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A recently proposed numerical technique for generation of high-quality unstructured meshes is
combined with a finite-element method to solve the Helmholtz equation that describes the quantum
mechanics of a particle confined in two-dimensional cavities. Different shapes are treated on equal
footing, including Sinai, stadium, annular, threefold symmetric, mushroom, cardioid, triangle, and
coupled billiards. The results are shown to be in excellent agreement with available measurements
in flat microwave resonator counterparts with nonintegrable geometries. © 2007 American Institute
of Physics. �DOI: 10.1063/1.2731307�

Signatures of chaos have been intensively searched in
quantum mechanics during the past two decades. What-
ever they are, these elusive chaotic features might be ex-
pected to show up only in the highly excited states of a
quantum system, which are typically hard to calculate
and of difficult experimental access. Perhaps the most
convenient and simplest tool to tackle the issue of chaos
in quantum dynamics is a billiard. In classical billiards
(CBs), one investigates the trajectories traced by a fric-
tionless point mass as it moves across a plane and elasti-
cally scatters off the hard boundary of a closed planar
domain. In other words, CBs are Hamiltonian systems
that can exhibit a completely regular (integrable) behav-
ior, a completely chaotic (nonintegrable) dynamics, or
something in between (a divided phase space), depending
on its geometry. There is a vast literature on CBs in both
physical and mathematical communities. In the quantum
limit, we have a problem of a particle confined in a two-
dimensional cavity, whose wave function obeys the Helm-
holtz equation. The same equation describes the classical
electrodynamics of TM microwave modes in a flat reso-
nator, which leaves room for experimental investigations
of quantum billiards, in addition to the opportunities of
analytical and numerical studies. Since there are no ex-
plicit formulas for the solution of such a boundary-value
problem when the classical limit is chaotic (or mixed), the
need for accessible and efficient codes to solve the Helm-
holtz equation is rampant. There are currently numerous
methods for that purpose. In this paper, a recent numeri-
cal technique is applied broadly to provide an overview of
eigenfunctions and eigenvalues in some of the most im-
portant quantum chaotic billiards hitherto studied in the
literature. When possible, a comparison is given between
our numerical results and those from physical experi-
ments in microwave billiards, and those obtained with
other numerical methods as well.

In the past two decades, two-dimensional cavities have
been extensively used as model systems in the study of quan-
tum mechanics where the classical description yields chaotic
dynamics.1 Earlier theoretical studies in the 1970s were
mainly concerned with the eigenvalues �EVs� of noninte-
grable systems. In particular, the role of periodic orbits in the
theory of semiclassical quantization of bound states attracted
much interest. In the mid-1980s, Bohigas, Giannoni, and
Schmit2 have found numerically that the energy-level fluc-
tuations of a “desymmetrized” Sinai billiard exhibit universal
properties consistent with the predictions of random matrix
theory.3 Soon after, Heller4 addressed the effect of unstable
periodic orbits on the eigenfunctions �EFs� of classical cha-
otic systems. These advances on the theoretical side strongly
demanded experimental tests of a number of predictions and
conjectures. Since the early 1990s, different cavity-based
systems have been used to characterize experimentally the
so-called quantum or wave chaology, including flat micro-
wave cavities,5–7 electron quantum dots,8 ultracold atoms,9

vertical cavity surface emitting lasers,10 water vessels,11 vi-
brating blocks,12 and quantum corrals.13

As an advantage, flat microwave cavities with perfectly
conducting walls enjoy a simple equivalent quantum analog,
namely a single particle �mass m� confined in a two-
dimensional infinite quantum well. In both systems, the time-
independent factor of the underlying wave function is a so-
lution of the Helmholtz equation

��2 + k2�F�x,y� = 0, �1�

with Dirichlet boundary condition F=0 at the contour of the
confining cell. In the quantum case, k= �2m��1/2 /�, � is
Planck’s constant, and � is the energy EV. In the electromag-
netic case, k=2�f /c, where f is the eigenfrequency and c is
the speed of light. The function F is the electric field com-
ponent perpendicular to the cavity plane, Ez�x ,y�, associated
with a transverse magnetic resonant mode. For a typical cav-
ity thickness d=0.6 mm, the two-dimensional nature of the
eigenmodes is guaranteed for frequencies below c /2d
�25 GHz. In fact, both normal and superconducting micro-
wave resonators have been instrumental in testing a number
of theoretical predictions in wave chaology in the past
15 years.a�Electronic mail: fma@df.ufpe.br
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For a billiard of complicated shape, it may be nearly im-
possible to solve the eigenvalue problem posed by �1�. Cer-
tain families of EVs and EFs of interior domains may be
approximated using different analytical techniques including
ray theory14 and Green functions.15 On the other hand, nu-
merical approaches tend to be less restricted but may face
severe difficulties in treating domains with reentrant corners
and holes. Boundary methods,16 which reduce the calculation
of EVs and EFs to a problem involving the billiard contour
only, the expansion method,17 and the finite-element method
�FEM�,18 are possible numerical techniques to solve �1� for a
given geometry. The FEM is well established and has a
broader range of applications. Recently,19 a FEM20 was used
to study the statistics of higher-order EVs of a threefold sym-
metric billiard with a hole, for which a large hardware cluster
system and several hours of CPU time have been employed.
In some situations, simpler schemes might be desirable.
Here, a user-friendly, public, and remarkably efficient mesh
generator21 is combined with a standard FEM18 to solve �1�
for both EVs and EFs of several quantum chaotic billiards.
The results are shown to be in excellent agreement, to a
desired precision, with physical experiments in microwave
chaotic billiards. The geometries were primarily chosen from
the physical experiments, namely Sinai,6 stadium,5�b� and
annular22 billiards. In addition, we provide results for some
EFs corresponding to threefold symmetric billiards whose
spectra were recently studied experimentally in Ref. 23 and
numerically in Ref. 19. We then discuss the issue of quantum
localization in two coupled Sinai billiards. Finally, in the last
paragraph, we apply the method to other geometries recently
investigated, namely, the mushroom, cardioid and irrational
triangular billiards. The numerical results provided here were
calculated in a single computer with a 2.2-GHz processor
and 2 gigabytes of random access memory. With this con-
figuration, the needed CPU time T is typically a few seconds
for 100 EVs and corresponding EFs, if one uses a number of
nodes N�1000 in the discretization mesh. In this case, the
precision is certainly reduced, but the pattern of nodal lines
obtained might be quite satisfactory for a quick crosscheck-
ing with results from physical experiments, particularly for
the low-lying eigenstates. T grows polynomially �up to N3�
for a given set of numerical parameters, and may reach a few
hours for a precise computation of higher-order solutions.
We briefly describe the method below, and selected results,
both numerical and physical, are then presented and com-
pared in what follows.

