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Energy spectrum and quantum Hall effect in twisted bilayer graphene
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We investigate the electronic structure and the quantum Hall effect in twisted bilayer graphenes with various
rotation angles in the presence of magnetic field. Using a low-energy approximation, which incorporates the
rigorous interlayer interaction, we computed the energy spectrum and the quantized Hall conductivity in a
wide range of magnetic field from the semiclassical regime to the fractal spectrum regime. In weak magnetic
fields, the low-energy conduction band is quantized into electronlike and holelike Landau levels at energies
below and above the van Hove singularity, respectively, and the Hall conductivity sharply drops from positive
to negative when the Fermi energy goes through the transition point. In increasing magnetic field, the spectrum
gradually evolves into a fractal band structure called Hofstadter’s butterfly, where the Hall conductivity exhibits a
nonmonotonic behavior as a function of Fermi energy. The typical electron density and magnetic field amplitude
characterizing the spectrum monotonically decrease as the rotation angle is reduced, indicating that the rich
electronic structure may be observed in a moderate condition.
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I. INTRODUCTION

The electronic structure of bilayer graphene is highly
sensitive to the stacking geometry between the two layers.
The interlayer interaction in bilayer graphene with regular
AB stacking1–3 modifies the linear dispersion of monolayer
graphene into the quadratic dispersion, where an electron
behaves as a massive particle.4 On the other hand, the recent
epitaxial growth technique5,6 realized twisted bilayer graphene
(TBG) in which two layers are stacked with a random
rotation angle.6–8 The unit-cell area of TBG can be more
than 1000 times as large as that of monolayer graphene,
due to slightly misoriented lattice vectors of two layers.
Such an atomic configuration was observed as Moiré pattern
in the scanning tunneling microscopy.9–13 TBG was also
fabricated in different methods such as folding of mechanically
exfoliated graphenes,14 segregation of graphene on Ni film,9

and unzipping of carbon nanotube.15

The electronic structure of TBG shows a linear band
dispersion near Dirac points7,16–19 rather than the massive
dispersion of AB-stacked bilayer, suggesting relatively weak
interlayer interaction. In strong magnetic fields, however, it
is predicted that the spectrum exhibits a fractal structure
called Hofstadter’s butterfly, in which a series of energy gaps
appear in a self-similar fashion.20,21 The fractal band structure
generally occurs in a periodic system when the magnetic flux
per a unit cell is comparable to h/e, and this condition is
realized in TBG in a reasonable magnetic field range owing to
the large unit cell. The fractal band structure and the quantum
Hall effect were theoretically studied for TBG in the strong
magnetic field regime using a continuous interlayer coupling
model.21 Experimentally, the energy spectrum of the twisted
graphene stacks in magnetic field was probed in the transport
measurement22,23 and the magneto-optical absorption,24 while
the fractal band structure has not yet been observed.

In this paper, we investigate the electronic spectrum and
the quantum Hall effect in TBG with various rotation angles
and magnetic fields. We calculate the spectrum by including
a limited number of bases which are significant in the low-
energy spectrum, while rigorously taking account of transfer

integrals between lattice points on the different layers. Using
this method, we describe the spectral evolution in a wide range
of magnetic field, from the semiclassical Landau levels in the
weak-field regime to the fractal band structure in the strong-
field regime.

In weak magnetic fields, we find that the low-energy
conduction band is quantized into electronlike and holelike
Landau levels at energies below and above the van Hove
singularity, respectively, in accordance with the topological
change of the Fermi surface from electron type to hole type at
the band saddle point. As a consequence, the quantized Hall
conductivity abruptly jumps from positive to negative when the
Fermi energy goes through the transition point. In increasing
magnetic field, the electron and hole Landau levels begin to
be mixed and gradually evolve into the fractal band structure.
We calculate the quantized Hall conductivity for each single
gap, and demonstrate that it changes nonmonotonically as a
function of Fermi energy and magnetic field.25,26

II. THEORETICAL METHODS

A. Atomic structure

TBG is characterized by the relative rotation angle θ and the
relative translation vector between two graphene layers. When
the lattice structures of the two layers are commensurate, we
can define the primitive lattice vectors L1 and L2 as the least
common multiples of the unit vectors on the two layers. L1 is
written by integers m,n,m′,n′ as27

L1 = ma(1)
1 + na(1)

2 = m′a(2)
1 + n′a(2)

2 , (1)

where a(l)
1 and a(l)

