3

2
−1

2
|H (k)|3

2
−1

2

〉
≡ P ′′,

〈
1

2

1

2
|H (k)|1

2

1

2

〉
=
〈

1√
3

(x + iy) ↓ + 1√
3

z ↑ |H (k)| 1√
3

(x + iy) ↓ + 1√
3

z ↑
〉

= 1

3
〈x + iy|H (k)|x + iy〉 + 1

3
〈z|H (k)|z〉

= 1

3
(H11 + H22 + H33) =

〈
1

2
−1

2
|H (k)|1

2
−1

2

〉
≡ P ′′′,

〈
3

2

3

2
|H (k)|3

2

1

2

〉
=
〈

1√
2

(x + iy) ↑ |H (k)| 1√
6

(x + iy) ↓ −
√

2

3
z ↑

〉

= − 1√
3
〈x + iy|H (k)|z〉 = − 1√

3
(H13 − iH23) ≡ S−,

〈
3

2

3

2
|H (k)|3

2
−1

2

〉
=
〈

1√
2

(x + iy) ↑ |H (k)| − 1√
6

(x + iy) ↑ −
√

2

3
z ↓

〉

= − 1

2
√

3
〈x + iy|H (k)|x − iy〉 = − 1

2
√

3
(H11 − H22 − 2iH12)

≡ −R,

〈
3

2

1

2
|H (k)|1

2

1

2

〉
=
〈

1√
6

(x + iy) ↓ −
√

2

3
z ↑ |H (k)| 1√

3
(x + iy) ↓ + 1√

3
z ↑

〉

= 1

3
√

2
〈x + iy|H (k)|x + iy〉 −

√
2

3
〈z|H (k)|z〉

= 1

3
√

2
(H11 + H22 − 2H33) ≡ −

√
2Q,

〈
3

2
−1

2
|H (k)|1

2

1

2

〉
= − 1

3
√

2
〈x − iy|H (k)|z〉 −

√
2

3
〈z|H (k)|x + iy〉

= − 1√
2

(H13 + iH23) =
√

3

2
S+.

In the above derivations, we have used the fact that Hi j = Hji .

3.3.1.3 H(k) + Hso

The total Hamiltonian is given in Table 3.5. Note that there are a few sign differ-
ences between our Table 3.5 and Eq. (65) of DKK. These can be accounted for by
differences in the phases of two of the basis functions (Table C.2), even though DKK
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did not give theirs explicitly. For example, in our case, the (1,5) and (2,6) matrix
elements have the same sign; in DKK’s case, they have opposite signs. Equation
(4.3.14) in S. L. Chuang’s book [15] (and Eq. (20) of Elliott [35] but there are other
problems here as we will see below) also have the same structure as DKK’s; in
the former case, the basis functions are given and the sign difference in two basis
functions is consistent with our interpretation of DKK’s basis. Our Hamiltonian has
the same structure as that of, e.g., Kane [3] (not surprisingly since our bases only
differ by an overall negative sign) and, in fact, of Luttinger–Kohn [6] as well, as we
will see later for both cases. Nevertheless, the subsequent evaluation of the secular
determinant leads to the same characteristic equation. Our Hamiltonian does agree
with that of Kane [3] upon re-ordering the basis. Before we treat the approximate
eigenvalues, we give here the explicit and independent matrix elements of the 6 × 6
Hamiltonian given in Table 3.5, using the notation of Elliot [35]:

(1, 1) = (4, 4) = H11 + H22

2
= 1

2
(L + M)(k2

x + k2
y) + Mk2

z ≡ 1

2
P − �

2k2

2m0
,

(1, 2) = − H13 − iH23√
3

= − N√
3

(kx − iky)kz ≡ R,

(1, 3) = − H11 − H22 − 2iH12

2
√

3
= − 1

2
√

3

[
(L − M)(k2

x − k2
y) − 2iNkx ky

] ≡ S,

(2, 2) = (3, 3) = H11 + H22 + 4H33

6
= 1

6

[
(L + 5M)(k2

x + k2
y) + 2(2L + M)k2

z

]

≡ 1

6
P + 2

3
Q − �

2k2

2m0
,

(2, 5) = H11 + H22 − 2H33

3
√

2
= 1

3
√

2

[
(L − M)(k2

x + k2
y) − 2(L − M)k2

z

]

≡ 1

3
√

2
(P − 2Q),

(5, 5) = (6, 6) = H11 + H22 + H33

3
− Δ0 = L + 2M

3
k2 − Δ0

≡ 1

3
(P + Q) − Δ0 − �

2k2

2m0
.

The above can be summarized into the Elliott–Luttinger–Kohn Hamiltonian in
Table 3.6, after adding the diagonal free-electron energy term. Note, however, that
our matrix differs slightly from the original Elliott [35] and LK [6] ones due to
the different basis functions used. Indeed, if we correct for the difference in basis
function, we do reproduce the LK Hamiltonian, Eq. (V.13); but we do not reproduce
that of Elliott. Our P and Q are identical to the latter but not R and S. Since we
have already used L , M, N as DKK parameters, we have introduced a new notation
to replace the k-dependent L , M of LK; we, henceforth, refer to the LK k-dependent
matrix elements as PL , QL , L L , ML . The relationships between ours and LK’s are:



38 3 Perturbation Theory – Valence Band

Ta
bl

e
3.