Mesh generation. The FEM numerically approximate the
solution of a partial differential equation by replacing the
continuous system with a finite number of coupled algebraic
equations. These equations result from the discretization of
the interior domain D �two-dimensional here� by small ele-
ments �typically triangles�, whose boundaries form a mesh
within D. Generating a mesh is thus the first key step in a
FEM. A high-quality mesh with triangular elements must
have triangles that are nearly equilateral to provide a well
conditioned system of algebraic equations. A number of
mesh generation algorithms have been developed in the past
decades. Almost always, these algorithms are codes with dif-
ficult access, if any. A recent exception is the mesh generator
proposed in Ref. 21 by Persson and co-workers, which uses
a signed distance function to represent the geometry, a force-

displacement function to move the nodes in the mesh, and a
standard �Delaunay� triangulation algorithm to dynamically
adjust the topology until a mesh of high quality is obtained.
Thus, for a given hardware, the resulting CPU time T basi-
cally depends on the mesh quality required, the number N of
nodes in the mesh needed for a given precision, and the
number of eigensolutions to be investigated. The method can
easily handle domains with a hole. Refinement around cor-
ners or other complicated boundaries is just an option to a
uniform mesh in the algorithm provided in Ref. 21. Both
EVs and EFs can be obtained with suitable commands of the
commercial software MATLAB, a very useful tool in dealing
with the underlying sparse matrices. For instance, the calcu-
lation of n EVs, the smallest ones or the ones closest to a
given number, and corresponding EFs, is done with the func-
tion “eigs,” which calls the appropriate solver package.

Sinai billiards. A Sinai billiard is geometrically defined by
a double boundary composed by an outer rectangle of lateral
dimensions � and d, and an inner concentric circle of radius
r. Three room-temperature microwave experiments are ad-
dressed here. Two of them have been made previously by
Sridhar and co-workers6 and the other one was carried out
recently in our own microwave laboratory. They share the
same perturbation measurement technique, described in de-
tail in Ref. 6�b�, and they differ in the geometric parameters
used. Tens of the lowest-lying EFs of a billiard with �
=44.0 cm, d=21.9 cm, and r=5.00 cm have been measured
in Ref. 6�b�; four of them are reproduced here by the contour
plots �a�–�d� of Fig. 1. The measured frequencies in GHz are
1.082 �a�, 2.181 �b�, 2.373 �c�, and 2.446 �d�. We have solved
�1� for this geometry for the 100 lowest-lying EVs and EFs
with N=25741 nodes �ca. 60000 triangular elements� and a
resulting T�10 min. Density plots of the numerically calcu-
lated �Ez�x ,y�� with eigenfrequencies 1.082, 2.194, 2.363,

FIG. 1. �Color� Standing-wave patterns in Sinai billiards. �a�–�d� are micro-
wave measurements by Sridhar and co-workers �adapted from Ref. 6�b��. �e�
is an experimental result in another microwave billiard, by the authors.
�f�–�j� are the corresponding numerically calculated eigenfunctions. Param-
eters are given in the text.
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and 2.483 GHz are shown in panels �f�, �g�, �h�, and �i�,
respectively. A negligible difference between the measured
and the calculated EVs is observed for these low-lying eigen-
states, given the experimental uncertainties, including tiny
frequency shifts due to the small input and output antennae
used in the transmission experiments. It is worth noting that
the features discussed in Ref. 6�b� concerning accidental
near-degeneracy of the EFs are also observed in the numeri-
cal results. The measurements in our laboratory were made at
room temperature in a Cu Sinai billiard with �=41.0 cm, d
=29.0 cm, and r=5.00 cm. Panel �e� in Fig. 1 shows the
measured higher-order mode with eigenfrequency
5.200 GHz. The corresponding EF was calculated at
5.207 GHz and is shown in panel �j� of Fig. 1, again in
excellent agreement with the experimental result. In order to
illustrate the effectiveness of the numerical method used
here, we reproduce in the upper panel of Fig. 2 a measure-
ment reported in Ref. 6�a� for a configuration then regarded
as “difficult to study using purely numerical methods.” The
nominal values provided in Ref. 6�a� are �=44.0 cm, d
=21.8 cm, and 2r=10.15 cm. The corresponding numeri-
cally calculated EF is shown by the density plot in the lower
panel of Fig. 2. Both results show the same diagonally
scarred pattern, with a measured frequency of 3.138 GHz
and a calculated one of 3.143 GHz, in good agreement.