2 are the lattice vectors of the layer l = 1,2
defined in Fig. 1(a). L2 is obtained by rotating L1 by 60◦. By
appropriate choice of lattice vectors a(l)

i , the indices (m′,n′)
can be made equal to (n,m), and thus TBG is specified by a
single pair of integers (m,n). The rotation angle θ is related to
(m,n) by

cos θ = 1

2

m2 + n2 + 4mn

m2 + n2 + mn
, (2)
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(a) 

(b) 

FIG. 1. (Color online) (a) Atomic structure of TBG with rotation
angle θ = 21.8◦. Dashed (red) and solid (green) lines represent the
lattices of layers 1 and 2, respectively. (b) Brillouin zone of TBG with
θ = 21.8◦. Dashed (red) and solid (green) large hexagons correspond
to the first Brillouin zone of layers 1 and 2, respectively, and thick
small hexagon to the reduced Brillouin zone of TBG. Open and filled
circles are two inequivalent valleys K and K ′ of TBG.

and the lattice constant L = |L1| = |L2| by

L = a
√

m2 + n2 + mn = |m − n|
2 sin(θ/2)

a, (3)

where a = |a1| = |a2| ≈ 0.246 nm is the lattice constant of
monolayer graphene. The area of TBG unit cell is given by
S = |L1 × L2| = (

√
3/2)L2.

Figure 1(a) shows the atomic structure of TBG with
(m,n) = (1,2) and θ = 21.8◦. Throughout the paper, we set
the coordinates (x,y) on the graphene plane so that the y axis
is parallel to L2, and z to the direction perpendicular to the
plane. We ignore the relative translation between two layers,
which makes a minor difference in the electronic structure
when the unit cell is large enough.

Figure 1(b) shows the extended Brillouin zone of TBG with
θ = 21.8◦. The two large hexagons represent the first Brillouin
zones of layers 1 and 2, respectively. K (l) and K ′(l) denote the
two inequivalent corners of layer l, which are Dirac points in
the single-layer band structure. The four Dirac points of K (1),
K ′(1), K (2), and K ′(2) are folded back to two Dirac points, K

and K ′, in the reduced Brillouin zone.28

Figure 2 shows the atomic structures of four different TBGs
to be considered in following sections. They are specified
by (m,n) = (3,4),(8,9),(12,13), and (22,23), and the rotation
angles θ = 9.43◦, 3.89◦, 2.65◦, and 1.47◦, respectively. As the
angle θ decreases, the size of the unit cell enlarges and the
Moiré pattern becomes evident.

B. Tight-binding model

In a tight-binding model in terms of pz atomic orbitals, the
Hamiltonian of TBG at zero magnetic field is written as

HB=0
TBG = −

∑
〈i,j〉

t(Ri ,Rj )|�i〉〈�j | + H.c., (4)

where Ri and |�i〉 represent the lattice point and the atomic
state at site i, respectively, and t(Ri ,Rj ) is the transfer integral

FIG. 2. (Color online) Atomic structure of TBG with rotation angles of (a) 9.43◦, (b) 3.89◦, (c) 2.65◦, and (d) 1.47◦. Dashed (red) and solid
(green) lines represent lattices of layers 1 and 2, respectively. (m,n) is the index characterizing the primitive lattice vector of TBG, and L is the
length of the lattice vector.
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FIG. 3. (Color online) Band structure of TBG with rotation angles (a) 9.43◦, (b) 3.89◦, (c) 2.65◦, (d) 1.47◦, and that of (e) monolayer graphene.
Dashed (red) slopes around the K point indicate the monolayer’s band dispersion. Note that the scale of wave number (horizontal axis) reduces
as the the rotation angle decreases. Dirac point energy is set to zero. (f) Contour plot of the two lowest conduction bands of TBG with θ = 3.89◦.
(g) Corresponding plot for the conduction band of monolayer graphene.

between the sites i and j . We adopt an approximation29–32

−t(Ri ,Rj ) = Vppπ

[
1 −

(
d · ez

d

)2
]

+ Vppσ

(
d · ez

d

)2

,

Vppπ = V 0
ppπ exp

(
−d − a0

δ

)
, (5)

