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Quantum random walks
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We introduce the concept of quantum rundom walk, and show that due to quantum interference
efFects the average path length can be much larger than the maximum allowed path in the corre-
sponding classical random walk. A quantum-optics application is described.

PACS number(s): 03.65.Bz, 42.50.Dv, 42.52.+x
We introduce in this paper the notion of quantum

ruedom walk, which is the counterpart of classical ran-
dom walks for particles which cannot be precisely lo-
calized due to quantum uncertainties. A classical one-
dimensional random walk is defined in terms of the prob-
abilities for a particle to make a step of a given length to
the left or to the right. Quantum random walks are de-
scribed instead in terms of probability amplitudes. The
actual detection process is incorporated into the theory
by correlating each possible step to another degree of &ee-
dom (say spin), which plays the role of a quantum coin:
measurement of this observable will select the transition
actually undergone. Interesting efFects arise when there
is a considerable overlap between the probability ampli-
tudes for going left or right. In this case the average
displacement of the particle can be well beyond the max-
imum classically allowed displacement. All these notions
are easily generalized to the multidimensional case.

The concept can be exemplified by a spin-& particle
undergoing a one-dimensional motion, the decision on
whether the particle takes a left or right step depend-
ing on the outcome of the measurement of the z com-
ponent of its spin. We emphasize, however, that for our
purposes it is not important that the motion occurs in
configuration space —thus, if the roles of position and
momentum are interchanged, we get a situation typical
of a Stern-Gerlach experiment; furthermore, later in this
paper we discuss a concrete realization of a quantum ran-
dom walk in Fock space. Considering for definiteness
the configuration-space example, it is easily seen that
the time translation corresponding to one step of length
l may be represented by the efFective unitary operator
U = exp( —iS,Pl/h), where P and S, are the operators
corresponding to the momentum and the z component
of the spin, respectively. The eigenstates of S are de-
noted by I+), so that S,I+) = +h/2I+). If the particle
is initially in the state I@(xo))(c+I+)+ c

I

—)), where
(xI@(xo)) corresponds to a wave packet centered around
xo, and Ic I

+ Ic+I = 1, then after one step one has

I @) = c-
I

—) I&(» —I)) + c+ I+) I @(»+ l) )

where Ig(zo 6 l)) is centered around xo + l.
Through the time development described above, a

strong correlation is established between "right" or "left"
and the spin states: for the state described by Eq. (1), a
measurement of the z component of the spin (Hipping of
the "quantum coin") determines, according to the out-

come, whether the particle would be described, after the
first step, by the state Ig(xo + l)) (if the spin is up) or
by the state I@(xo —l)) (spin down). After measuring
the spin, thus determining the new state of the particle,
we reestablish the initial condition of the measurement
apparatus, and let the state evolve again as described by
Eq. (1). It is clear that repetition of this procedure will
lead, after N steps, to an average displacement given by
(x) = Nl(Ic+ I

—Ic I ). These results coincide precisely
with those expected &om a classical random walk.

A more interesting outcome is obtained by making
use of the "multisided" character of quantum coins, and
considering a new pair of sides. One measures instead
the spin components along a direction (0, P), where P
is the argument of c /c+. The corresponding eigen-
states are I0, P, +) = cos(0/2) I+) + exp(iP) sin(0/2)

I

—)
and I0, P, —) = sin(0/2) I+) —exp(ig) cos(0/2)

I

—). Imme-
diately after the measurement, if the spin is found to be
+h/2, the state of the system is, respectively,

Ie~) = Z~' c~e+' '~" + c~e+'&tan(0/2)e~' '~"

x I@(»)) (2)

where Z~ are normalization constants. Prom these ex-
pressions, we see that after the measurement the particle
is placed in a superposition of the states centered at xp —l
and xo+/. If the spatial width of the state I@(xo)) is much
larger than l, we can approximate exp(kiPl/h) Iv)(xo))—
(1 6 iPl/h)I@(xo)), so that, up to a normalization con-
stant, I4'+) = I1+ibx~P/5] Iv)(xo)), where

c~ ~ c~ exp(~i/) tan(0/2)
c~ + c+ exp(~i/) tan(0/2)

We can see that, so long as IbxgI is much smaller
than the spatial width of the state Ig(xo)), we can write
IiII+) = exp(ibx~P/5) Ig(xo)), and therefore under these
conditions I@+) coincides with the state Ig(xo)) dis-
placed by the quantity bx~. On the other hand, from
Eq. (3), it is clear that either Ibx