Stadium billiard. Another prototype chaotic billiard is the
stadium, whose single contour is comprised of two parallel
segments, each with length 2�, separated by a distance 2r,
and bracketed by the two halves of the circumference of
radius r. We focus here on the room-temperature reflection
experiments by Stein and Stöckmann,5�b� in which a single
mobile antenna was used to measure the microwave field
distribution. The left panels in Fig. 3 were taken from Ref.
5�b� and correspond to twofold reflection of measurements in
a quartered stadium billiard with �=18 cm and r=13.5 cm.
The calculated EFs displayed on the right panels in Fig. 5
were obtained with N=44612 and T�30 min. Again, a good
quantitative agreement between the microwave and numeri-
cal experiments is achieved. Notice that the higher the level
orders, the smaller the mean level spacing. Thus, a better

precision might be required to find among the calculated
modes the one corresponding to a given measurement. We
stress that with the precision used in this case, the higher-
order mode corresponding to the measured eigenfrequency
of 7.250 GHz could easily be found among the ten calculated
nearest neighbors to that frequency.

Annular billiard. The successful numerical tests presented
above have drawn our attention to other billiards recently
investigated experimentally by Richter and co-workers,22,23

with superconducting microwave cavities at cryogenic tem-
peratures. In this case, quality factors of 106 may be reached,
allowing the measurement of high-resolution spectra. We ad-
dress first the annular billiard studied in Ref. 22, where evi-
dence for chaos-assisted tunneling has been observed experi-
mentally for the first time. The double boundary of the
annular billiard is defined by two circumferences, with radius
r �inner circle� and R �outer circle�, and an eccentricity �.
The experiments in Ref. 22 were carried out with a nominal
value R=12.5 cm and three different configurations of the
family r+�=0.75R. Here we focus on the configuration with
�=2.5 cm �r=6.875 cm�. The three upper panels in Fig. 4,
taken from Ref. 22, correspond to room-temperature mea-
surements of three resonant modes in a copper annular bil-
liard. They have been identified by broad peaks observed in
the transmission spectrum, nearly centered at 8.912, 8.927,
and 8.942 GHz, from left to right in the upper panels of Fig.
4, respectively. The middle eigenstate actually corresponds
to the even-parity member of a quasidoublet of whispering
gallery modes, as suggested in Ref. 22 by a high-resolution
spectrum of a niobium superconducting billiard with the
same shape. For these low-temperature �4.2 K� experiments,
the three resonance frequencies are actually shifted, as
shown by the sharp peaks in the spectrum of the inset of the

FIG. 2. �Color� Diagonally scarred eigenfunction in a Sinai-type billiard.
Upper panel: Microwave experiments by Sridhar �Ref. 6�a��. The measured
frequency is 3.138 GHz. Lower panel: Density plot of the numerically cal-
culated �Ez�x ,y�� for the corresponding eigenstate at 3.143 GHz.

FIG. 3. �Color� Left panels: Measured eigenstates in a microwave stadium
billiard by Stein and Stöckmann �Ref. 5�b��, with �=18 cm and r
=13.5 cm. From top to bottom, the measured eigenfrequencies are 3.384,
3.865, 4.056, and 7.250 GHz. Right panels: Density plots of the calculated
�Ez�x ,y�� of the corresponding resonances with frequencies 3.393, 3.847,
4.066, and 7.277, from top to bottom, respectively.
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lower panel in Fig. 4, also taken from Ref. 22. These small
displacements were attributed to mechanical imperfections
and positioning errors of the inner circles within the
resonators.22 Here we offer an estimate of the mechanical
and positioning uncertainties for the low-temperature mea-
surement. By trial and error, using a relatively low precision,
we varied the values of the parameters r, R, and � until a
singlet-doublet-singlet sequence occurred in the �8.88 GHz,
8.96 GHz� measurement interval. A few fine tunings at
higher precision led to the shaded spectrum in the bottom
panel in Fig. 4, obtained with N=62307 nodes, T�1.5 h,
and a visual optimization such that, for all peaks shown in
the experimental spectrum,22 the absolute value of the differ-
ence between the calculated and the experimental frequen-
cies was smaller than �f /4, where �f =0.02 GHz is the scale
provided in Ref. 22. The spectrum is comprised of Lorentz-
ian curves24 centered at the numerically calculated eigenfre-
quencies with arbitrary linewidths, just to mimic the experi-
mental result. The parameters used were R=12.5432 cm, r
=6.886 cm, and �=2.510 cm, slightly different with respect
to the nominal experimental values. The three middle panels
in Fig. 4 are the corresponding density plots of the calculated
�Ez�x ,y�� for each eigenstate. The close similarity with the
upper panels confirms that the displaced peaks at low tem-
perature indeed correspond to the same three eigenmodes
measured at room temperature.