Vppσ = V 0
ppσ exp

(
−d − d0

δ

)
,

where d = Ri − Rj , and ez is the unit vector parallel to the z

axis. V 0
ppπ is the transfer integral between the nearest-neighbor

atoms of monolayer graphene which are located at distance
a0 = a/

√
3 ≈ 0.142 nm, and V 0

ppσ is the interlayer transfer
integral between vertically located atoms at the interlayer
distance d0 ≈ 0.335 nm. Here, we take V 0

ppπ ≈ −2.7 eV,
V 0

ppσ ≈ 0.48 eV, to fit the low-energy dispersion of bulk
graphite. δ is the decay length of the transfer integral, and is
chosen as 0.184a so that the next-nearest intralayer coupling
becomes 0.1V 0

ppπ .30,32 The transfer integral for d > 4a0 is
exponentially small and can be safely neglected. The band
velocity of the Dirac cone in monolayer graphene is given by

v ≈
√

3

2

V 0
ppπ

h̄
. (6)

We plot the energy bands of four TBGs with the different
rotation angles in Figs. 3(a)–3(d). Dashed (red) lines near the
K point indicate the band dispersion of monolayer graphene, of
which the entire structure is shown in Fig. 3(e). The low-energy
spectrum can be understood by folding monolayer’s Dirac
cone into the reduced Brillouin zone, and thus the structures
are similar among different rotation angles except for the
scale. The lowest band is characterized by a linear dispersion
analogous to monolayer’s band,7,16–19 the van Hove singularity
at the M point,10,19,33,34 and a holelike pocket at the � point.
In accordance with the band-folding picture, the width of
the lowest band is roughly given by 4πh̄v/(3L), which is
the graphene’s band gradient times the distance between
K and �. In small rotation angles less than 5◦, however, the
width becomes significantly smaller than this estimate because
the level repulsion from the upper bands becomes comparable
to the bandwidth itself. As a result, the velocity of the Dirac
cone gradually reduces from the monolayer’s v. In the smallest
rotation angle θ = 1.47◦, in particular, the lowest energy band
is highly distorted, and nearly flat dispersion appears near zero
energy.32,35

The lowest band of TBG is composed of a pair of nearly
degenerate branches. Figure 3(f) shows the contour plots of the
two lowest conduction bands in θ = 3.89◦. Those two bands,
indicated by solid and broken curves, are mirror symmetric to
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each other with respect to the lines of K − �, K ′ − �, and
K − K ′, reflecting the C2 symmetry in the real-space lattice
structure. Each of the two bands has a similar landscape to that
of monolayer graphene, which is shown in Fig. 3(g), where the
linear dispersion, the saddle point, and the hole pocket appear
near K(K ′), M , and �, respectively.

C. Electronic structures in magnetic fields

We consider TBG in a uniform magnetic field B =
(0,0,B) perpendicular to the layer. For simplicity, we neglect
spin Zeeman splitting throughout the paper. The system is
characterized by the number of magnetic flux per a unit
cell, � = BS, measured in units of the flux quantum �0 =
h/e. In the magnetic field, the Hamiltonian is no longer
translationally symmetric because of the spatial dependence
of the vector potential. When �/�0 is a rational number p/q

(p and q are co-prime integers), however, we can introduce a
magnetic unit cell with lattice vectors L̃1 = qL1 and L̃2 = L2,
and construct the eigenstates so as to satisfy the magnetic
Bloch condition.36,37 By choosing the vector potential as
A = (0,Bx,0) and taking the y axis parallel to L2, the magnetic
Bloch condition for TBG is written as

�k(r + L̃1) = eik·L̃1e−i(e/h̄)(A−B×r)·L̃1�k(r),
(7)

�k(r + L̃2) = eik·L̃2�k(r),

where k is the Bloch wave number defined in the magnetic
Brillouin zone spanned by reciprocal vectors of L̃1 and L̃2.
Since the magnetic unit cell is q times as large as the unit cell
in the absence of magnetic field, the magnetic Brillouin zone is
q-fold of the original, and each energy band at zero magnetic
field splits into q subbands.20

The tight-binding Hamiltonian under a magnetic field is
obtained by adding a phase factor to the transfer integral in
Eq. (4). This is written as

HTBG = −
∑
〈i,j〉

t(Ri ,Rj )eiφij |�i〉〈�j | + H.c.,

(8)

φij = − e

h̄

∫ Ri

Rj

A(r) · dr.

It is, however, not practical to calculate the energy spectrum of
TBG by diagonalizing this Hamiltonian since the number of
atoms in a magnetic unit cell is huge in feasible magnetic fields.
Instead, we construct the basis from the effective-mass wave
functions for Landau levels of monolayer graphene, which
approximate the eigenstates in the absence of the interlayer
coupling. We then truncate the bases far from the Dirac point,
and compose the Hamiltonian matrix by writing HTBG in terms
of the reduced basis.

