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The energy bands of germanium and silicon, throughout the entire Brillouin zone, have been obtained by
diagonalizing a k-p Hamiltonian referred to 15 basis states at k=0. The basis states of the k-p Hamiltonian
correspond to plane-wave states of wave vector (in units of 2x/a) [000], [111], and [200]. For matrix
elements and energy gaps we have used, when available, experimental data from cyclotron resonance and
optical measurements. The parameters not available from experimental information have been adjusted
until the calculated energy bands agree with ultraviolet reflection data. The energies of the As-A; transition
for germanium and the 2,4-2; transition for germanium and silicon, which were not explicitly fitted, are in
good agreement with experimental data. The eigenvectors of the k-p matrix provide an expansion of the
wave function for any value of k in terms of the k=0 basis states. These eigenvectors have been used (1) to
calculate effective masses of the lowest conduction bands in germanium (Z:) and silicon (A;), which are in
good agreement with experiment, and (2) to calculate the effects of the spin-orbit interaction on the band
structure of germanium. The extension of the k-p method to calculate the band structure of zinc-blende-
and wurtzite-type materials from that of the isoelectronic group IV material is discussed briefly.

I. INTRODUCTION

THE k- p method has been extremely successful in
establishing relationships between various band
parameters of semiconductors. One of its earliest appli-
cations was the derivation of the sum rule for the effec-
tive masses.! The method was extended to include
degenerate bands? and the effect of spin-orbit inter-
action.® In this approach expressions for the energy in
the vicinity of a high symmetry point of k space in-
volving a number of parameters are obtained. These
parameters are usually determined from experiments
such as cyclotron resonance, optical absorption, etc.

The expression obtained for a nondegenerate band as
a function of Ak by the use of first- and second-order
perturbation theory has been extended to larger values
of Ak by the use of degenerate perturbation theory.*
This type of analysis has been successfully used for
interpreting observed nonparabolicities in the band
structure of small band-gap semiconductors.

Since the Bloch functions at k=0 form a complete
set of periodic functions it is possible to expand the
cell periodic part of the wave functions at any value of
k in terms of the Bloch functions at k=0. Therefore,
the diagonalization of the k- p Hamiltonian referred to
the basis states at k=0 should yield the correct energy
bands and wave functions across the entire Brillouin
zone (B.Z.) if enough basis states are taken. In the
past it has been felt that too many states and hence
too many parameters are involved for this method to
be extended throughout the entire B.Z. We have ob-
tained the correct energy bands across the entire zone
for germanium and silicon (neglecting the spin-orbit
interaction) by diagonalizing a 15X15 k-p Hamil-

* Supported in part by the Advanced Research Projects Agency
and the National Science Foundation.

1F. Seitz, Modern Theory of Solids (McGraw-Hill Book Com-
pany, Inc., New York, 1940), p. 352.

2 W. Shockley, Phys. Rev. 7§, 173 (1950).

# G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368

(1955); E. O. Kane, J. Phys. Chem. Solids 1, 82 (1956).
4E. O. Kane, J. Phys. Chem. Solids 4, 249 (1957).
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tonian. The 15 states used correspond to free-electron
states having wave vector (in units of 2w/a) [000],
[1117, and [200]. It is possible to determine the pa-
rameters of the k-p Hamiltonian so as to fit all the
available experimental data for these materials. The
effects of the spin-orbit interaction are determined by
two additional parameters which can be calculated
from available experimental data for germanium.

The expansion of the wave functions in terms of
wave functions for k=0 makes it possible to calculate
a number of parameters of interest, such as matrix
elements of the momentum p and effective masses for
any value of k.

By a combination of this method and the pseudo-
potential technique it is possible to calculate the
effect of hydrostatic pressure on the energy bands of
these materials.

II. THE k-p HAMILTONIAN

Consider the nonrelativistic one-electron Schrodinger
equation (in atomic units):

[-V+V()]w=E¥, M

where V (r) is a potential having the periodicity of the
lattice. The solutions to Eq. (1) are the Bloch functions
V=exp(ik- 1) Xun,(r), where u,(r) has the perio-
dicity of the crystal lattice. By substituting the Bloch
functions in Eq. (1) one obtains:

[Ho+2k p4--*Jun 1 (1) = En(K)un,x(r),  (2)

where Hy is the Hamiltonian for k=0. The term 2 of
Eq. (2) is a ¢ number and can be considered as a shift
in all the eigenvalues E,(k). The term 2k-p is the
standard k- p Hamiltonian. When Eq. (2) is written in
matrix form with respect to the states at k=0, H, and
k? have only diagonal elements and the term k- p has
only nondiagonal terms in a crystal with inversion
symmetry. The number of independent k-p matrix
elements is greatly reduced by group-theoretical selec-
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TaBre I. Eigenvalues (in rydbergs) of the states used in the k-p Hamiltonian for germanium and silicon together with the
eigenvalues of these states as calculated by the O.P.W. and pseudopotential methods. The corresponding plane-wave and atomic

states (in parentheses) are also given.

Corresponding Germanium Silicon
Crystal plane-wave Eigenvalues Eigenvalues
states and atomic used in k-p O.P.W. Pseudopotential used in k-p 0.P.W.  Pseudopotential
at k=0 states Hamiltonian method? method Hamiltonian method® method
j [(111] 0.00 0.00 0.00 0.00 0.00 0.00
%)
Tt [(11%] 0.0728b —0.081 —0.007 0.265P 0.164 0.23
e
Iis [111)] 0.232b 0.231 0.272 0.252b 0.238 0.28
(#~
Iy [11+1] 0.571 0.571 0.444 0.520 0.692 0.52
(s%)
I [(000] —0.966 —0.929 —0.950 —0.950 —0.863 —0.97
st)
Ty [200] 0.770 0.770 0.620 0.710 0.696 0.71
(@)
j P [200] 1.25¢ 0.890 0.940 0.94
(@)
T [200] 1.35 0.897 0.990 0.99

(s7)

a Reference 9. b Reference 8. © Reference 3.
tion rules in high-symmetry crystals. In particular, for
materials with inversion symmetry, only matrix ele-
ments between states of opposite parity are allowed.