Threefold symmetric billiards. Based on the group-
theoretic concept of structural invariance, Leyvraz, Schmit,
and Seligman25 predicted that time-reversal invariant sys-
tems may have invariant subspaces on which the spectrum
exhibits fluctuations characteristic of systems without time
reversal symmetry, i.e., those of the Gaussian Unitary En-
semble �GUE�.3 The analytical results were further tested
numerically in Ref. 25 through a billiard with threefold sym-
metry. Quantum mechanically, such billiards have three

classes of EFs �three invariant subspaces�, according to the
angular momentum �m�=0, ±1�. A rotation of 120° about the
quantization axis introduces a phase factor exp�2m��i /3� in
the EF with quantum number m�, and the states with m�

= ±1 are degenerate due to time-reversal �complex conjuga-
tion� invariance. Thus, the spectrum of the billiard is com-
prised of threefold symmetric singlets and spatially asym-
metric doublets. Confirming experimentally this numerically
tested theoretical prediction, Richter and co-workers23 inves-
tigated the level statistics of a fully chaotic triangular micro-
wave billiard, whose single boundary is parametrized in po-
lar coordinates by23�a�

r��� = r0�1 + 0.2 cos�3�� − 0.2 sin�6��� . �2�

Singlets and doublets were then elegantly identified in high-
resolution experiments24 through a phase-shift double input
technique. Part of the measured transmission spectrum is re-
produced here in the upper panel of Fig. 5, where S and D
stand for singlet and doublet, respectively. The lower panel is
a visually optimized spectrum, calculated with N=139483
nodes and T�3 h. As in Fig. 4, the resonances are Lorentz-
ians centered at the calculated eigenfrequencies. Guided by a
100-mm bar provided in Ref. 23, we first estimated a value
for the parameter r0 at a lower numerical precision. A few
attempts at higher precision yielded the shaded spectrum in
Fig. 5, obtained with r0=9.614 cm. The room-temperature
experimental value is 9.62 cm.26 Since this value shrinks
slightly at lower temperatures, the agreement between the
experimental and the numerically obtained values is remark-
able. The EFs of this billiard were not measured in Ref. 23
and we offer here in Fig. 6 the calculated threefold symmet-
ric singlets in the spectrum of Fig. 5.

Triangular billiards with holes. As a sidelight to the pre-
vious presentation of comparative studies between physical

FIG. 4. �Color� Top three panels: Measured eigenstates in a Cu annular
microwave billiard at room temperature �Ref. 22�. The measured frequen-
cies are, from left to right, close to 8.912, 8.927, and 8.942 GHz, respec-
tively. Middle panels: Calculated EFs corresponding to the three resonances
shown in the shaded spectrum of the lower panel. Inset: Measured spectrum
at 4.2 K in a superconducting Nb cavity with the same shape as the Cu
billiard �Ref. 22�.

FIG. 5. Upper panel: Higher-order resonances in the measured spectrum of
a chaotic superconducting microwave billiard with threefold symmetry,
taken from Ref. 23�b�. Lower panel: Numerically calculated spectrum in the
same frequency range. S and D stand for singlet and doublet, respectively.
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and numerical experiments, we add now an application of
the numerical method to triangular cavities with a hole, such
as the one studied in Ref. 19. In this case, the interior domain
of interest has outer and inner contours, as in the Sinai and
annular billiards. These two boundaries are described, in po-
lar coordinates, by the functions19

ra��� = r0a�1 + 0.3 cos�3��� �3�

and

rb��� = r0b�1 + 0.1 cos�3�� + ���� . �4�

Both boundaries possess threefold symmetry and are rotated
against each other by an angle �. Equations �3� and �4� were
introduced in Ref. 19, where the EVs of billiards with the
outer boundary given by �3� with r0a=10.000 cm, and the
inner one by �4� with r0b=2.727 cm, were numerically cal-
culated for three different values of the angle �. Confirming
earlier theoretical predictions and numerical tests,25 the au-
thors in Ref. 19 have successfully tested a numerical
approach20 by showing that a transition from GOE to GUE
statistics3 occurs in the spectrum of the billiard as � is
changed from 0° �C3v symmetry� to 10° �C3 symmetry�. Bil-
liards with a hole can be conveniently handled with the
MATLAB function ddiff, as proposed in Ref. 21. We have
introduced Eqs. �3� and �4� into this function and have been
able to calculate the EVs and EFs of a number of billiards
based on these equations. The first five threefold symmetric
singlet states of two of these billiards are reported here. The
left panels in Fig. 7 correspond to the billiard studied in Ref.
19 with �=0°. Assigning an integer number n �n�1� to each
state in the spectrum, starting from the ground state, these
singlets correspond to n=1, 6, 7, 12, and 13, from top to
bottom, respectively. The calculated frequencies are 2.0681,
3.1629, 3.2517, 3.9987, and 4.2917 GHz, also from top to
bottom. The right panels in Fig. 7 correspond to a billiard in
which the outer boundary is given by �4� with r0b
=10.000 cm, the inner contour is given by �3� with r0a
=2.727 cm, and �=0°. In this case, the singlet states corre-
spond to n=1, 6, 7, 12, and 15, and f =2.1145, 3.0669,
3.1238, 4.2982, and 4.5664 GHz, from top to bottom, re-

spectively. In both cases, we have employed N=35200 nodes
in the mesh, with a resulting CPU time T�10 min.