In monolayer graphene under magnetic field, the eigen-
states are labeled by (v,n,ky) with the valley index v = K,K ′,
the Landau level index n = 0,±1, . . ., and the wave vector ky

along the y direction.38–42 The eigenenergy depends only on n

as

εn = h̄ωB sgn(n)
√

|n|, (9)

with h̄ωB =
√

2h̄v2eB. The effective wave functions are
written as39,40

FKnky
(r) = Cn√

L
eikyy

⎛
⎜⎜⎝

sgn(n)(−i)φ|n|−1,ky
(x)

φ|n|,ky
(x)

0
0

⎞
⎟⎟⎠ ,

(10)

FK ′nky
(r) = Cn√

L
eikyy

⎛
⎜⎜⎝

0
0

φ|n|,ky
(x)

sgn(n)(−i)φ|n|−1,ky
(x)

⎞
⎟⎟⎠ .

Here, F = (FK
A ,FK

B ,FK ′
A ,FK ′

B ) is a four-component vector
representing the envelope function of each site and val-
ley. We defined φn,k(x) = (2nn!

√
πlB)−1/2 e−z2/2Hn(z), with

z = (x + kl2
B)/lB and Hn being the Hermite polynomial,

lB = √
h̄/(eB), and

Cn =
{

1 (n = 0),

1/
√

2 (n �= 0),
(11)

sgn(n) =
{

0 (n = 0),

n/|n| (n �= 0).

The tight-binding wave function � on the layer l can be
expressed in terms of the envelope function F as42

�A(RA) = eiK(l)·RAFK
A (RA) + eiη(l)

eiK′(l)·RAFK ′
A (RA),

(12)
�B(RB) = −ωeiη(l)

eiK(l)·RB FK
B (RB) + eiK′(l)·RB FK ′

B (RB),

where η(l) is the angle of a(l)
1 to the x axis. We define �

(l)
vnky

as
the tight-binding wave function on the layer l generated from
Fvnky

.
We then combine the bases of different ky so as to satisfy

the magnetic Bloch condition, Eq. (7). We define

�
(l)
vnkm =

∞∑
j=−∞

αj exp

[
iπpq

j (j + 1)

2

]
�

(l)

vnk
(m)
y

,

α = exp

[
i
(
k − K(l)

v

) ·
(

L̃1 − q

2
L̃2

)]
, (13)

k(m)
y = ky − (

K(l)
v

)
y
− 2π

Ly

(pj + m),

where k is the Bloch wave number defined in the magnetic Bril-
louin zone, m = 0,1, . . . ,p − 1, and K(l)

v represent K(l),K′(l)
for v = K,K ′, respectively. It is straightforward to show that
this satisfies the condition of Eq. (7).

An eigenstate of TBG is written as a linear combination of
single-layer eigenstates �

(l)
vnkm belonging to the same k. We

only include single-layer bases within −Emax < εn < Emax to
discard the bases which do not much affect the low-energy
spectrum. The eigenenergies are obtained by diagonalizing
the Hamiltonian matrix within the reduced bases

Hk[(l,v,n,m),(l′,v′,n′,m′)] ≡ 〈
�

(l)
vnkm|HTBG

∣∣�(l′)
v′n′km′

〉
(14)

for each k in the magnetic Brillouin zone. The cutoff energy
should be sufficiently larger than the interlayer-coupling
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FIG. 4. (Color online) Energy spectrum and quantum Hall effect in TBG in magnetic field with rotation angles of 9.43◦ (above) and 3.89◦

(below). In each row, the left and middle panels display the energy spectrum and the quantized Hall conductivity as functions of magnetic field
strength, respectively, and the right panel shows the band structure in the absence of magnetic field. Dashed (red) slopes around the K point
indicate the dispersion of monolayer graphene. In (b) and (e), the quantized values of Hall conductivity inside energy gaps are indicated by
numbers as well as colors filling the gaps. The Hall conductivity of the gray area can not be determined by the present calculation.

energy, which is of the order of V 0
ppσ at most, and tends

to decrease in small twisting angles. Here, we take Emax =
1.5 eV for θ = 9.43◦ and 3.89◦, and 1.0 eV for 2.65◦ and 1.47◦.
To avoid undesired effects caused by a discrete change in the
number of bases in varying magnetic field, we adopt a soft
cutoff which gradually reduces the matrix elements associated
to the single-layer bases beyond ±Emax.

We calculate the matrix elements [Eq. (14)] between
different layers by evaluating the transfer integral for each
pair of carbon atoms up to the cutoff distance d = 4a0. The
matrix elements within the same layer can be replaced with a
diagonal matrix composed of the effective-mass eigenenergies

in monolayer graphene,

Hk[(l,v,n,m),(l,v′,n′,m′)] = εn δv,v′δn,n′δm,m′ . (15)

This treatment is valid in low energies as long as the magnetic
field is not too strong, or lB � a.

When the Fermi energy εF is inside a band gap of
the spectrum, the Hall conductivity σxy is evaluated by the
formula43,44

σxy = −e

(
∂nF

∂B

)
εF

, (16)

where nF is the electron density per unit area below the gap.
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III. RESULTS AND DISCUSSION

We show the energy spectrum (left) and quantized Hall
conductivity (middle) against the magnetic field amplitude for
θ = 9.43◦, 3.89◦ in Fig. 4, and for 2.65◦, 1.47◦ in Fig. 5. In
the rightmost panel, we show the zero-field band structure in
the same energy range. The energy spectrum of θ = 9.43◦
[Fig. 4(a)] is almost equivalent to the monolayer’s Landau
level, suggesting that two layers are nearly decoupled in
this energy region. The sequence of the Hall conductivity,
4,12,20, . . . in units of −e2/h,23,45,46 is exactly twice as large
as the that of the monolayer.1,2,40,41 Each Landau level is
eightfold degenerate due to the number of layers as well as
the spin and valley degeneracies.

In contrast, the energy spectrum of θ = 3.89◦ [Figs. 4(d)
and 4(e)] exhibits a complicated structure, which is clearly
distinguished from monolayer graphene. In weak magnetic

fields of �/�0 < 0.1, the low-energy spectrum below 0.2 eV
shows monolayerlike Landau levels and Hall conductivity of
4,12,20, . . . . In the higher-energy region above 0.2 eV, on
the other hand, we observe holelike Landau levels moving
downward in energy, and the negative Hall conductivity of
0,−4,−8,−12, . . . . When the electron density increases from
the charge neutrality point, the Hall conductivity rises in a
sequence of 4,12,20, . . . with a step of 8, then abruptly drops
to a negative extremum, and increases with a step of 4 all the
way to zero.

Those spectral features in weak magnetic field perfectly
coincide with the zero-field band structure in Fig. 4(f). The
electronlike Landau levels are regarded as the quantized orbits
accommodated in electron pockets at K and K ′ points, while
the holelike Landau levels are those in a hole pocket at �

point. The transition from electronlike levels to holelike levels
corresponds to topological change of the Fermi surface at

FIG. 5. (Color online) Plots similar to Fig. 4 for TBG with rotation angles of 2.65◦ (above) and 1.47◦ (below).
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the saddle point (M point), which is responsible for the van
Hove singularity at 0.2 eV. The step of the Hall conductivity
reflects the number of electron and hole pockets in the
first Brillouin zone, i.e., the degeneracy of an electronlike
level is twice as large as that of a holelike level, because
there are inequivalent K and K ′ points, whereas there is
only one � point. Note that the pair of nearly degenerate
lowest conduction bands [Fig. 3(f)] gives the identical Landau
level energies and contributes to the degeneracy of two in
addition to the spin degeneracy. Except for this doubling,
the low-energy Landau level spectrum and the quantized
Hall conductivity of TBG are quite analogous to those
of whole π band in monolayer graphene,47 as expected
from the similarity of the band structure at zero magnetic
field.

The electronlike and holelike Landau levels are alterna-
tively explained by a nearly free electron model, without
mentioning the rigorous zero-field band structure. In Fig. 6, we
illustrate semiclassical electron trajectories at several different
Fermi energies for a “free” TBG with interlayer coupling
neglected. In the limit of a small Fermi energy [Fig. 6(a)],
electrons move along closed orbits around K and K ′, and
those motions are quantized into monolayerlike Landau levels.
Since each of the K and K ′ points include two original K

points from top and bottom monolayers, the Hall conductivity
yields 4,12,20, . . ., i.e., double of monolayer’s sequence. For
large Fermi energies, the electron orbits around the K , and
K ′ valleys cross each other as shown in Fig. 6(c). A finite
interlayer coupling interchanges the orbits at each crossing
point, and generates a single holelike trajectory moving around
the � point in the opposite direction. The corresponding
holelike Landau levels are fourfold degenerate due to spin
and the Fermi circle doubling, and thus the Hall conductivity
takes 0,−4,−8,−12, . . . . The middle panel [Fig. 6(b)] is
for the intermediate energy region between two regimes.
There, the different semiclassical orbits are strongly mixed
by the magnetic breakdown due to a small k-space separation,
resulting in broadening of Landau levels near the van Hove
singularity in Fig. 4(d).