For the case of the many-electron Hamiltonian,
Kane® has shown that in Eq. (2) the k- p term must be
replaced by —i[r,H]-k (r is the position vector and
H the many-body Hamiltonian) and %2 replaced by

'—% Z knkv[rm[er:I]- (3)

Terms higher than second order in k also appear in
Eq. (2). The term [r,H] has the same symmetry as the
linear momentum p and hence if one regards the matrix
elements of p as adjustable parameters no modification
of the k- p Hamiltonian is introduced by the replace-
ment of p by 2i[r,H]. Equation (3) equals exactly k2
if the Hartree Hamiltonian is used but not for the
Hartree-Fock Hamiltonian. However, the difference has
been estimated to be small.

When the spin-orbit Hamiltonian (a/2)VVXp]-o
(where o?=1/¢? in atomic units) is added to the Hamil-
tonian of Eq. (1), two new terms are generated in Eq.
(2). They correspond to the following addition to the
k- p Hamiltonian of Eq. (2):

(@/2PL(VVXp)-o+(VVXK)-0]. )

Since the second term in Eq. (4) is usually much smaller
than the first, it will be neglected in these calculations.

The effect of the k-dependent spin-orbit interaction
and other relativistic corrections on the k-p Hamil-
tonian has been treated by Pratt and Ferreira. In their

5E. O. Kane, in The Properties of the III-V Compounds (Aca-
demic Press Inc., New York, to be published).

6 G. W. Pratt, Jr. and L. G. Ferreira, in Proceedings of the Inier-
national Conference on the Physics of Semiconductors, Paris, 1964
(Dunod Cie., Paris, 1964), p. 69.

treatment the term 2p is replaced by

—2iV— (a/22(VV X0)—1a?V?V
+a2(k-v)V+(a?/2)V?k. (5)

The second term in Eq. (5) is the k-dependent contribu-
tion to the spin-orbit interaction. The third term is
automatically included in the nonrelativistic k-p
method if the matrix elements of p are treated as
adjustable parameters to be determined from experi-
ment. The fourth and fifth terms change the form of
the k-p Hamiltonian, but an estimate based on free-
electron wave functions shows that their contribution
to the band energies is smaller than 10— Ry.

124220)
I Lo L L

k= (000) k=2Z(100)

k2E(544)

Fic. 1. Energy bands for the “empty” germanium lattice.
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TaBrE II. Matrix elements of the linear momentum p (in atomic units) as obtained from the
k- p method, the pseudopotential method, and cyclotron resonance.

Germanium Silicon

Pseudopotential Cyclotron Pseudopotential Cyclotron
Matrix elements of p k- p method method resonance k-p method method resonance
P(2i(Tg5*| p|T2%)) 1.360 1.24 1.36» 1.200 1.27 1.20v
Q(2i(Tas| p|T'1s)) 1.070 0.99 1.07s 1.050 1.05 1.050
R(2i(Tas| p|T12)) 0.8049 0.75 0.92¢ 0.830 0.74 0.684
P (2i(To5| p| T2r¥)) 0.1000 0.09 0.100 0.10
P’ (2i(T'25%| p| %)) 0.1715 0.0092 —0.090 —0.10
Q' (2i(Ta5*| p|T1s5)) —0.752 —0.65 —0.807 —0.64
R'(2(T25%| p| T127)) 1.4357 1.13 1.210 1.21
P (23(T'25:%| p|T'15)) 1.6231 1.30 1.320 1.37
T (2(T1*| p|T1s)) 1.2003 1.11 1.080 1.18
T’ 24T+ | p|T15)) 0.5323 0.41 0.206 0.34

s Reference 11.
b Reference 12.

o Calculated from cyclotron-resonance data [T. R. Loree and R. N. Dexter (private communication)] and the value of I'sss —I'12 energy gap used in the

k- .f Hamiltonian of germanium (see Table I).

Calculated from the cyclotron-resonance data of Ref. 12 and the value of I'ss#! —TI'12# energy gap used in the k-p Hamiltonian of silicon (see Table I).

III. k-p HAMILTONIAN FOR GERMANIUM
AND SILICON

Figure 1 shows the energy bands for the “empty”
germanium lattice in the [100] and [111] directions
and the symmetries of the various plane-wave states.
The real energy bands for a material of this family
are obtained by a small perturbation of the empty
lattice bands. The large energy gap between the
(2w/a)[200] and the (2m/a)[220] plane waves of Fig. 1
suggests the possibility of a k- p description of the en-
ergy bands of germanium and silicon using as a basis
only the 15 states of the real crystal which correspond
to [000], (2r/a)[111], and (2x/a)[200] plane-wave
states in the empty lattice. These 15 states and the
corresponding plane-wave and atomic states are listed
in Table I. The superscripts # and / are used to dis-
tinguish between the upper and lower I'y, I';, and T'ss
states. The I'ps? state is taken to be the origin of
energies.