I
or Ibx+I can be made

much larger than l, by a convenient choice of tan(0/2) (of
course, they should still be kept much smaller than the
initial spread, so that our approximations remain valid).
For a suKciently broad initial wave packet, it is possi-
ble therefore to have, say, Ibx

I
at the same time much

smaller than the initial width, and still much larger than
l. For instance, we may choose tan(0/2) = Ic /c+I(1+e),
with l(Dx) i « IeI « 1, so that bx ——2l/e, implying
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that l « ~hx
~

&& Ax. Note that, in this case, the prob-
ability of detecting the system in state ~8, P, —) once it
was prepared in the state ~4') is given by P —

~c c+ ~2e2,

and therefore we are dealing here with a "rare event. "
Note also that, for the same set of parameters, we get
8'x+ ——(~c+~ —~c

~ ) l + O(te), while the probability of
detecting the spin +h/2 is P+ 1 —~c e+~ e . For the
average displacement P+bz+ + P bx we get of course
the same value as before, namely (~c+[2 —~c ~2) l.

After N steps, if after each measurement we "reini-
tialize" the measurement apparatus, reestablishing the
initial condition of the spin, and if one detects succes-
sively the spin component ~9, P, —) (which involves a
very small probability), one has for the wave function
@-"(x)= (xI@-")

where 1b, (x) = (x~@(xo)). The cumulative effect af-
ter N steps can be numerically evaluated directly from
Eq. (4). The results are displayed in Fig. 1, for an ini-
tial state given by the Gaussian exp( —xz/2)/zi/4. The
important displacement of the distribution after only ten
steps, by an amount larger than the original width, and
much larger than the maximum classically allowed one,
is quite apparent. Of course, there is also a small defor-
mation, which becomes more relevant as the number of
steps increases.

These considerations represent in fact an application of
the preselection and postselection procedures discussed
in Refs. [1—4]: by selectively measuring highly improb-
able events, it is possible to generate a corresponding
highly improbable outcome. The above discussion should
make it clear that this result is generated by the interfer-
ence between the states ~1b(xo —t)) and ~@(xo + l)), and
is therefore closely related to the quantum properties of
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the system. In this sense, this eKect is quite di8'erent con-
ceptually from other possible (and trivial) realizations of
"rare events, " which can be obtained by starting with
special "ad hoc" distributions. This would be the case,
for instance, if ~g(x)[ were a two-peaked distribution,
the highest peak being centered around a given point
(say xo) of the lattice and the smaller peak being cen-
tered around another point (say xi), far away from the
first one. If the particle is measured around xq, the wave
function collapses into a new state centered around the
new coordinate, and therefore with an average position
very difFerent from the original one. One should empha-
size, in this respect, that our result applies to any suf-
Gciently smooth and wide distribution, and is obtained
only when a coherent superposition of two states is pro-
duced, as a result of the measurement.

We show now that a very simple realization of a quan-
tum random walk can be found in the framework of quan-
tum optics. We describe an experiment which results in a
drastic reduction (or amplification) of the average num-
ber of photons in a cavity, produced by the detection of a
single atom, after it interacts resonantly with the cavity
Geld.

I et us consider a cavity in which only one mode is ex-
cited, with a photon-number distribution assumed to be
such that its average number of photons n is much larger
than one, and its variance An satisGes 1 « An « n. At
a given instant of time, we inject in the cavity an atom
which has two of its levels resonant with the populated
cavity mode, and sufFiciently far from the other levels
so that the atom can be approximately represented by
only these two states (two-level atom). We assume for
definiteness that the atom is in the upper level (excited
state), just before entering the cavity, and that the tran-
sit time of the atom in the cavity is much smaller than
the lifetimes of both states and the damping time of the
cavity (this condition is actually realized in micromaser
experiments involving sup erconducting cavities and
Rydberg atoms [5, 6]). Right after leaving the cavity, the
atom passes through a region (another cavity) containing
an essentially classical electromagnetic field (a microwave
field if Rydberg states are involved), which produces a ro-
tation of the atomic Bloch vector. The atom goes then
through field-ionization plates [5, 6], which allow one to
detect whether the atom is in the excited state.

The initial state of the system composed by the atom
and the cavity field is given by ~@(O)) = g o c(n) ~n) ~a),
where ~a) denotes the excited state of the atom and ~n)
is a state of well-defined number of photons (Fock state).