The electron density to fill the lowest conduction band is
given by

n0 = 2gs

S
, (17)

where gs is the spin degeneracy and 2 is the band doubling.
n0 characterizes the order of the electron density required to

(a) (b) (c) 

FIG. 6. (Color online) Fermi circle and electron trajectories of
TBG in a nearly free electron picture, for three different Fermi
energies (a) in the vicinity of Dirac points, (b) near van Hove
singularity at the saddle point, and (c) holelike band at the � point.

reach the van Hove singularity and the holelike Landau levels.
We have n0 = 3.5,1.6, and 0.5 in units of 1013 cm−2 for θ =
3.89◦, 2.65◦, and 1.47◦, respectively. In monolayer graphene,
the electron density to access the holelike levels is of the order
of 1015 cm−2.

The semiclassical picture breaks down when the magnetic
field is so strong that

lB � L (18)

because then the uncertainty in electron momentum (∼2π/lB )
becomes comparable or larger than the size of the Brillouin
zone (∼2π/L), and a semiclassical cyclotron orbit is not well
defined anymore. Then, the energy spectrum, including even
n = 0 Landau level, exhibits a fractal band structure.20,21 The
magnetic field strength needed to observe a fractal structure
becomes more feasible in smaller rotation angles due to
larger unit-cell size L. The condition lB � L is equivalent
to �/�0 �

√
3/(4π ) ≈ 0.14, which amounts to B � 50, 23,

and 7.2 T for θ = 3.89◦, 2.65◦, and 1.47◦, respectively. In
Fig. 4, we actually observe that the electron and hole Landau
levels gradually evolve into the fractal structure as the magnetic
field exceeds the critical value. The Hall conductivity in the
fractal regime behaves nonmonotonically as a function of
Fermi energy.25,26

The energy spectrum of θ = 3.89◦ and that of θ = 2.65◦
(Fig. 5) exhibit similar structures except for the energy scale,
as expected from the resemblance between the band structures
argued in the previous section. In the case of θ = 1.47◦,
the spectrum is strongly compressed in the vicinity of Dirac
points, in accordance with the bandwidth reduction in small
rotation angles. Although the band structure near Dirac points
is almost flat, the � point still has a finite band velocity which
is about 0.6v. As a consequence, the energy gaps between the
holelike Landau levels are much wider than those between the
electronlike levels.

While we have considered some specific commensurate
angles, a similar fractal energy spectrum should appear in any
small angles including incommensurate ones, as long as the
lattice structure exhibits a long-period Moiré pattern. As a
natural extension of the previous argument, the condition for
the fractal spectrum in general angles is expected to be

lB � LM (19)

instead of Eq. (18), where LM is the period of the Moiré pattern
given by28,48

LM = a

2 sin(θ/2)
. (20)

Note that LM is a continuous function of θ , while the
rigorous unit-cell size L discontinuously changes depending
on the commensurability of lattice periods and diverges
in incommensurate angles. LM coincides with L only in
commensurate angles with |m − n| = 1, which are the cases
considered in this paper. The condition of Eq. (19) is rewritten
as

B � 4h̄

ea2
sin2 θ

2
≈ 3.3 (T) × [θ (degree)]2, (21)

which quantifies the magnetic field required for the fractal
spectrum as a function of the rotation angle.
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IV. CONCLUSION

We investigated the electronic structure and the quantum
Hall effect in TBG with various rotation angles in the presence
of magnetic field. We calculated the energy spectrum and
quantized Hall conductivity in a wide magnetic field range,
and described the evolution from the semiclassical Landau
levels to the fractal band structure. In weak magnetic field,
the low-energy conduction band is quantized into electronlike
and holelike Landau levels in accordance with the structure
of the folded energy band. In increasing magnetic field,
those semiclassical levels gradually evolve into Hofstadter’s
butterfly, where the Hall conductivity exhibits a nonmono-
tonic behavior as a function of Fermi energy. The typical
electron density and magnetic field amplitude characterizing
the spectrum monotonically decrease as the rotation angle is
reduced, indicating that the rich electronic properties may be

observed in a moderate condition for TBG with small angle less
than 5◦.
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