Two coupled Sinai billiards. Let us now consider the case
of two identical Sinai billiards, each with �=44.0 cm, d
=21.9 cm, and r=5.00 cm, as the one in Ref. 6�b� symmetri-
cally connected through a narrow channel, 0.5 cm long and
2.0 cm wide. We used a mesh �Fig. 8� with N=142151 �T
�3 h�. The ground state of one �uncoupled� such billiard has
two partners with eigenfrequencies f =1.081 and 1.082 GHz,
with even and odd parity with respect to the central vertical
axis, respectively. In each mode, �Ez�x ,y��2 has two local
maxima, as shown in Figs. 1�a� and 1�f�. As a result of parity,
while the mode at 1.081 GHz has saddles at the bottleneck
regions below and above the central circle, its partner at
1.082 GHz exhibits a nodal line at the central vertical axis
�Fig. 1�f��. In the coupled system, a quasiquadruplet is thus
observed at f =1.0778, 1.0800, 1.0813, and 1.0814 GHz. The

FIG. 6. �Color� Numerical results, showing density plots of �Ez�x ,y�� corre-
sponding to the threefold symmetric singlet states in the lower spectrum of
Fig. 5. The calculated eigenfrequencies are, left to right, 15.8167 and
15.9012 GHz for the upper panels, and 15.9741 and 16.0988 GHz for the
lower panels.

FIG. 7. �Color� Calculated standing wave patterns in threefold symmetric
parametric billiards with holes, corresponding to the first five singlet eigen-
states. Left panels: Outer and inner boundaries are given by �3� and �4�,
respectively, with �=0°. Right panels: Outer and inner boundaries are given
by �4� and �3�, respectively, with �=0°. Parameters are given in the text.
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odd partners with f =1.0800 and 1.0814 GHz exhibit four
maxima, one strong and one weak in each billiard. Strikingly,
in the even modes with f =1.0778 and 1.0813 GHz, the weak
extrema almost vanish. The resulting EFs are shown by the
density plot in the two upper panels of Fig. 9. The same
localization pattern occurs for other quasiquadruplets, such
as those calculated at f =7.9455, 7.9456, 7.9460, and
7.9466 GHz, for instance. The corresponding standing-wave
patterns of the first and third modes in that sequence are
shown in the lower panels of Fig. 9. As in the ground state,
the wave function is either strongly localized at the inner
sectors of the billiard �lower f� or at the outer sectors �higher
f�. We refer to this localized standing-wave pattern as
“type-II half-filling,” in order to distinguish it from the more
familiar situation of doublets due solely to symmetry. As in
homonuclear diatomic molecules,27 if two eigenmodes are
degenerate, they resemble states of two distinguishable local-
ized sites. Two of these states with, say, “type-I half-filling,”
are shown in Fig. 10 for the coupled billiard system. They
correspond to a doublet calculated at 3.1077 GHz.
Previously,6�c� type-II half-filling localization has been ob-

served in microwave experiments in a single Sinai billiard,
as a symmetry broken state due to a slightly displaced disk.
Such a state was compared with a numerically calculated
superposition of even-odd partners of the symmetric billiard.
Even in this simpler situation, the relation between wave
mechanics and the corresponding classical ray trajectories
was not completely understood. Interesting states symmetri-
cally distributed nearly over the entire system are shown in
Fig. 11. The standing-wave pattern in the top panel of
Fig. 11, observed at a resonance frequency f =4.0214 GHz,
is reminiscent of the TM10,3 mode in the bare uncoupled
rectangular billiard, and the odd member of a quasidoublet.
The other panels in Fig. 11 show kaleidoscopic modes at
higher frequencies. Remarkable eigenstates of the coupled
system that are also related with the issue of quantum local-
ization are shown in Fig. 12. A common feature of these
states is that they exhibit a relatively large peak in the wave
intensity at the narrow channel, where the amplitude is often
strongly suppressed. Notice that open-ended tube resonances
might be expected only at f �c /2 L�30 GHz for a channel
with length L=0.5 cm. On the other hand, for a width W
=2.0 cm, transverse resonances might occur around f
=c /2W�7.5 GHz. The frequencies in Fig. 12 are close to
this value, but their connection with W in this two-
dimensional problem is nontrivial; for instance, localized

FIG. 8. Detail of the quasiuniform mesh used throughout the constriction to
numerically solve the eigenvalue problem of two coupled Sinai billiards, as
described in the text.

FIG. 9. �Color� “Type-II half-filling:” Localized modes in two coupled Sinai
billiards. Each cell has the same dimensions as the billiard in Fig. 1�f�. The
coupling channel is 0.5 cm long and 2.0 cm wide. The calculated eigenfre-
quencies are 1.0778, 1.0813, 7.9455, and 7.9460 GHz, from top to bottom,
respectively.

FIG. 10. �Color� “Type-I half-filling:” Localized modes in two coupled
Sinai billiards, corresponding to a doublet with f =3.1077 GHz.