Right after the atom leaves the cavity, the state of the
system is [7]

I I I I l I I I I I I I I I I

0
X [@(v)) = ) c(n) [cos p (a) ]n) + sin p [b) [n + 1)],

n=o
(5)

FIG. 1. Probability amplitude distribution for the posi-
tion of the particle, described initially by the wave packet
g(x) = exp( —x /2)/7r (solid line), after one step (long-
dashed line), three steps (short-dashed line), &e steps (dot-
ted line), and ten steps (dotted-dashed line). Here l = 0.01
and e = —O. l. The phases of the successive wave packets have
been chosen so that they all have positive maxima.

where ~b) is the lower atomic state, p = g7 i/n+ 1, g
is the atom-field coupling constant, and 7 is the transit
time of the atom in the cavity. The angle P is half the
Rabi angle of the atom as it leaves the cavity, when there
are n photons in the field. For n = 0, we get the vacuum
Rabi angle. We note the similarity between (5) and (1),
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except for the n dependence of the expansion coeKcients
in (5).

We let now the atom go through the classical field re-
gion, which rotates the atomic state according to Ia) -+
cosnIa) + exp(iP) sinnIb), Ib) m —exp( —iP) sino Io) +

I

cos nIb), where P is the phase of the classical field right
before the atom enters the interaction region, and o. is
half the (classical) Rabi angle.

After detecting the atom in the excited state Ia), the
state of the Geld inside the cavity is described by

o [c(n) cos P cosn —c(n —l)e '~ sinP I sinn In)I&")=
[g Ic(n) cos p cos n —c(n —1)e '& sin p I sin o.I2]

where we define c(—].)—:0. We show now that, for some special values of the experimental parameters, the average
number of photons in this state can be shifted by a quantity as large as the variance of the original distribution ln
spite of the fact that only one atom has crossed the cavity.

In order to illustrate this effect in the simplest possible way, we consider the situation in which P « 1, corresponding
to a weak interaction between the atom and the cavity field, and we assume that the state of the Geld before the
interaction with the atom is a coherent state [8], that is Iv) = exp( —IvI2/2) P o(v /v n!)In), for which n = IvI2.
Then Eq. (6) can be written as

(a) [1 —grate '~ tan o.] Iv)

[(vI(1 —g7 ae'4' ta nn)(1 —gee '&at tan n) Iv)]

The average number of photons in this state can be writ-
ten as (n) = n + 1 + bn, with the first two terms corre-
sponding to the maximum possible classical change, and
bn given by

g tan o. —1bn=
(1 —y tan n) 2 + y2 tan2 o./n

'

where we have defined g = gr~n, and chosen the phase
P of the classical field so that ve'~ is real and positive.
Setting g tan o. = 1 —(/~n, it is easy to show that bn
as a function of ( has extrema for ( = +1 + O(1/v n)
(we assume n )) 1), where hn = pv n[1+ O(1/v n)], re-
spectively. Therefore, if tan o. = (1 ~ 1/~n)/g, that is, if
n —7r/2 —g(1 + 1/v n), we can get a displacement of the
average photon number of gv n, respectively. These val-
ues are way beyond what would be classically expected.
Note, in particular, that even though the atom is injected
in the excited state, the average number of photons in
the cavity can decrease by as much as the variance of the
initial distribution, which, for n &) 1, represents a dis-
placement much larger than the classically allowed one.
We also note that as long as ( is kept of the order of 1,
the variance of the state, which can be exactly calculated,
remains practically the same.

In order to get this result, two conditions must be re-
alized: the angle o. must be determined with a preci-
sion better than g/~n, and the atom must be detected
in the excited state, which, for the parameters specified
above, involves a very small probability. Under the con-
ditions P- « 1, I(I O(1), we get that this probability
is given by P = ((2cos2n+ g2 sin n)/n. In particular,
for o. —m/2 —g(1+ 1/~n), we get P 2g /n, which is
much smaller than one.

The exact probability amplitude as a function of n for
the state I@! l) can be obtained directly from Eq. (7),
and it is displayed in Fig. 2 for an initial coherent state
with n = 1000, for ( = 1 (corresponding to bn —~n),
and ( = 3 (corresponding to hn ——0.6v n). For these
two values of (, the exact variations of the average photon

I

number are —31.1 and —17.4, respectively. Note that, for
a displacement approximately equal to the variance, the
shape of the distribution changes in an appreciable way.
The deformation is, however, already small for ( = 3,
even though the corresponding displacement is still 3/5
of the variance.