5
D

K
K

H
am

ilt
on

ia
n

in
JM

J
ba

si
s.

T
he

to
p

m
at

ri
x

is
as

gi
ve

n
by

D
K

K
[2

],
th

e
se

co
nd

em
ph

as
iz

es
th

e
st

ru
ct

ur
e

du
e

so
le

ly
to

th
e

C
le

bs
ch

-G
or

da
n

co
ef

fic
ie

nt
s

an
d

he
rm

iti
ci

ty
(t

hu
s

th
e

lo
w

er
ha

lf
of

th
e

m
at

ri
x

is
no

te
xp

lic
itl

y
w

ri
tte

n
ou

t)
.

H
ij

ar
e

m
at

ri
x

el
em

en
ts

of
H

D
K

K

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
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−
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〉
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−
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H
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H
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−
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√ 6
H
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H
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√ 6
H
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+H
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−2

H
33
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−

H
13

−i
H

23
√ 2

H
11

−H
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−2
iH

12
√ 6

H
11

+H
22

+H
33
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−

Δ
0

0

−
H

11
−H

22
+2

iH
12

√ 6
H

13
+i

H
23

√ 2
H

11
+H

22
−2

H
33

3√ 2
H

13
−i

H
23

√ 6
0

H
11

+H
22

+H
33

3
−

Δ
0

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

≡

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝|3 2
3 2
〉

|3 2
1 2
〉

|3 2
−

1 2
〉

|3 2
−

3 2
〉

|1 2
1 2
〉

|1 2
−

1 2
〉

P
′

S −
−R

0
−

1 √ 2
S −

−√ 2
R

P
′′

0
R

−√ 2
Q

−√ 3 2
S −

P
′′

S −
√ 3 2

S +
−√ 2

Q

†
P

′
√ 2

R
∗

1 √ 2
S +

P
′′′

−
Δ

0
0

P
′′′

−
Δ

0

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
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Table 3.6 DKK Hamiltonian in J MJ basis using Elliott-LK notation. Note differences compared
to Eq. (20) of Elliott and Eq. (V.13) of LK. The free-electron energy was added to the DKK
Hamiltonian

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

| 3
2

3
2 〉 | 3

2
1
2 〉 | 3

2 − 1
2 〉 | 3

2 − 3
2 〉 | 1

2
1
2 〉 | 1

2 − 1
2 〉

1
2 P R S 0 − 1√

2
R

√
2S

R∗ 1
6 P + 2

3 Q 0 −S 1
3
√

2
(P − 2Q) −

√
3
2 R

S∗ 0 1
6 P + 2

3 Q R
√

3
2 R∗ 1

3
√

2
(P − 2Q)

0 −S∗ R∗ 1
2 P −√

2S∗ − 1√
2

R∗

− 1√
2

R∗ 1
3
√

2
(P − 2Q)

√
3
2 R −√

2S 1
3 (P + Q) − Δ0 0

√
2S∗ −

√
3
2 R∗ 1

3
√

2
(P − 2Q) − 1√

2
R 0 1

3 (P + Q) − Δ0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

P = (L + M)(k2
x + k2

y) + 2Mk2
z + �

2k2

m0
,

Q = M(k2
x + k2

y) + Lk2
z + �

2k2

2m0
,

R = − N√
3

(kx − iky)kz,

S = − 1

2
√

3

[
(L − M)(k2

x − k2
y) − 2iNkx ky

]
.

P = (L + M)(k2
x + k2

y) + 2Mk2
z + �

2k2

m0
= (AL + BL )(k2

x + k2
y) + 2BLk2

z ≡ PL ,

Q = M(k2
x + k2

y) + Lk2
z + �

2k2

2m0
= QL ,

R = − N√
3

(kx − iky)kz = −iL L , (3.42)

S = − 1

2
√

3

[
(L − M)(k2

x − k2
y) − 2iNkx ky

] = −ML .

This form of the Hamiltonian is not widely used; exceptions include, e.g., in the
paper by Sercel and Vahala [36].

While this Hamiltonian is often called the Luttinger–Kohn Hamiltonian, we note
that it appears to have first been written down by Elliott in a related form [35]. There
is also another form of this same Hamiltonian, e.g., in S. L. Chuang’s book [15], in
terms of the Luttinger parameters. However, since we have not yet introduced the
Luttinger parameters, we will present this other form later. Note further that the
quantities P, Q, R, S are different from the definitions in our canonical form in
Table 3.5.
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3.3.2 DKK Solution

The full 6 × 6 determinant cannot be solved analytically. If one assumes that the
hh/lh states can be decoupled from the spin-split-off hole (sh) states (as they are for
k = 0), then one has a 2×2 and a 4×4 block. The spin-split-off block can obviously
be diagonalized exactly. The 4 × 4 block, it turns out, can also be diagonalized
exactly here due to the fact that all the states are doubly degenerate from time-
reversal symmetry in an inversion-symmetric structure (Kramer’s theorem).