FIG. 11. �Color� Standing-wave patterns corresponding to extended states.
From top to bottom, the calculated eigenfrequencies are 4.0214, 7.8566,
7.9790, 8.0816, and 8.1515 GHz, respectively.
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modes such as those in Fig. 12 are also observed with fre-
quencies between 8 and 9 GHz, i.e., well above c /2W. One
important feature is shared by these localized wave func-
tions, namely, the presence of a scarr4 through the channel. It
is worth noting that such localized states also occur in two
coupled rectangular cavities. Here we consider the bare rect-

FIG. 13. �Color� Density plots of �Ez�x ,y��2 for states strongly localized at
the narrow channel coupling two identical rectangular billiards, with the
same dimensions as those in Figs. 9–12. Upper panel: Eigenmode at f
=7.7317 GHz, showing a single large peak at the constriction. Lower panel:
Eigenmode at f =15.5358 GHz, with two large peaks on the coupling
channel.

FIG. 14. �Color� Density plots of �Ez�x ,y��2 in a 2 cm	2 cm region cen-
tered at the narrow channel coupling two rectangular billiards. From top to
bottom, the channel length is L=0.42, 0.620, 0.70, 0.86, 1.10, and 1.58 cm,
respectively. The small triangles indicate the “0” and the “1” normalized
intensity levels in the color bar. The standing-wave pattern in each rectangle
pair is the same as that in the upper panel of Fig. 13. Frequencies are given
in Fig. 15.

FIG. 12. �Color� Tridimensional plots of �Ez�x ,y��2 for states strongly local-
ized at the narrow channel coupling two identical Sinai billiards. From top
to bottom, the calculated eigenfrequencies are 7.3521, 7.6631, 8.2744, and
8.4351 GHz, respectively.
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angles corresponding to the above Sinai billiards ��
=44.0 cm, d=21.9 cm�, coupled through the same narrow
channel. Two modes strongly localized at the constriction are
shown in Fig. 13 for this system, one with eigenfrequency
around 7.5 GHz and the other one close to the second har-
monic at 15 GHz. As in the coupled Sinai system, these lo-
calized modes are not unique. Other modes with a relatively
large peak at the coupling channel are also observed in the
coupled rectangular system in the 8–9 GHz interval. By fix-
ing the number of nodes in the mesh �N�155000� and vary-
ing the channel length L, we have followed a mode with a
well defined standing-wave pattern, namely, that in the upper
panel of Fig. 13. Figure 14 shows density plots of a
2 cm	2 cm area centered at the constriction for several val-
ues of L. In all cases, the channel walls seem to squeeze the
central intensity peak that slightly penetrates the rectangular
billiards through both open endings of the channel. The cor-
responding calculated frequencies exhibit small fluctuations
around 7.74 GHz, as shown in Fig. 15, thus indicating a
weak, if any, dependence on L. These fluctuations might as
well be due to the variations in the discretization mesh used
in each case. Notice that we have kept the number of nodes
N in each calculation and chosen some values of L for which
the mesh visually had the same channel geometry, as the one
shown in Fig. 8. On the other hand, as indicated by the lower
panel of Fig. 13 and by the inset in Fig. 15, the channel
width W seems to play an important role in the frequency
quantization, given the qualitative features that bear resem-
blance to Fabry-Perot-like resonances in the transverse direc-
tion.

Mushroom, cardioid, and irrational triangle billiards. We
conclude this paper by applying the numerical method to
three distinct geometries recently investigated. Mushroom
billiards have been introduced by Bunimovich28 as the first
Hamiltonian systems with a divided phase space �regular and
chaotic regions� for which a rigorous mathematical analysis
is possible, thus stimulating further studies that include their
quantum counterparts. Barnett and Betcke29 recently re-
ported numerical results for quantum mushrooms using a

highly efficient mesh-free boundary method. In their case,
for instance, 77 higher-order eigenmodes of a desymmetrized
billiard could be numerically calculated within 20 min with a
2.4-GHz CPU. By using a mesh with N�41000 nodes, we
have been able to calculate approximately 10 eigenmodes of
a symmetric billiard within 30 min. Some results are shown
in Figs. 16 and 17 for a mushroom with a hat of radius R
=13.5 cm, and a rectangular foot with height h=23.0 cm and
width 2r=10.0 cm. Figure 16 shows the first ten eigenmodes
and Fig. 17 higher-order ones. Interesting sets of odd and
even EFs are found, including whispering gallery modes lo-
calized in the hat and bouncing ball states in the foot. The
cardioid billiard has been investigated recently by Bäcker,30

who also used a boundary method programmed with the Py-
thon language. This billiard has a challenging symmetric ge-
ometry with a sharp internal tip in the cavity boundary. Here
we consider the ordinary cardioid given in polar coordinates
by r=2�1−cos ��. A mesh with N�151000 nodes provided
a reasonable discretization around the origin and 20 EFs
could be obtained within T�3 h. Four of them, two odd and
two even �with respect to the horizontal symmetry axis�, are
shown in Fig. 18. Let us finally consider the triangular bil-
liard. In general, plane polygonal billiards have a rich clas-
sical dynamics. When all their angles are rational with �,
they have long been called “pseudointegrable” by Richens
and Berry,31 because their phase flow is not confined to a

FIG. 15. �Color� Calculated eigenfrequency for the same eigenmode in two
coupled rectangular billiards as a function of the length of the coupling
channel �symbols�. The horizontal line indicates the average frequency. In-
set: Density plots of �Ez�x ,y��2 in a 2 cm	2 cm region centered at the
narrow channel, corresponding to the eigenmode at 15.5358 GHz shown in
the lower panel of Fig. 13.