Although shown here for a coherent state, the above
result can be easily generalized to other field distribu-
tions and finite P 's (which helps to substantially in-
crease the detection probability). In order to simplify
the discussion, we set P = 0 and assume that the am-
plitudes c(n) in Eq. (5) are real and smooth functions
of n, leading to a photon-number distribution such that
1 (( An (( n. Complex amplitudes can be treated in a
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FIG. 2. Probability amplitude distribution for the number
of photons in the cavity, when n = 1000, as a function of
the normalized photon number n/n. The original coherent-
state distribution is represented by a solid line. The dotted-
line curve corresponds to a reduction of the average photon
number equal to 17.4, while the dashed line corresponds to a
reduction of 31.1.
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similar way (with P g 0), so long as the corresponding
phases do not change too fast with n. We also assume
that P is smaller or of the order of 27r. We can then
expand cos P and sin P in Eq. (6) around n, and ap-
proximate [(n —n)/2v n]c(n) by —r(En2/~n) [dc(n)/dn],
with rc being a number of the order of one (for a
Gaussian probability distribution, we have exactly v =
1). We get then (up to a normalization factor) ~g( ) ) =

o (c(n) —8n[dc(n)/dn]} ~n), where now

—[sinnsinp- + gwv(An /~n) sin(~+ p-)]
cos(n+ p„-)

Choosing cos(o.+P-) = e, with ]e[ (& 1, that is n
P- —e, it is easy to see that bn = O(1/e), and therefore we
can have [hn~ )) 1 (with bn either positive or negative),
and at the same time much smaller than the width of the
distribution, so that ]g( )) P o c(n —bn)]n), which
represents a displaced distribution. The probability of
finding the atom in the excited state in this case is found
to be of the order of e .

It is possible to imagine an actual experiment, along
the lines of the recent micromaser investigations [5, 6],
in which this effect could be measured. In order not to
have a too small probability and Rabi angle uncertainty,
one could deal with a typical micromaser field, with an
average number of photons of the order of 100, and have

g of the order of one. Then the maximum possible dis-
placement of the average photon number would be of the
order of ten, which would require a precision in the angle
o. of better than 0.1 rad. Since the angle o. depends on
the intensity of the classical field (which can be stabilized
to a high degree of precision) and on the transit tiine of
the atom in the corresponding region, this would require
a velocity selection of the atomic beam better than 10%,
which is easily achievable. Under these conditions, the
probability of detecting an atom in the upper state, ac-
cording to the above approximate calculation, would be
of the order of 10,well within experimental realization.
A numerical calculation for finite Rabi angles, starting
directly from Eq. (6), leads to even better results. For

100 and g = 3vr/2, we find that if N is reduced
by 9.4 the atomic detection probability is 0.089. For a
reduction of 4.15, the detection probability is as large as
0.4.

The effect analyzed in this paper should be distin-
guished from other phenomena discussed in the litera-
ture, related to the continuous measurement of a quan-
tum system. Thus, in Ref. [9] it is pointed out that the
detection of a single atom in the excited (or the unex-
cited) state, after it leaves the cavity containing the ra-
diation field, may shift the average number of photons in
the cavity by a quantity in principle as large as the vari-
ance of the original distribution. The change in the distri-
bution and, in particular, in the average photon number
results from the filtering of the original distribution due
to measurement. Since no quantum coherences are in-
volved in this process, this can be understood in terms
of conditional probabilities for detecting photon popula-
tions and atomic energies: the new probability distribu-
tion is given by the probability of finding the atom in the
excited (or unexcited) state, when there are n photons in
the cavity, multiplied by the probability of having n pho-
tons in the cavity, and summed over all possible values of
n. In Ref. [10] the continuous photodetection of a field
was analyzed, and it was shown that the average photon
number after one count is equal to the previous value mi-
nus one plus the Fano factor ([An(t)] )/(n(t)). Thus, for
a Poissonian distribution the average photon number re-
mains unchanged. Both measurement processes are quite
different, however, from the one envisaged here. Our pro-
posed scheme relies on the rotation of the atomic Bloch
vector after the atom leaves the cavity and before detec-
tion occurs. This implies that, after detection, the field
is left in a coherent superposition of the original state
and the state obtained from it through an overall shift of
the number of photons by one. It is the quantum inter-
ference between these two states that produces a shifted
state with a large variation of the average photon num-
ber, for any smooth distribution. In particular, even a
Poissonian distribution may suffer a large shift. Further-
more, our method allows a precise characterization of
the conditions for getting, after a single measurement, a
shifted distribution with a large variation of the average
photon number.
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