We first obtain the spin-split-off dispersion. The 2×2 block is given by Eq. (3.43).

∣∣∣∣∣
H11+H22+H33

3 − λ − Δ0 0

0 H11+H22+H33
3 − λ − Δ0

∣∣∣∣∣ = 0. (3.43)

Not surprisingly, the matrix is already diagonal, reflecting the double degeneracy
expected. The eigenvalue is

λ = −Δ0 + H11 + H22 + H33

3

= −Δ0 + 1

3
(L + 2M)k2.

The dispersion is

Esh(k) = �
2k2

2m0
− Δ0 + 1

3
(L + 2M)k2 ≡ −Δ0 + Ak2, (3.44)

where

A ≡ 1

3
(L + 2M) + �

2

2m0
. (3.45)

We now evaluate the 4 × 4 determinant in a straightforward manner:

∣∣∣∣∣∣∣∣∣∣∣∣

H11+H22
2 − λ − H13−iH23√

3
− H11−H22−2iH12

2
√

3
0

− H13+iH23√
3

4H33+H11+H22
6 − λ 0 H11−H22−2iH12

2
√

3

− H11−H22+2iH12

2
√

3
0 4H33+H11+H22

6 − λ − H13−iH23√
3

0 H11−H22+2iH12

2
√

3
− H13+iH23√

3
H11+H22

2 − λ

∣∣∣∣∣∣∣∣∣∣∣∣

=
[

1

2
(H11 + H22) − λ

]2 [1

6
(4H33 + H11 + H22) − λ

]2

−1

6

[
1

6
(4H33 + H11 + H22) − λ

] [
1

2
(H11 + H22) − λ

]

×
{

(H11 − H22)2 + 4(H 2
12 + H 2

13 + H 2
23)
}
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+ 1

18
(H 2

13 + H 2
23)

[
(H11 − H22)2 + 4H 2

12

] + 1

9
(H 2

13 + H 2
23)2

+ 1

144

[
(H11 − H22)2 + 4H 2

12

]2
.

Making use of the double degeneracy of the states, we recognize that the secular
equation can be rewritten as

(x − a)2 = 0,

where

x =
[

1

6
(4H33 + H11 + H22) − λ

] [
1

2
(H11 + H22) − λ

]
,

a = 1

12

[
(H11 − H22)2 + 4H 2

12 + 4(H 2
13 + H 2

23)
]
.

Then, writing x = a, we have

[
1

6
(4H33 + H11 + H22) − λ

] [
1

2
(H11 + H22) − λ

]

= 1

12

[
(H11 − H22)2 + 4H 2

12 + 4(H 2
13 + H 2

23)
]
,

or

λ2 −
[

4

3
(H11 + H22 + H33)

]
λ + 1

12
(4H33 + H11 + H22)(H11 + H22)

− 1

12

[
(H11 − H22)2 + 4(H 2

12 + H 2
13 + H 2

23)
] = 0. (3.46)

The eigenvalues are

λ = 1

3
(H11 + H22 + H33) ± 1

2

{
4

9
(H11 + H22 + H33)2

+ 1

3

[
(H11 − H22)2 + 4(H 2

12 + H 2
13 + H 2

23) − (H11 + H22)(4H33 + H11 + H22)
]}1/2

= 1

3
(L + 2M)k2 ±

{
1

9
(L + 2M)2k4 + N 2

3
(k2

x k2
y + k2

yk2
z + k2

z k2
x )

+ 1

12

[
(H11 − H22)2 − (H11 + H22)(4H33 + H11 + H22)

]}1/2

. (3.47)

It remains to simplify the last term of Eq. (3.47). Note that

1

12

[
(H11 − H22)2 − (H11 + H22)(4H33 + H11 + H22)

]
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= 1

12

[
(H11 − H22)2 − (H11 + H22)2 − 4H33(H11 + H22)

]

= −1

3
[H11 H22 + H22 H33 + H33 H11]

= −1

3

[
(L2 + 3M2)(k2

x k2
y + k2

yk2
z + k2

z k2
x ) + M2(k4

x + k4
y + k4

z )

+2M L(k4
x + k4

y + k4
z + k2

x k2
y + k2

yk2
z + k2

z k2
x )
]
, (3.48)

while

1

9
(L + 2M)2k4 = 1

9
(L − M)2k4 + M2k4 + 2

3
M(L − M)k4

= 1

9
(L − M)2k4 + M

3
(2L + M)k4. (3.49)

Combining Eq. (3.48) with the second term on the right-hand side of Eq. (3.49) and
using

k4 = (k2
x + k2

y + k2
z )2 = (k4

x + k4
y + k4

z ) + 2(k2
x k2

y + k2
yk2

z + k2
z k2

x ),

we finally get

1

3

{
M(2L + M)k4 − [(L2 + 3M2)(kxy + kyz + kzx ) + M2(k4

x + k4
y + k4

z )

+2M L(k4
x + k4

y + k4
z + kxy + kyz + kzx )]

}
= 1

3
(L − M)2(kxy + kyz + kzx ),

where we have written

kxy + kyz + kzx ≡ k2
x k2

y + k2
yk2

z + k2
z k2

x .

Hence, the dispersion is

E(k) = 1

3
(L + 2M)k2 ±

{
1

9
(L − M)2k4 + 1

3

[
N 2 − (L − M)2

]
(k2

x k2
y + k2

yk2
z + k2

z k2
x )

}1/2

≡ Ak2 ± [
B2k4 + C2(k2

x k2
y + k2

yk2
z + k2

z k2
x )
]1/2

, (3.50)

where

A = 1

3
(L + 2M) + �

2

2m0
,

B = 1

3
(L − M), (3.51)
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C2 = 1

3

[
N 2 − (L − M)2

]
.

Note that these solutions are identical to Eqs. (3.13) and (3.14).

3.3.3 Kane Solution

Kane [3] sought to block diagonalize the Hamiltonian as much as possible via uni-
tary transformations before looking for analytic solutions. The key is to recognize
the structure of the Hamiltonian matrix, here due to time-reversal symmetry. The
Kramers operator for a crystal with inversion is

K = −iσyC I, (3.52)

where I is the inversion operator and C is complex conjugation. The basis can then
be written as

φ1, φ2, φ3,Kφ1,Kφ2,Kφ3. (3.53)

Here, they correspond to

∣∣∣∣32
3

2

〉
,

∣∣∣∣32
1

2

〉
,

∣∣∣∣12
1

2

〉
,

∣∣∣∣32 −3

2

〉
,

∣∣∣∣32 −1

2

〉
,

∣∣∣∣12 −1

2

〉
.

Since K is equivalent to the time-reversed symmetry operator, the states φi and Kφi

differ in their m values: ±m, respectively. Luttinger and Kohn [6], on the other hand,
defined the time-reversal operator as

K = σyC. (3.54)

The |J +|m|〉 states of LK differ from ours; since K is also different, the |J −|m|〉
states differ as well. We have,

〈Kφi |Kφ j 〉 = 〈φi |φ j 〉∗,
〈Kφi |H |Kφ j 〉 = 〈φi |H |φ j 〉∗, (3.55)

〈φi |H |Kφ j 〉 = −〈φ j |H |Kφi 〉.

We, therefore, reorder the transformation matrix S from Eq. (3.39) into U defined by
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U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣ 3
2

3
2

〉 ∣∣ 3
2

1
2

〉 ∣∣ 1
2

1
2

〉 ∣∣ 3
2 − 3

2

〉 ∣∣ 3
2 − 1

2

〉 ∣∣ 1
2 − 1

2

〉
|ε+

1 ↑〉 1√
2

0 0 0 − 1√
6

− 1√
3

|ε+
2 ↑〉 i√

2
0 0 0 i√

6
i√
3

|ε+
3 ↑〉 0 −

√
2
3

1√
3

0 0 0

|ε+
1 ↓〉 0 1√

6
1√
3

1√
2

0 0

|ε+
2 ↓〉 0 i√

6
i√
3

− i√
2

0 0

|ε+
3 ↓〉 0 0 0 0 −

√
2
3

1√
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.56)

Our U differs from Kane’s Eq. (10) [3] by an overall sign but otherwise has the same
ordering. Thus, the Hamiltonian can be written as (using Kane’s basis ordering)

H =
(

G Γ

−Γ ∗ G∗

)
, (3.57)

where Γ T = −Γ . Note that our U in Eq. (3.56) is of this form too:

U =
(

S R
−R∗ S∗

)
.

Comparing Eq. (3.57) with Table 3.5 and accounting for the ordering difference, we
find

G =

⎛
⎜⎜⎝

H11+H22
2

−H13+iH23√
3

H13−iH23√
6

−H13−iH23√
3

H11+H22+4H33
6

H11+H22−2H33

3
√

2
H13+iH23√

6
H11+H22−2H33

3
√

2
H11+H22+H33

3 − Δ0

⎞
⎟⎟⎠, (3.58)

Γ =

⎛
⎜⎜⎝

0 −H11+H22+2iH12

2
√

3
−H11+H22+2iH12√

6
H11−H22−2iH12

2
√

3
0 H13−iH23√

2
H11−H22−2iH12√

6
−H13+iH23√

2
0

⎞
⎟⎟⎠. (3.59)

Following Kane, we introduce

Xeiχ = −H11 + H22 + 2iH12,

Y eiη = H13 − iH23, (3.60)

Z = H11 + H22 − 2H33.

One can then show that the following transformation
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U1 =
(

S1 R1

−R∗
1 S∗

1

)
,

with

S1 = 1√
2

⎛
⎜⎝

ei( χ+η

2 − π
4 ) 0 0

0 ei( χ−η

2 − π
4 ) 0

0 0 ei( χ−η

2 − π
4 )

⎞
⎟⎠, (3.61)

R1 = 1√
2

⎛
⎜⎝

−ei( χ+η

2 − π
4 ) 0 0

0 −ei( χ−η

2 − π
4 ) 0

0 0 −ei( χ−η

2 − π
4 )

⎞
⎟⎠, (3.62)

transforms the Hamiltonian into

H ′ =
(

G ′ Γ ′

−Γ ′∗ G ′∗

)
, (3.63)

where

G ′ =

⎛
⎜⎜⎝

H11+H22
2

−Y+iX/2√
3

Y+iX√
6

Y−iX/2√
3

H11+H22+4H33
6

Z/3+iY cos(χ−2η)√
2

Y−iX√
6

Z/3−iY cos(χ−2η)√
2

H11+H22+H33
3 − Δ0

⎞
⎟⎟⎠ , (3.64)

Γ ′ =

⎛
⎜⎝

0 0 0
0 0 Y sin(χ−2η)√

2

0 −Y sin(χ−2η)√
2

0

⎞
⎟⎠ . (3.65)

Obviously, Γ ′ is zero for certain values of the wave vector; in that case, the Hamil-
tonian is block diagonal.