FIG. 16. �Color� Density plots of �Ez�x ,y��2 for the first ten eigenfunctions in
a mushroom billiard with a hat of radius R=13.5 cm and a rectangular foot
with height h=23.0 cm and width 2r=10.0 cm. Upper panels, left to right:
f =1.2120, 1.6082, 1.7916, 1.8472, and 2.1336 GHz. Lower panels, left to
right: f =2.2587, 2.4716, 2.6792, 2.8032, and 2.8363 GHz.

FIG. 17. �Color� Higher-order modes in the same mushroom billiard of Fig.
16. Upper panels, left to right: f =15.0781, 15.0824, 15.1036, and
15.1173 GHz. Lower panels, left to right: f =18.4673, 18.4833, 18.5037,
and 18.5291 GHz.
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torus. Instead, their classical trajectories cover surfaces for
which no unique action variables can be defined. Thus, the
motion of a classical particle in such a billiard cannot be
integrated. In addition, they have also shown that in quantum
mechanics these systems exhibit level repulsion, a feature
shared with chaotic billiards.2 Contrary to previous belief in
the mathematical community,32 Casati and Prosen33 pre-
sented numerical evidence for mixing in triangular billiards
when all angles are irrational to �. We numerically quantized
a particular acute triangular billiard and some interesting
eigenstates are shown in Fig. 19. They exhibit a similar pat-
tern that �i� might be associated with a family of periodic
orbits that strongly diffract at the upper corner and diffu-
sively scar the state, and �ii� does not seem to disappear at
large EV orders. Whether such EFs are related to classical
ghosts34 or to superscars35 is an issue of ongoing investiga-
tions. A detailed analysis that also includes the level dynam-
ics will be published elsewhere.36

In sum, we have applied a recent mesh generation tech-
nique to a standard finite-element method to numerically
solve the eigenvalue problem posed by the Helmholtz equa-
tion that describes the wave mechanics in chaotic billiards.
The numerical approach provides reasonably fast, relatively
cheap, and excellent results as compared to measurements in
two-dimensional microwave cavities with different noninte-
grable geometries. Its versatility is further demonstrated

through calculations in parametric billiards with threefold
symmetry and pseudointegrable billiards. In addition, pos-
sible localization patterns were identified in a system com-
prised of two Sinai billiards with accidental degeneracies,
coupled through a narrow and short waveguide. Type-II half-
filling localization is shown to occur naturally in the coupled
system as a result of accidental degeneracies and symmetry,
bearing resemblance to a superposition of even-odd partners
of a single uncoupled billiard.6�c� We report scarred wave
functions with a corresponding periodic orbit through the
coupling channel that lead to strong localization at the con-
striction, with eigenfrequencies in the neighborhood of an
integer number of c /2W, where W is the channel width. In
the context of mesoscopic systems, it might be of interest to
explore the question of whether such localized states could
play a role in the highly nonperiodic electron addition spec-
trum of two coupled quantum dots, in the low-density
regime.37 Application of the method to study the level statis-
tics in billiards and its possible extension to approach open
quantum systems are works underway.

We are indebted to the authors of Ref. 21 for making
available the mesh generation code that paved most of the
way for this work. We thank A. M. S. Macedo and J. R. Rios
Leite for stimulating discussions. Professor A. Richter is
gratefully acknowledged for information on experiments in
microwave billiards made by his group. We would like to
thank the referees for bringing Refs. 29, 30, and 38, which
propose efficient boundary methods to compute highly ex-
cited states of quantum billiards, to our attention. This work
has been supported by CNPq and FACEPE, Brazilian Agen-
cies.

1�a� M. Gutzwiller, Chaos in Classical and Quantum Mechanics �Springer-
Verlag, New York, 1990�; �b� A. M. Ozorio de Almeida, Hamiltonian
Systems: Chaos and Quantization �Cambridge University Press, Cam-
bridge, UK, 1990�; �c� F. Haake, Quantum Signatures of Chaos, 2nd ed.
�Springer-Verlag, Berlin, 2006�; �d� H.-J. Stöckmann, Quantum Chaos
�Cambridge University Press, Cambridge, UK, 1999�.

2O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52, 1 �1984�.
3M. L. Mehta, Random Matrices, 3rd ed. �Elsevier, Amsterdam, 2004�.
4E. J. Heller, Phys. Rev. Lett. 53, 1515 �1984�.
5�a� H.-J. Stöckmann and J. Stein, Phys. Rev. Lett. 64, 2215 �1990�; �b� J.
Stein and H.-J. Stöckmann, ibid. 68, 2867 �1992�.

6�a� S. Sridhar, Phys. Rev. Lett. 67, 785 �1991�; �b� S. Sridhar, D. O.
Hogenboom, and B. A. Willemsen, J. Stat. Phys. 68, 239 �1992�; �c� S.
Sridhar and E. J. Heller, Phys. Rev. A 46, R1728 �1992�.

7H.-D. Gräf, H. L. Harney, H. Lengeler, C. H. Lewenkopf, C. Ranga-
charyulu, A. Richter, P. Schardt, and H. A. Weidenmüller, Phys. Rev. Lett.
69, 1296 �1992�.