Since the Hamiltonian of Eq. (1) is real, the wave
functions at k=0 can be chosen to be real. However,
in order to get only real matrix elements of p and hence
a real k- p Hamiltonian, the even-parity wave functions
have been taken as real and the odd-parity wave func-
tions as pure imaginary. The I'sy wave functions are
taken to transform like X=yz, V=ux3, and Z=uxy,
where x, ¥, and z are the coordinates with respect to
the cubic axes. The I';s wave functions are taken to
transform like «, y, and z. The I'1»» wave functions are
taken to have the symmetry of V3(y2—2%) (T'12r®) and
3x2—2(T'12@).” By using the proper selection rules it
can be seen that the k- p Hamiltonian is determined by
10 matrix elements of p. These are listed in Table IT
together with the shorthand notation used for them in

7 The functions ;= and v~ used for I'1er in Ref. 3 are related to
T12® and I'iz® by the relationships I'ia®@= (1/V2) (yi~—72")
and T'2 @ = (1/\/2) (71_+72_) .

this paper. Matrix elements of p between: (1) a T'ss
and a I'y state are labeled P, (2) a I'ssr and the I'js
state are called Q, (3) a I'sr and the I';»® state are
designated by R, and (4) the I';s; and a Ty state are
called T. The matrix elements between an X state and
T2 ® are zero.

By means of a suitable rotation of the basis functions
the 15X 15 k-p Hamiltonian can be easily factorized
in the [100], [111], and [110] directions.

[1007] Direction

In this direction the 3 doubly degenerate A; bands
(which originate at I'sz?, T's5, and I'ss*) are obtained
by diagonalizing the 3)X3 matrix given below

k2 Qk, 0
ka E (r 15) +kzz Q’kz . (6)
0 Qk, E(Tes®)+k.2

The three A; bands, which include the lowest conduction
band in silicon, are obtained from the 3)X3 matrix

E(Tw)+k2 Tk, Tk,
Tk, ET1)+k: 0 -
T'k, 0 E()+k2

The I'12r® state does not interact with any other state
in the [100] direction and hence produces a band
analogous to a free-electron band. The only k- p inter-
action with this band comes from higher lying I'ys
states which have been neglected in our 15X 15 Hamil-
tonian. Unless this interaction is included the I'jpr®
band will not reach the edge of the B.Z. with zero slope,
as required by crystal symmetry. However, since in the
vicinity of the X point this band does not seem to be
observable in any measurements, no attempt has been
made to bring its slope to zero at the zone edge.
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The five remaining states can be found by diagonalizing the matrix

E@yY+E2 Pk, O Pk, 0

Pk, k2 V2RE, 0 Pk,

0 V2Rk, E(T1)+k.2 V2R'E, 0 . 8)
Pk, 0 V2RE, E(Pza'")-i—kf P,

0 Pk, 0 P"'k, E(T2*)+k?

[1117 Direction

In the [1117] direction also the Hamiltonian can be easily factorized by transforming the I'ys basis functions to
functions having the symmetry of Z, 7, and Z, the coordinates referred to a set of axes with Z along the [111]
direction. The '3 wave functions are transformed to have symmetry X= ¢z, ¥Y=2, and Z=2%7 while the I'1»
functions are chosen to be I'1o @ =3[V3T10® —T'19®7] and Ty @ =3[T12 O 4V3T12 @],

One finds four doubly degenerate A; bands given by the Hamiltonian

k? —(1/V3)Qk

—(1/V3)Qk  E(T1s)+k2
0 —(1/V3)Q'%
RFE 0

where k2=Fk 2k 2k 2

0 Rk
~(1/B)QE 0 ©

E(Tagn)+E R ’

R'E E(T1p)+5

The remaining states, including the lowest conduction band of germanium, are given by the 7X7 matrix

In the [1107] direction the 15X 15 Hamiltonian can be
factorized into a 6X6, a 5X5,a 3X3, and a 1X1 matrix.
These matrices will not be written out explicitly in this

paper.
IV. CHOICE OF PARAMETERS

In germanium the energies of the I'y? and I'ys state
are known from optical measurements.® For silicon
E(T'15) also is known from direct measurements while
E(I'»Y) can be estimated from data for Ge-Si alloys.?
Although no experimental information is available con-
cerning the remaining eigenvalues at k=0, several of
them have been calculated using the orthogonalized-
plane-wave (O.P.W.) technique.® It is also possible to
calculate approximate values for these states by the
pseudopotential method if one assumes that only the
pseudopotential interaction between our 15 plane-wave
states is important. Under this assumption the I'ys and
T'jr states have the free-electron energy [E(T'is)
=3(2r/a)? and E(I'1»)=4(27/a)*]. The energies of the
remaining states can be obtained by solving 2X2
matrices using the three pseudopotential parameters

8 For a compilation of optical data for germanium, silicon, and
zinc-blende-type materials see M. Cardona, J. Phys. Chem. Solids
24, 1543 (1963).

9F. Herman, in Proceedings of the International Conference on
t{tgeﬁi)’hysigs of Semiconductors, Paris, 1964 (Dunod Cie., Paris,

, P 3.

E(TyY)+k Pk 0 PE 0 0 0
Pk 2 (2/V3)0k O 0 0 Pk

0 (2/N3)0k E(Ty)+k (2/V3)Qk Tk Tk 0

Pk 0 (2/N3)Q'k  E(Tas®)+k 0 0 P (10)
0 0 Tk 0 ET¥)+# 0 0

0 0 Tk 0 0 ETd)+E 0

0 PR 0 P 0 0 E(Ty¥)+R

of Brust for germanium and silicon.® This procedure
also yields the wave functions at k=0 as a linear
combination of [0007], [111], and [200] plane waves
and therefore it is possible to estimate the matrix ele-
ments of p for the k- p Hamiltonian (as will be shown
later it is possible to start with any approximate values
of the matrix elements of p, for example the free-electron
values).

The eigenstates I'1* and I'y! are obtained from the
Hamiltonian

0 2V »(3)
‘ 2V,(3) 3(27/a)*+3V »(8)

L a

where the zero of energy is now the bottom of the free-
electron bands. Likewise E(I'y?) and E(I'y%) are
obtained from the matrix:

S sr®) | OVADLYEI)
OWLV,(AD+V,®)]  42r/0)+4V(®)

and the energies of the two I';+ states are found by
solving

}3(2r/a)2—V,,(8) w/ZEVp(3)—Vp(11)]H. 13)

VZLV,(3)—V,(11)] 4(2r/a)

10 D, Brust, Phys. Rev. 134, A1337 (1964). J. C. Phillips, Phys.
Rev. 112, 685 (1958).
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By using V,(3)=—0.23, V,(8)=0, and V,(11)=0.06
Ry for germanium and V,(3)=—0.21, V,(8)=0.04,
and V,(11)=0.08 Ry for silicon the eigenvalues listed
in Table I were obtained. Also listed in Table I are the
eigenvalues obtained by the O.P.W. method® and the
eigenvalues used in the k- p Hamiltonian.

For the k-p Hamiltonian of germanium the experi-
mental values of E(T'»*) and E(T'15) have been corrected
for the effects of the spin-orbit interaction (this inter-
action is present in the experimental data and its effect
on the band structure will be treated later). For
E(T4Y), E(%), E(Tiw), and E(Tes¥), the O.P.W.
values have been used while the I'y/* state has, some-
what arbitrarily, been taken slightly higher than the
T'5 v state. The only justification for this is that E(I's¥)
lies somewhat higher than E(I's5“) in the pseudopoten-
tial calculation (see Table I). The I'ys* and I'y/* states
are coupled to the bands of interest by matrix elements
(P’ and P") which are relatively small (see Table II),
and hence small errors in the energies of these states
will not affect the shape of the bands of interest. As
will be discussed in more detail in the next section the
band structure of germanium calculated by the k-p
method using the O.P.W. eigenvalues at k=0 is in
better agreement with certain experimental data than
is the band structure calculated using the pseudo-
potential eigenvalues.

For silicon, the experimental value of E(T';5) and the
value of E(I'y?) estimated from Ge-Si alloys are used
in the k- p Hamiltonian. Since for silicon the I'ss* and
I’y eigenvalues obtained from O.P.W. calculations are
not available in the literature these eigenvalues, as well
as the energies of the I'y* and I'y! states, were calculated
by the pseudopotential method using Eqs. (11), (12),
and (13). For E(T'1») the free-electron energy 4(2r/a)?
was used. As opposed to germanium the calculated
band structure of silicon using the pseudopotential
eigenvalues at k=0 gives excellent agreement with
available experimental data. Also the eigenvalues at
k=0 obtained by O.P.W. calculations are quite close
to the pseudopotential values.

The matrix elements of p obtained by the pseudo-
potential method for germanium and silicon are listed
in Table II. Two of these matrix elements, P and Q,
are accurately known from cyclotron-resonance experi-
ments!'? and the values of the E(I'y!) and E(Tis)
energies. The matrix element R can be estimated from
the value of G=R?/E(I'1») obtained from cyclotron
resonance!? and the calculated E(Ti») energy. The
values of P and Q are taken from the experimental data
while the other eight matrix elements have been ad-
justed to fit the following experimental data: the en-
ergies of the L; conduction band and the Ly and L;
states, the X4— X gap, the energy of the A; conduction-
band minimum, and the position in k space of this

11 B. W. Levinger and D. R. Frankl, J. Phys. Chem. Solids 20,
281 (1961).
12 J. C. Hensel and G. Feher, Phys. Rev. 129, 1041 (1963).
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F16. 2. Energy bands of germanium calculated by the k- p method
in the [111] and [100] directions of k space.

minimum.® The matrix element P’ has only a very
small effect on the bands of interest and hence is taken
to have the pseudopotential value. The X conduction-
band degeneracy, required by symmetry, imposes an-
other condition on the matrix elements of p and thus
all the necessary matrix elements can be determined.
When this procedure is followed, the X; valence-band
degeneracy is not obtained due to the inaccuracies in
E(Ty%). If this eigenvalue is shifted by an amount
equal to the lower X splitting and 7" changed slightly
so that (T")/[E(T'1)—E(T'1)] is kept constant, the
required degeneracy is imposed and the remaining
bands are not altered by any significant amount. The
L; conduction band of silicon and the A; conduction-
band energy of germanium are obtained by extrapola-
tion from Ge-Si alloy data.* The Ls valence-band
maximum is believed to be at about —1.2 eV for both
germanium and silicon.’® The position in k space of the
lowest conduction-band minimum of silicon is known
from ENDOR! measurements and we assume this
minimum to be the same fraction of 2r/a away from
k=0 for germanium as for silicon.’®

The adjustment of the matrix elements of p so as
to fit all the data given above is greatly aided by the
factorization of the secular equation. The position in k
space and the energy of A; conduction-band minimum
determines T and 7" uniquely [see Eq. (7)] and hence
the energy of the X conduction band. Since the X4— X,
gap is known from optical measurements,® the position

13 Recent measurement on diamond [J. L. Yarnell and J. L.
Warren, Bull. Am. Phys. Soc. 10, 385 (1965)] indicate that the
distance from the zone center of the A; conduction-band minima
is about the same for this material as for silicon, thus indicating
that the position of this minima does not vary greatly for the
group IV materials.

4R, Brauenstein, F. Herman, and A. R. Moore, Phys. Rev.
109, 695 (1958); J. Tauc and A. Abraham, J. Phys. Chem. Solids
20, 190 (1961). .

15 C, Hilsum, in Proceedings of the International Con_{erence on
the Physics of Semiconductors, Paris, 1964 (Dunod Cie., Paris,
1964), p. 1127.

16 G, Feher, Phys. Rev. 114, 1219 (1959).
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of X, is then determined and can be used to obtain Q'
if Q is known [see Eq. (6)]. Similarly, once Q and Q'
are known, it is possible to obtain R and R’ from E(L;)
and E(Ly) by using Eq. (9). The determination of P’
and P’ (if P is known) is somewhat more laborious
due to the larger dimensionality of Egs. (8) and (10),
which must be solved simultaneously. P’ and P’ are
then varied until E(L,) agrees with the experimental
value and the energy of the Ay conduction band at the
zone edge agrees with the value of E(X;) determined
previously. This determination is greatly simplified by
use of the projections of the states at L and X on the
k=0 states. The projections are obtained as eigenvector
components in our computer program. The procedure
used is the following: For the unknown matrix elements
of p, the pseudopotential values (or any other approxi-
mate values) are taken. Using these values the secular
equation at X and L is solved and eigenvalues at L
and X, will, in general, differ somewhat from the known
values. It is then possible to vary P’ and P"”’ by a small
amount, dP’ and dP’"’, and calculate the corresponding
variation of E(L;) and E(X;) from first-order perturba-
tion theory. Making this variation equal to the amount
required to obtain the desired values of E(L;) and
E(X,) determines dP’ and dP"" from which the correct
values of P’ and P'" can be obtained. It may be re-
quired to repeat this process several times in order to
achieve convergence. The values of the matrix ele-
ments of p calculated by the above technique for
germanium and silicon are listed in Table II.

V. ENERGY BANDS OF GERMANIUM
AND SILICON

Figures 2 and 3 show the energy bands of germanium
and silicon in the [100] and [1117] direction. These
bands were obtained by diagonalizing either the full
15X15 k- p Hamiltonian or the appropriate factorized
matrices using an IBM-7070 computer. All the bands
shown in Figs. 2 and 3, with the exception of the X;
conduction band, reach the edge of the B.Z. with zero

Xs

k=(000)

ke (b 44)

F1c. 3. Energy bands of silicon calculated by the k-p method in
the [111] and [100] directions of k space.

k=4(100)
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o
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ke3g100) k-3f1450) kBFE30) k-3F(000)

Fic. 4. Energy bands of germanium along the X —W, W—K, and
K—T lines as calculated by the k- p method.

slope or zero average slope (X; states) as required by
crystal symmetry. The X3 band is quite high in energy
and its violation of this symmetry requirement is due
either to our not having considered higher T'ys states
in the k- p Hamiltonian or to having taken too high an
energy for E(I's5*). Since no experimental effects of
the X; band have been observed, no attempt will be
made to bring its slope to zero at the edge of the zone.

The saddle point in the valence-conduction band
separation (A3—Aj), which is observed as a peak in the
reflection spectrum of germanium at 2.29 eV, appears
in Fig. 2 at 2.18 eV. This value compares favorably
with the value obtained by Brust.® This saddle point
is absent in silicon. In Figs. 2 and 3 there is another
point inside the B.Z. for which Vy(E.—E,)=0 (E, and
E, are the energies of a conduction and a valence band,
respectively) in the [100] direction. The bands in-

40 - > T

20—

% 4.37 eV

SILICON.

1
k3r(100) k-3fi30) k-&F330) k=(000)

Fic. 5. Energy bands of silicon along the X—W, W—K, and
K —T lines as calculated by the k- p method.
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F1G. 6. Eigenvectors of the two lowest As bands (A5¥,As') and the
A; conduction band (A,*) as a function of &, in germanium.

volved are the Ay (conduction) and As (valence). The
values of E,—E, at these points are 6.4 eV for ger-
manium and 6.3 eV for silicon. The matrix elements of
p for these As;— Ay transitions are somewhat smaller
than for the A;—A; transitions (see next section), but
large enough for these transitions to be observable.
These transitions should occur very near the Lgy—Ls
transitions and are probably responsible for the broad
nature of the Lg—L; reflection peak in silicon.!’
Similar transitions are likely to be responsible for the
anomalies in the Ly — L3 spin-orbit splitting observed
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Fic. 7. Eigenvectors of the two lowest A; bands (A5%,A'°) and the
A; conduction band (A;!°) as a function of %, in silicon.

for many zinc-blende-type materials'®: As—Ay transi-
tions are seen superimposed on the Ly — L transitions.

Figures 4 and 5 show the calculated energy bands of
germanium and silicon along the diagonal of the square
face of the B.Z. (X—W, where the coordinates of the
W point are (2r/a)[1,3,0]), along the zone edge common
to two hexagonal faces {W—K, where K= (2r/a)
X[2,3,0]}, and along the [110] direction (Z). The
24—2; singularity in the combined density of states

17 H. R. Philipp and H. Ehrenreich, Phys. Rev. 125, 1550 (1963).

18 M. Cardona, in Proceedings of the International Conference on
the Physics of Semiconductors, Paris, 1964 (Dunod Cie., Paris,
1964), p. 181.
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(which together with the X,—X, singularity is re-
sponsible for the main reflection peak) is calculated to
have an energy difference of 4.2 eV in germanium (see
Fig. 4) and 4.4 eV in silicon (see Fig. 5). These values
are in good agreement with experimental data. When
the band structure of Ge is calculated by the k-p
method using the values of E(T'y}), E(T1¥), E(T1),
E(T9s*), and E(I'»¥) obtained by the pseudopotential
technique [see Eqs. (11), (12), and (13)] the Z,—=,
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Fic. 8. Eigenvector components of the Aj/° state as a
function of %, in germanium.

gap has an energy of 3.5 eV. There is also a 23;—2;
singularity, which has an energy difference of 6.5 eV
for germanium and 6.9 eV for silicon. However, the
matrix element associated with these optical transitions
is very small (these matrix elements have been calcu-
lated from the eigenvectors which are reported later)
and they are not likely to be observed.
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Fic. 9. Eigenvector components of the Ayl state as a
function of %, in silicon.
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The components of the eigenvectors obtained from
the computer program are the coefficients of the ex-
pansion of the periodic part of the Bloch function in
terms of the 15 Bloch functions at k=0 which have
been taken as basis states. The variation of these co-
efficients with k for the states of most interest along
[1007] and [1117] will be given. Figures 6 and 7 show the
eigenvectors of the two lowest As bands ([100] direc-
tion), labeled As¥ (valence band) and Azl (lower con-
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Fic. 11. Eigenvector components of the A;" and the As'c states in
silicon as a function of %,.

duction band), and the lower A; conduction band
(Ay) as obtained from Egs. (6) and (7). The com-
ponents of the eigenvector of the lower Az conduction
band (Ay ') are obtained from Eq. (8) and are shown in
Fig. 8 for germanium and Fig. 9 for silicon.

The eigenvectors of the A3V and the A;® band are
obtained from Eq. (9) and are shown in Fig. 10 for
germanium and in Fig. 11 for silicon.

The eigenvectors of the lowest conduction band A%
in the [111] direction as obtained from Eq. (10) are
shown in Fig. 12 for germanium and Fig. 13 for silicon.
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The knowledge of the eigenvectors in terms of the
basis at k=0 enables one to calculate matrix elements
of physical quantities at any point in k space in terms
of the matrix elements at k=0. As an example, it is
possible to calculate the matrix elements of the linear
momentum p which are needed for the determination of
the optical transition probabilities or effective masses.

Figure 14 shows the matrix elements of p, between
the upper valence band in the [100] direction (As")
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F16. 12. Components of the A,'° eigenstate as a
function of &, in germanium.

and the two lower conduction bands (A!%,Ax). These
matrix elements determine most of the ultraviolet be-
havior of these materials. As shown in Fig. 14
(A2 py| As¥), at the point where the density of states
singularity occurs, is somewhat stronger in silicon than
in germanium. This may be the reason why the shoulder
of the Ay —Aj; reflection peak, which we have earlier
attributed to this As—As singularity, is stronger in
silicon than in germanium.
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F16. 13. Components of the A;" eigenstate as a
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Fic. 14. Matrix elements of p, between Al and As¥ and between Axl¢ and AsY as a function of &, in germanium and silicon.

Figure 15 shows the matrix elements of $, (9, is the
component of p in the [1117] direction) and of p, (ps is
the component of p perpendicular to [1117]) between
the A3¥ and Aj' states for germanium and silicon. These
matrix elements determine the transition probability
for the Lsv—L; transitions seen in the reflectivity
spectrum. As seen from Fig. 15, the §, matrix element
is much smaller than that of p. and the optical transi-
tions should occur at each set of valleys mainly for p
perpendicular to the valley orientation. While these
polarization effects are not observable for cubic ma-
terial they will be important in interpreting the effect
of uniaxial stress on the reflection spectrum.

Figure 16 shows the matrix elements of p, between
A3¥ and Ayl This matrix element varies only slightly
through the B.Z. and is quite large. It determines the
transition probability for the A;—A; transition in
germanium. Also shown in Fig. 16 is the matrix element
of P, between A;!® and A,*v. This matrix element is
quite small, except in the neighborhood of k=0, and
hence the corresponding transitions are not to be seen
in the optical spectra. Actually this matrix element
must be exactly zero at the edge of the B.Z. (L) because

of parity. The extremely small value of this matrix
element at L (see Fig. 16) is an indication of the ac-
curacy of the k- p expansion. It has been observed from
Figs. 14, 15, and 16 and other calculated matrix ele-
ments of p that whenever transitions between two
bands are forbidden by symmetry at either the center
or the edge of the B.Z., they remain quite improbable
inside the zone even if they are allowed by symmetry.
This could be quite useful in the selection of the transi-
tions which are likely to cause structure in the optical
properties. This observation and the small value of the
T’ matrix element explains why no transitions involving
the lowest valence band are seen for these materials.
The effective masses obtained from our eigenvectors
and energy gaps by the k-p technique at the L%
point, the A;* minimum, and the T's.! point are listed
in Table IIT together with the available experimental
values. Also listed in Table IIT are the band parameters
A4, B, and C at T'ss!, and their experimental values.
Listed in Table IV are the calculated masses at I'\*
and Ty, the calculated band parameters @, 4, and ¢ for
the I';s band (analogous to the 4, B, and C’s of T'gs),
and the parameter K which determines the expansion
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of the I';»» band around k=0:
(K4 1)+ K[ki—3(k2k 2+ k2R 24k 2R 2) U2,

where
R? (R")?

K= .
E(F]gr) E(Pzaru) —E(I‘ml)

VI. SPIN-ORBIT COUPLING FOR GERMANIUM

The inclusion of the k-independent spin-orbit inter-
action Hamiltonian of Eq. (4) in the k- p Hamiltonian
does not present, in principle, any serious difficulty.
The spin degeneracy doubles the dimensionality of the
matrix. The 30X30 matrix so obtained has some

imaginary matrix elements. Our computer subroutine
requires an additional doubling of the matrix dimension
when complex matrices are to be diagonalized. Hence
the completed diagonalization of the k-p plus spin-
orbit Hamiltonian requires the diagonalization of a
60X 60 real matrix. Speed and storage limitations in our
computer prevented us from handling the problem this
way. The problem can be considerably simplified by
making some approximations.

Consider how many new parameters are required for
treating the spin-orbit interaction. The spin-orbit
Hamiltonian couples the states of I'ss symmetry with
states of I'ys, I'1, and I'yr symmetry. It also couples the
T'15 states with itself and with T'ss states. The I's ! state
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TasrLe III. Calculated and experimental values of the band
parameters at Lyl°, the A' minimum, T}, and I'ys+ for germanium
and silicon. The effective masses are given in units of the free-
electron mass.
Germanium Silicon
myp* (L) calc. 1.349 1.418
exptl. 1.588s
m*(L%)  calc. 0.0791 0.130 o8
exptl. 0.08152 S
myr* (Ayl°) calc. 0.7991 0.9716 2
exptl. 0.9163v &
me(Ak)  cale. 0.200 0.1945 S
exptl. 0.1905® o
m*(T'at) c(:l':alct.1 882?0 0.156 [100] DIRECTION
P : K-p METHOD
A calc. —12.35 —4.38 ——— KANE'S CALCULATION
exptl. —13.27= —4.284
B calc. —8.26 —1.00 | |
exptl. —8.63» —0.754 0.02 004
|C| calc 12.07 4.80 ky (atomic units)
exptl. 12,42 5.254 ()

a Reference 11.
( b Js.)C. Hensel, H. Hasegawa, and M. Nakayama, Phys. Rev. 138, A225
1965).
¢ Reference 3.
dJ. C. Hensel and G. Feher, Phys. Rev. 129, 1041 (1963).

behaves like a p state near the atomic core. Hence
the matrix elements (Taos?|Hso|T1%), (Tas?|Hso| T1Y),
(T2st| Hso| T25%), and (T'ape?|Heo|T'12) are quite small
because of the predominantly s- and d-like nature of
the states on the right-hand side. They are assumed to
be equal to zero. Similarly, the matrix elements
(T15| Hso|T2*) and (T'15|Heo|T2!) are assumed to be
equal to zero. The spin-orbit Hamiltonian is then deter-
mined by the following three matrix elements:

Aso(T'15) = 3i(a/2)Xx(T'15) | (VV X D) |¥(T15)),
Aso(T25") =3i(a/ XX (T2s") [ (VV X $):| ¥ (T2s))), (14)
Aso(rzsr ¥)= 31'(01/2)2(X(I‘25'“) [ (V X p):l Y (Tap “)) .

These parameters are close to the corresponding pa-
rameters for atomic germanium. Hence it is assumed
that Ag(I'25%)=0 since the spin-orbit splitting of the
4d levels of atomic germanium is only 5%, of the 4p
splitting. For germanium Ay (I'z5?) is known experi-
mentally to be 0.29 eV. The A; spin-orbit splitting at
k.=0.1 observed experimentally!® (0.195 eV) makes it

TasLE IV. Calculated values of the band parameters at I'i%, T'/},
T'15, and I'ypr for germanium and silicon. The effective masses are
given in units of the free-electron mass.

Germanium Silicon
m*(T'1%) 0.1905 0.1868
m*(T';Y) 1.310 1.037
a 2.686 1.847
b —2.850 —2.582
el 4.926 4.442
K —3.453 —5.395

Energy (eV')

-1.0

[111] DIRECTION
K-p METHOD
— —— KANE'S CALCULATION

1 L
o 0.02 0.04

ky (atomic units)
(b)

F16. 17. Upper valence bands in germanium along the [100]
and [1117] directions including spin-orbit interaction. The early
calculations of Kane [E. O. Kane, J. Chem. Phys. Solids 1, 82
(1956)] are also shown.

possible to determine the spin-orbit coupling parameter
Ago(T'15). For this value of k, the spin-orbit splitting of
A; can be treated as being produced by the first-
order term in H,,. By using the wave-function ex-
pansion of Fig. 10 it is found that A, (I'15)=0.36 eV.
In order to check this procedure the spin-orbit splitting
at X4 has been calculated from the above values of
Ago(Tesr?) and Ago(Tys). It is found to be almost ex-

¥ F. Lukes and E. Schmidt, in Proceedings of the International

Conference on the Physics of Semiconductors, Exeter, 1962 (Insti-
tute of Physics and the Physical Society, London, 1962), p. 389.
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actly zero (0.0023 eV) as required by symmetry. By
this technique it is now quite easy to calculate the
spin-orbit splitting at Asl®, Ag', As¥, and Ajle for
k.>0.05. For smaller values of k2, the A"V and Ayv
states must also be taken into account. We have di-
agonalized a spin-orbit Hamiltonian which includes the
three upper valence bands and the lowest conduction
band for £,<0.05. The matrix elements were obtained
from Ag(T'as?), Aso(T'15), and the eigenvectors of Figs.
6, 8, 10, and 12. The results are presented in Fig. 17
together with the early calculations of Kane.? The large
discrepancy between our results and Kane’s for the
split-off band is due to our more accurate treatment
and to our smaller value of G which seems to agree
better with recent data.!* The spin-orbit splitting of
AsY, As'e, and AgY calculated by first-order perturbation
theory is given in Fig. 18. This splitting is accurate for
k2>0.05.

VII. PRESSURE DEPENDENCE OF THE BAND
STRUCTURE OF GERMANIUM

The k-p expansion of the Bloch functions #n,(r)
in terms of u,,0(r) makes it possible to calculate the
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pressure dependence of the energy bands in terms of
the pressure dependence of the states at k=0. Unfor-
tunately only the pressure coefficients of the I'gs!—T'/}
gap of germanium? and the I'ys'—T'15 gap of silicon?
are known experimentally. However, it is possible to
use the pseudopotential scheme discussed in Sec. V for
the calculations of the pressure coefficients of the
various states at k=0.22 These coefficients are obtained
as linear combinations of the pressure coefficients of
the three pseudopotential components V(3), V(8), and
V(11) plus the effect of the change in lattice constant.
Bassani and Brust® have attempted to calculate
av(3)/dP, dV(S)/dP and dV(11)/dP by using ap-
proximate expressions for the crystal potential and the
orthogonalization terms. They showed that the con-
tribution of V' (3) to the pressure effects is very small.
We shall show that good agreement with all observed
pressure coefficients is obtained if one assumes that only
V(11) changes with pressure and one treats this change
as an adjustable parameter.

Under this assumption and treating the changes in
V(11) and in the lattice constant by first-order per-
turbation theory one obtains from the k=0 wave
functions of Sec. V:

dE(T¥) d(lna) dE[4Y d(Ina) dH d(Ina)
=—1.840— =—0.256 . <r1u — rll>= —0.681
dP dpP dP dpP P aP
dE(T'y™) d(Ina) av(1l) dE(T2Y) d(Ina)
—=—2.579 3.191 X =—2.310——
aP aP apP dP dpP
av(i1) dH d(Ina) av(11)
+3.191 <I‘2/“ —II‘2">= —0.322 +1.316 ,
aP aP aP
(15)
dE (F25l “) g d(lna) dV(ll) dE(P%;l) Osd(lnd)
i U ap iP ’
av(11) af d(Ina) av(il)
- 1846 y <F25/" —_— F25ll> = —'0321 84* )
dP P dP apP
dE (Pls) d(lna) dE (Flzr) d(lna)
= —2.005——, =—2.794 .
dP aP dP

From the known pressure dependence of the I'ss!
—T'2? gap® and the compressibility of germanium? one
obtains ¢V (11)/dP=0.0019 Ry/kbar. Using Egs. (15)
and the k- p wave functions as discussed in Sec. V, one
obtains for the various gaps of germanium the pressure
coefficients listed in Table V. In this table are also
listed the experimental values of these pressure coeffi-
cients for germanium with the exception of the coeffi-
cients of the I'zsr’—Ayl°, the T'y5r!—TI'y5, and the X—
gaps for which we have listed the values for silicon
(values for germanium are not available).

It is generally accepted? that the pressure coeffi-
cients of the same gaps of germanium and silicon are

very close. The agreement between the experimental
and calculated values shown in Table V is excellent.

VIII. FURTHER APPLICATIONS OF
THE k-p METHOD

The k- p technique is particularly suitable for calcu-
lating the band structure of zinc-blende-type compounds

(130 61(\)§ Cardona and W. Paul, J. Phys. Chem. Solids 17, 138

960).

(12‘5“)7. Paul and D. M. Warshauer, J. Phys. Chem. Solids 5, 102
958).

2 F, Bassani and D. Brust, Phys. Rev. 131, 1524 (1963).

% M. E. Fine, J. Appl. Phys 26, 862 (19. 955).

% R, Zallen and W. Paul, Phys. "Rev. 134, A1628 (1964).
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TaBLE V. Calculated and experimental values of the pressure
coefficients of several energy gaps in germanium. The experi-
mental values for the I'ss!—T'15, X4— X1, and T'gsrl—A e gaps of
silicon are given since the values for germanium are not available.

Calculated Experimental

(10 eV/atm) (107 eV/atm)
Tost—Tgt 13 13=
Tost—T'15 3.5 5b(Si)
A3V—All° 7 75b
X4— X, 2.3 3b(Si)
I‘25’Z_L1 4.5 SG
Tosl— Ayl —1.6 —1.5¢(Si)

s Reference 20.

bR, Zallen, Gordon McKay Laboratory of Applied Science, Harvard
University, Technical Report HP-12, 1964 (unpublished).

¢ Reference 21.

from the band structure of isoelectronic group IV ma-
terials.?® The transition from a group IV to a zinc-
blende material is accomplished by the application of
a small antisymmetric potential which mixes states of
opposite parity in the group IV material. This anti-
symmetric potential adds six independent matrix ele-
ments to the 15X 15 k-p Hamiltonian. Hence, starting
with the band parameters of the group IV isoelectronic
material and varying the six matrix elements of the
antisymmetric potential it should be possible to fit the
experimental information available for the III-V and
II-VI compounds. These calculations may settle a
number of unresolved questions such as why for some
zinc-blende materials the lowest energy reflection peak
is caused by transitions at A while for others it is caused
by T transitions. Preliminary calculations for GaAs
indicate that the saddle point in the [110] direction
(Z4—21) corresponds to an energy of 5.2 eV and pro-
duces the strong peak seen in the reflection spectrum
at 5.1 eV.

It might also be possible to obtain the energy bands
of wurtzite-type materials from the bands of the corre-
sponding zince-blende compounds. In wurtzite the
number of atoms per unit cell is double that of zinc-
blende and hence the volume of the B.Z. is reduced by
a factor of 2. This introduces extra states at k=0 and
hence a number of additional parameters in the k-p
analysis.

As we have shown, this method is very well suited for
energy-band calculations which include the spin-orbit
interaction. Such calculations should be of interest in
materials whose constituents have large atomic numbers
such as gray tin, CdTe, InSb, etc.

The k- p technique is valuable for the calculation of
band structures of materials in which large relativistic
effects are present since some relativistic corrections are

% M. Cardona and F. H. Pollak, Bull. Am. Phys. Soc. 10,
615 (1965).
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F16. 18. Furst-order spin-orbit splittings of AsY, As'®, and As¥ for
germanium accurate for k,>0.05.

incorporated into the energy gaps and band parameters
at k=0, which are determined by fitting experimental
data.