3.4 Wurtzite

Another important type of band structure is that of wurtzite-type materials.

3.4.1 Overview

The band structure and optical properties were first studied in the late 1950s [37–40].
Pikus [41] obtained the valence band using the method of invariants and provided
a six-band model. Gutsche and Jahne [42] wrote down a 12-band model for the
valence band at k = 0. The bulk band structure regained attention in the 1990s due
to the growth of high-quality epitaxial GaN and AlN. Thus, Sirenko and cowork-
ers extended the study of the valence band [43–45] while Chuang and coworkers
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[46, 47] introduced a Kane model and also used perturbation theory to compare
to the invariant method. A coupled conduction-valence band model was introduced
by Lew Yan Voon et al. [48], in which the conduction state was folded into the
valence block and the latter diagonalized exactly. A treatment where they are treated
on an equal footing was by Andreev and O’Reilly in 2000 [49] and used subse-
quently [50, 51]. Band parameters for a number of wurtzite (WZ) materials have
now been obtained [45, 46, 52, 53]. There have also been a number of studies for
nanostructures [43, 46, 47, 54–58].

Some basic differences compared to the ZB problem are:

• The symmetry is hexagonal [C4
6v (6 mm)] instead of cubic.

• The six-band valence Hamiltonian now has 10 parameters (seven Ai and three
Δi ) instead of four.

• The bulk Hamiltonian with spin-orbit interaction cannot be diagonalized exactly
at k = 0 using only symmetry-adapted functions.

The WZ semiconductors are generally large-band-gap materials (except for InN
with a band gap of ∼ 0.7 eV [59, 60]) with a direct gap at the Γ point. The presence
of both a crystal-field splitting (compared to a cubic structure) and spin-orbit interac-
tion leads to a complex valence-band structure consisting of three doubly-degenerate
bands at the Γ point; they are known as the A, B, and C bands.

Just as for the cubic semiconductors, the band structure near the Γ point will
be of interest. One complication is that basis states that transforms as s, p, d, ...

will no longer diagonalize the Hamiltonian even at that point. This is clear from the
irreducible basis functions given in Table B.10.

3.4.2 Basis States

Different models for the band structure of WZ materials have been considered,
corresponding to different basis functions. In Table C.9, we list together the main
choices of basis states. We have maintained the notation in the original papers,
whereby the basis functions for, e.g., Chuang and Chang [46] are given in capital
letters whereas the ones for Gutsche and Jahne [42] are in small letters. As noted by
Chuang and Chang [46], other work have been less explicit in their basis functions
and, as a result, discrepancies have arisen among the various Hamiltonians to be
found in the literature. For example, Pikus [1, 61] and Sirenko et al. [43] only men-
tion that they used the L S and J MJ basis without giving the full representations. As
we did for ZB materials, we will provide as complete a picture as we can regarding
the various Hamiltonians and the corresponding basis functions.

3.4.3 Chuang–Chang Hamiltonian

The presentation of the Hamiltonian within perturbation theory was done by Chuang
and Chang (CC) [46].
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Both spin-orbit and crystal-field splitting are important for WZ materials; hence,
it is common to use basis functions that reflect this. The Hamiltonian consists of two
terms–one with constant energies, and one k-dependent:

H (k) = Hk=0 + D6×6(k), (3.66)

where the D matrix was defined in Eq. (3.6). As WZ differs from ZB by the inequiv-
alence of the z axis from x and y, one can use a basis that resembles the J MJ states
for cubic crystals but with the Z function separate. This is the so-called u basis and
is given in Table 3.7.

Table 3.7 u basis states for
the valence bands of
wurtzite [46]

Jz

Γ5 |u1〉 − 1√
2
|(X + iY ) ↑〉 Y1 1 ↑ 3

2

Γ5 |u2〉 1√
2
|(X − iY ) ↑〉 Y1 −1 ↑ − 1

2

Γ1 |u3〉 |Z ↑〉 Y1 0 ↑ 1
2

Γ5 |u4〉 1√
2
|(X − iY ) ↓〉 Y1 −1 ↓ − 3

2

Γ5 |u5〉 − 1√
2
|(X + iY ) ↓〉 Y1 1 ↓ 1

2

Γ1 |u6〉 |Z ↓〉 Y1 0 ↓ − 1
2

3.4.3.1 Hk=0

We have [using Eq. (3.32)],

Hk=0 = H0 + Hso = H0 + Hs,iσi . (3.67)

In the u basis, for example,

〈u1|Hk=0|u1〉 = 〈− 1√
2

(X + iY ) ↑ |H | − 1√
2

(X + iY ) ↑〉

= 1

2

[〈X ↑ |H0|X ↑〉 + 〈Y ↑ |H0|Y ↑〉 + i〈X |Hs,z |Y 〉〈↑ |σz | ↑〉 − i〈Y |Hs,z |X〉〈↑ |σz | ↑〉]

= 〈X |H0|X〉 + i

2

[〈X |Hs,z |X〉 − 〈Y |Hs,z |X〉]

≡ Eν + Δ1 + Δ2,

〈u2|Hk=0|u6〉 =
〈

1√
2

(X − iY ) ↑ |Hk=0|Z ↓
〉

=
〈

1√
2

(X − iY ) ↑ |Hso|Z ↓
〉

= 1√
2

[〈X |Hs,y |Z〉〈↑ |σy| ↓〉 + i〈Y |Hs,x |Z〉〈↑ |σx | ↓〉]

= 1√
2

[−i〈X |Hs,y |Z〉 + i〈Y |Hs,x |Z〉]

≡
√

2Δ3.
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Then Hk=0 in the u representation is

Hk=0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|u1〉 |u2〉 |u3〉 |u4〉 |u5〉 |u6〉
Eν + Δ1 + Δ2 0 0 0 0 0

0 Eν + Δ1 − Δ2 0 0 0
√

2Δ3

0 0 Eν 0
√

2Δ3 0

0 0 0 Eν + Δ1 + Δ2 0 0

0 0
√

2Δ3 0 Eν + Δ1 − Δ2 0

0
√

2Δ3 0 0 0 Eν

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.68)
where

〈X |H0|X〉 = 〈Y |H0|Y 〉 = Eν + Δ1,

〈Z |H0|Z〉 = Eν,

〈X |Hs,z|Y 〉 = −iΔ2, (3.69)

〈Y |Hs,x |Z〉 = 〈Z |Hs,y |X〉 = −iΔ3,

3.4.3.2 D6×6(k)

Since D6×6(k) does not include the spin-orbit interaction, its matrix representation
in the L S basis can be written as

D6×6 =
⎛
⎝ ↑ ↓

D3×3 0
0 D3×3

⎞
⎠ . (3.70)

For D3×3, one can start with the Hamiltonian in the X, Y, Z basis:

D3×3 =

⎛
⎜⎜⎝

|X〉 |Y 〉 |Z〉
L1k2

x + M1k2
y + M2k2

z N1kx ky N2kx kz

N1kx ky M1k2
x + L1k2

y + M2k2
z N2kykz

N2kzkx N2kzky M1(k2
x + k2

y) + L2k2
z

⎞
⎟⎟⎠.

(3.71)
We have

L1 = �
2

2m0

(
1 +

B∑
l

2px
Xl px

l X

m0(E0 − El )

)
= �

2

2m0

(
1 +

B∑
l

2py
Yl py

lY

m0(E0 − El)

)
,

L2 = �
2

2m0

(
1 +

B∑
l

2pz
Zl pz

l Z

m0(E0 − El )

)
,
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M1 = �
2

2m0

(
1 +

B∑
l

2py
Xl py

l X

m0(E0 − El )

)
= �

2

2m0

(
1 +

B∑
l

2px
Yl px

lY

m0(E0 − El)

)
,

M2 = �
2

2m0

(
1 +

B∑
l

2pz
Xl pz

l X

m0(E0 − El )

)
= �

2

2m0

(
1 +

B∑
l

2pz
Yl pz

lY

m0(E0 − El)

)
, (3.72)

M3 = �
2

2m0

(
1 +

B∑
l

2px
Zl px

l Z

m0(E0 − El )

)
= �

2

2m0

(
1 +

B∑
l

2py
Zl py

l Z

m0(E0 − El)

)
,

N1 = �
2

m2
0

B∑
l

px
Xl py

lY + py
Xl px

lY

(E0 − El)
,

N2 = �
2

m0

(
1 +

B∑
l

px
Xl pz

l Z + pz
Xl px

l Z

m0(E0 − El )

)
= �

2

m0

(
1 +

B∑
l

py
Y l pz

l Z + pz
Yl py

l Z

m0(E0 − El )

)
,

where py
Xl = 〈X |py|l〉, . . . The matrix can now be written in the u basis. For

example,

〈u1|D|u1〉 = 1

2
〈(X + iY ) ↑ |D|(X + iY ) ↑〉

= 1

2
[〈X |D|X〉 + 〈Y |D|Y 〉 + i (〈X |D|Y 〉 − 〈Y |D|X〉)]

= 1

2
(L1 + M1)(k2

x + k2
y) + M2k2

z ≡ D11,

〈u3|D|u3〉 = 〈Z ↑ |D|Z ↑〉 = M3(k2
x + k2

y) + M2k2
z ≡ D33,

〈u2|D|u1〉 = 1

2
〈(X − iY ) ↑ |D|(X + iY ) ↑〉

= 1

2
(L1 − M1)(k2

x − k2
y) + iN1kx ky ≡ D21,

〈u2|D|u3〉 = 1√
2
〈(X − iY ) ↑ |D|Z ↑〉 = 1√

2
N2kz(kx + iky).

The D matrix is then
⎛
⎜⎜⎜⎜⎜⎜⎝

D11 D∗
21 −D∗

23
D21 D11 D23 0

−D23 D∗
23 D33

D11 D21 D23

D∗
21 D11 −D∗

23
D∗

23 −D23 D33

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.73)
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The complete Hamiltonian matrix is given in Table 3.8. For WZ, we have [46]

L1 − M1 = N1. (3.74)

Table 3.8 Six-band Chuang–Chang Hamiltonian in u basis

HCC (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|u1〉 |u2〉 |u3〉 |u4〉 |u5〉 |u6〉
F −K ∗ −H∗ 0 0 0

−K G H 0 0 Δ

−H H∗ λ 0 Δ 0

0 0 0 F −K H

0 0 Δ −K ∗ G −H∗

0 Δ 0 H∗ −H λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

F = Δ1 + Δ2 + λ + θ,

G = Δ1 − Δ2 + λ + θ,

λ = L2k2
z + M3(k2

x + k2
y),

θ = (M2 − L2)k2
z + (

L1 + M1

2
− M3)(k2

x + k2
y),

K = N1

2
(kx + iky)2,

H = N2√
2

(kx + iky)kz,

Δ =
√

2Δ3.

The model has an exact solution at k = 0. The following states are decoupled:
|u1〉, and |u4〉. There are two coupled pairs: |u2〉 and |u6〉, and |u3〉 and |u5〉. The
energies are E1 = Ev + Δ1 + Δ2, and

E2 = Ev + (Δ1 − Δ2)

2
+
√(

(Δ1 − Δ2)

2

)2

+ 2Δ2
3, (3.75)

E3 = Ev + (Δ1 − Δ2)

2
−
√(

(Δ1 − Δ2)

2

)2

+ 2Δ2
3. (3.76)

An example band structure for GaN is shown in Fig. 3.4. The band structure was
obtained from an ab initio calculation and fitted to the RSP Hamiltonian. The latter
is equivalent to the CC Hamiltonian and will be introduced in Chap. ??. The bands
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are plotted along Γ − A (k||) and along two directions perpendicular to k||. In-plane
anisotropy is observed by the difference between the two k⊥ directions.

Fig. 3.4 GaN valence-band structure from an ab initio calculation with a fit to the RSP
Hamiltonian(solid line). k|| corresponds to Γ − A. Open squares: Γ − K direction; filled circles:
Γ − M direction. Dashed curve is a fit without the A7 term. Reprinted with permission from [62].
c©1997 by the American Physical Society

3.4.3.3 Block Diagonalization

A block diagonalization scheme can be written down. This was first carried out by
Sirenko et al.[43] and Chuang and Chang [46]. The trick is to recognize that the
vectors have azimuthal symmetry in the x-y plane. The choice

kx + iky = k||eiφ (3.77)

leads to the off-diagonal matrix elements being written as

K = K||e2iφ, K|| = N1

2
k2
||, (3.78)

H = H||eiφ, H|| = N2√
2

k||kz . (3.79)

The explicit φ dependence can then be eliminated by rescaling the basis func-
tions [15]:

u′
1 = e− 3i

2 φu1,

u′
2 = e

i
2 φu2,

u′
3 = e− i

2 φu3,
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u′
4 = e

3i
2 φu4, (3.80)

u′
5 = e− i

2 φu5,

u′
6 = e

i
2 φu6,

or |u′
i 〉 = ∑

j Ti j |u j 〉, where

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

α∗ 0 0 α 0 0
0 β 0 0 β∗ 0
0 0 β∗ 0 0 β

α∗ 0 0 −α 0 0
0 β 0 0 −β∗ 0
0 0 −β∗ 0 0 β

⎞
⎟⎟⎟⎟⎟⎟⎠
, (3.81)

and

α = 1√
2

ei( 3
4 π+ 3

2 φ), β = 1√
2

ei( 1
4 π+ 1

2 φ). (3.82)

Finally, the Hamiltonian matrix becomes

H ′(k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

F K|| −iH|| 0 0 0
K|| G Δ − iH|| 0 0 0
iH|| Δ + iH|| λ 0 0 0

0 0 0 F K|| iH||
0 0 0 K|| G Δ + iH||
0 0 0 −iH|| Δ − iH|| λ

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.83)

3.4.4 Gutsche–Jahne Hamiltonian

The basis for the above CC model consisted of the three Y 1
m functions together with

the two-component spin function. The spatial functions only transformed accord-
ing to Γ1 and Γ5. In the Gutsche–Jahne (GJ) basis, spatial functions transforming
according to Γ1, Γ5, Γ3 and Γ6 are used (Table 3.9).

Hence, the GJ model is a 12-band model with spin for the valence band of WZ.
Note, however, that they only set up the Hamiltonian at the Γ point. In the GJ basis,
Hk=0 actually block diagonalizes into two 6 × 6 blocks as the last six states are
Kramers partners of the top six:

H (k) =
(

S 0
0 S∗

)
. (3.84)

where
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Table 3.9 Basis set for
wurtzite: Gutsche–Jahne [42]

Γ5 |u∗
5 ↑〉 |(x − iy) ↑〉

Γ1 |u1 ↓〉 |z ↓〉
Γ6 |u6 ↑〉 |(x + iy)2 ↑〉
Γ3 |u3 ↓〉 |x(3y2 − x2) ↓〉
Γ5 |u5 ↑〉 |(x + iy) ↑〉
Γ6 |u6 ↓〉 |(x + iy)2 ↓〉
Γ5 |u5 ↓〉 |(x + iy) ↓〉
Γ1 | − u1 ↑〉 | − z ↑〉
Γ6 |u∗

6 ↓〉 |(x − iy)2 ↓〉
Γ3 | − u3 ↑〉 |x(x2 − 3y2) ↑〉
Γ5 |u∗

5 ↓〉 |(x − iy) ↓〉
Γ6 | − u∗

6 ↑〉 | − (x − iy)2 ↑〉

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|u∗
5 ↑〉 |u1 ↓〉 |u6 ↑〉 |u3 ↓〉 |u5 ↑〉 |u6 ↓〉

E5 − Δ5
3

√
2

3 Δ∗
7 0 0 0 0√

2
3 Δ7 E1 0 0 0 0

E6 + Δ6
3

Δ∗
8

3 0 0
Δ8
3 E3 0 0

E5 + Δ5
3

√
2

3 Δ∗
9√

2
3 Δ9 E6 − Δ6

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.85)

Δ5

3
= 〈u5|Hs,z|u5〉,

Δ7

3
= 1√

2
〈u1|Hs,+|u∗

5〉,
Δ9

3
= 1√

2
〈u6|Hs,+|u5〉,

Δ6

3
= 〈u6|Hs,z|u6〉,

Δ8

3
= 1√

2
〈u3|Hs,+|u6〉, (3.86)

with Hs,+ = Hs,x + iHs,y .
The GJ Hamiltonian can be diagonalized exactly. The energies are [42]:

E7 = 1

2

⎧⎨
⎩(E5 + E1) − Δ5

3
±
√[

(E5 − E1) − Δ5

3

]2

+ 8

9
|Δ7|2

⎫⎬
⎭ ,

E8 = 1

2

⎧⎨
⎩(E6 + E3) − Δ6

3
±
√[

(E6 − E3) − Δ6

3

]2

+ 8

9
|Δ8|2

⎫⎬
⎭ , (3.87)

E9 = 1

2

⎧⎨
⎩(E6 + E5) − Δ5 − Δ6

3
±
√[

(E5 − E6) − Δ5 + Δ6

3

]2

+ 8

9
|Δ9|2

⎫⎬
⎭ ,
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where each of the above energies are doubly-degenerate due to time-reversal sym-
metry and the corresponding linear combination of basis states is given by

√
1 − q2|u′ ↑〉 + q|u′′ ↓〉, (3.88)

with

q2
7

(1 − q2
7 )

}
= 1

2

⎡
⎣1 ∓ E5 − E1 − Δ5

3√[
E5 − E1 − Δ5

3

]2 + 8
9 |Δ7|2

⎤
⎦ ,

q2
8

(1 − q2
8 )

}
= 1

2

⎡
⎣1 ∓ E6 − E3 + Δ6

3√[
E6 − E3 + Δ6

3

]2 + 8
9 |Δ8|2

⎤
⎦ , (3.89)

q2
9

(1 − q2
9 )

}
= 1

2

⎡
⎣1 ∓ E5 − E6 + Δ5+Δ6

3√[
E5 − E6 + Δ5+Δ6

3

]2 + 8
9 |Δ9|2

⎤
⎦ .

As discussed by Gutsche and Jahne [42], this model requires eight parameters
(with a ninth set equal to zero) in order to describe the valence-band structure of
WZ at k = 0. This is to be contrasted to the k · p theory for ZB, with only one
parameter (Δ0). The structure of WZ can be viewed as starting from the ZB one and
straining it along the [111] direction. The consequence in reciprocal space would
be a zone folding of ZB bands along the L direction. This is consistent with the
doubling of the number of valence bands for WZ compared to ZB. This effect leads
to the Δ5–Δ8 parameters [42]. Δ9 is an interaction between the two anions in the
unit cell, an effect which is missing for ZB.

A closer comparison is to the CC model. Recall that the latter is only described
by three parameters, Δ1–Δ3 at k = 0. This reflects some of the shortcomings of the
CC model–even though the latter is widely used.

3.5 Summary

It was shown how perturbation theory can be used to obtain the valence-band Hamil-
tonian for both cubic and hexagonal crystals. The cubic case was done specifically
for the Dresselhaus–Kip–Kittel Hamiltonian and the latter was related to a few
other Hamiltonians in the literature. It was found that the DKK Hamiltonian, in the
absence of spin-orbit coupling and an external magnetic field, only has three band
parameters. The case of a wurtzite semiconductor was then treated along similar
lines; for the most widely used valence-band model, the Hamiltonian has 10 band
parameters. Variations on the latter model were then discussed.