8C. M. Marcus, A. J. Rimberg, R. M. Westerwelt, P. F. Hopkins, and A.
Gossard, Phys. Rev. B 48, 2460 �1992�; F. Simmel, D. Abusch-Magder,
D. A. Wharam, M. A. Kastner, and J. P. Kotthaus, ibid. 59, R10441
�1999�.

9N. Friedman, A. Kaplan, D. Carasso, and N. Davidson, Phys. Rev. Lett.
86, 1518 �2001�.

10�a� K. K. Huang, Y. F. Chen, H. C. Lai, and Y. P. Lan, Phys. Rev. Lett. 89,
224102 �2002�; �b� T. Harayama, P. Davis, and K. S. Ikeda, ibid. 90,
063901 �2003�.

11�a� R. Blümel, I. H. Davidson, W. P. Reinhardt, H. Lin, and M. Sharnoff,
Phys. Rev. A 45, 2641 �1992�; �b� P. A. Chinnery and V. F. Humphrey,
Phys. Rev. E 53, 272 �1996�.

12C. Ellegaard, T. Guhr, K. Lindemann, H. Q. Lorensen, J. Nygård, and M.
Oxborrow, Phys. Rev. Lett. 77, 4981 �1996�.

13E. J. Heller, M. F. Crommie, C. P. Lutz, and D. M. Eigler, Nature 369, 464
�1994�.

14J. B. Keller, SIAM Rev. 27, 485 �1985�.

FIG. 18. �Color� Eigenstates of the cardioid billiard: Upper panels: Even
modes at k2=10.2323 �left� and 14.4218 �right�. Lower panels: Odd modes
at k2=98.8076 �left� and 200.7974 �right�.

FIG. 19. �Color� Standing-wave patterns in “irrational” �to computer preci-
sion� triangular billiard: “superscars” �Ref. 35� or scarred by “classical
ghosts” �Ref. 34�. The eigenmode order is, left to right, top to bottom, n
=185, 228, 253, 278, 333, 362, 810, and 998.

023116-9 Quantum chaotic billiards Chaos 17, 023116 �2007�



15P. ŠSeba, Phys. Rev. Lett. 64, 1855 �1990�.
16R. J. Riddel, J. Comput. Phys. 31, 21 �1979�.
17D. L. Kaufman, I. Kosztin, and K. Schulten, Am. J. Phys. 67, 133 �1999�.
18J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. �Wiley,

New York, 2002�.
19B. Dietz, A. Heine, V. Heuveline, and A. Richter, Phys. Rev. E 71,

026703 �2005�.
20V. Heuveline, J. Comput. Phys. 184, 321 �2003�.
21P.-O. Persson, “Mesh generation for implicit geometries,” Ph.D. thesis,

MIT �2005�. Codes currently available from www-math.mit.edu/~persson/
mesh/

22C. Dembowski, H.-D. Gräf, A. Heine, R. Hofferbert, H. Rehfeld, and A.
Richter, Phys. Rev. Lett. 84, 867 �2000�.

23�a� C. Dembowski, H.-D. Gräf, A. Heine, H. Rehfeld, A. Richter, and C.
Schmit, Phys. Rev. E 62, R4516 �2000�; �b� C. Dembowski, B. Dietz,
H.-D. Gräf, A. Heine, F. Leyvraz, M. Miski-Oglu, A. Richter, and T. H.
Seligman, Phys. Rev. Lett. 90, 014102 �2003�.

24H. Alt, H.-D. Gräf, H. L. Harney, R. Hofferbert, H. Lengeler, A. Richter,
P. Schardt, and H. A. Weidenmüller, Phys. Rev. Lett. 74, 62 �1995�.

25F. Leyvraz, C. Schmit, and T. H. Seligman, J. Phys. A 29, L575 �1996�.
26A. Richter �private communication�.
27D. Rolles, M. Braune, S. Cvejanovic, O. Gessner, R. Hentges, S. Korica,

B. Langer, T. Lischke, G. Prümper, A. Reinköster, J. Viefhaus, B. Zim-
mermann, V. McKoy, and U. Becker, Nature 437, 711 �2005�.

28L. A. Bunimovich, Chaos 11, 802 �2001�.
29A. H. Barnett and T. Betcke, preprint arXiv:nlin.CD/0611059 �2006�.
30A. Bäcker, Lect. Notes Phys. 618, 91 �2003�.
31P. J. Richens and M. V. Berry, Physica D 2, 495 �1981�.
32E. Gutkin, J. Stat. Phys. 83, 7 �1996�.
33G. Casati and T. Prosen, Phys. Rev. Lett. 83, 4729 �1999�.
34P. Bellomo and T. Uzer, Phys. Rev. A 51, 1669 �1995�.
35E. Bogomolny and C. Schmit, Phys. Rev. Lett. 92, 244102 �2004�.
36F. M. de Aguiar and D. D. de Menezes �unpublished�.
37M. Brodsky, N. B. Zhitenev, R. C. Ashoori, L. N. Pfeiffer, and K. W.

West, Phys. Rev. Lett. 85, 2356 �2000�.
38G. Veble, T. Prosen, and M. Robnik, preprint arXiv:nlin.CD/0612011

�2006�.

023116-10 de Menezes, Jar e Silva, and de Aguiar Chaos 17, 023116 �2007�


