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Theory of nonlinear Landau-Zener tunneling
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We present a comprehensive analysis of the nonlinear Landau-Zener tunneling. We find characteristic scal-
ing or power laws for the critical behavior that occurs as the nonlinear parameter equals to the gap of avoided
crossing energy levels. For the nonlinear parameter larger than the energy gap, a closed-form solution is
derived for the nonlinear tunneling probability, which is shown to be a good approximation to the exact
solution for a wide range of the parameters. Finally, we discuss the experimental realization of the nonlinear
model and possible observation of the scaling or power laws using a Bose-Einstein condensate in an acceler-
ating optical lattice.
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[. INTRODUCTION ear Landau-Zener tunneling. For the behavior near the criti-
cal pointC=V, we find that the adiabatic tunneling probabil-

It is common in the study of quantum systems to consideity between the two energy levels rises as a 3/2 power law of
only a finite number of energy levels that are stronglythe functionC/V—1. Below the critical point, the tunneling
coupled. The special case of two coupled levels is of enorprobability as a function of sweeping rates follows an
mous practical interest, and a vast amount of literature hasxponential law as in the linear case but with the exponent
been devoted to the dynamical properties of the two-leveimodified due to the nonlinearity. The explicit expression of
systems[1]. One of the interesting phenomena is thethe modification factor is obtained analytically, and it is
Landau-Zener tunneling between energy levels. As a basiound to decrease monotonously with the nonlinear param-
physical proces§2], it has found wide applications in vari- eter and tends to zero at the critical point, indicating the
ous systems, such as current driven Josephson jun¢Bpns breakdown of the exponential law. Indeed, our analysis
atoms in accelerating optical lattice$], and field-driven su- shows that the exponential law breaks down at the critical
perlattices5]. point and turns into a 3/4 power law. Beyond the critical

A nonlinear two-level system, where the level energiesregime, i.e.,.C>V, we employ the stationary phase method
depend on the occupation of the levels, may arise in a meam@nd obtain a closed-form solution of the nonlinear tunneling
field treatment of a many-body system where the particleprobability. This solution is compared with the numerical
predominantly occupy two energy levels. For example, suclsolution by integrating the Schidinger equation; they ex-

a model arises in the study of the motion of a small polarorhibit a good agreement for a wide range of parameters. At the
[6], a Bose-Einstein condensate in a double-well potentiaénd, we discuss the possible experimental observation of our
[7-9] or in an optical latticd 10,11], or for a small capaci- results with Bose-Einstein condensatB&Cs in accelerat-
tance Joseph junction where the charging energy may biag optical lattices.

important. In contrast to the linear case, the dynamical prop- Our paper is organized as follows. In Sec. Il we introduce
erty of a nonlinear two-level model is far from being fully the nonlinear two-level model and its equivalent classical
understood, and many novel features have been revealed r@sephson Hamiltonian. We discuss the connection between
cently[12,13, including the discovery of a nonzero Landau- the two representations in the context of breakdown of adia-
Zener tunneling probability even in the adiabatic limit whenbatic tunneling. In Sec. Ill, we investigate the tunneling dy-
the nonlinear paramet& exceeds a critical value. namics of the nonlinear Landau-Zener model near the critical

In this paper, we present an analytic study on the nonlinfegime and reveal the scaling or power laws that characterize
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the critical behavior. In Sec. IV, we show the exponential law 0.8 ——7——1——7— — T T T T
of tunneling probability is modified by the nonlinearity in the
subcritical regime. In Sec. V, we discuss the tunneling dy- [ (@) c/v=05 T (0 civ=2
namics in the regime beyond the critical point and derive the 0.6 [ -+ =
nonlinear tunneling probability using the stationary phase ap-

proximation. In Sec. VI, we discuss how our findings may be

observed experimentally. 0.4

II. NONLINEAR LANDAU-ZENER MODEL

0.2
Our model consists of two levels as in the standard

Landau-Zener model but with an additional energy differ-
ence depending on the population in the levels. It is de-wqq L
scribed by the following Hamiltoniafl2]:

RICHTIERNINE = 0.2
] >+ 5 (bl=[al?) 5 -
7 5 S bla |
2 2 2 -0.4
(1)
wherea and b are the probability amplitudes. The Hamil- -0.6

tonian is characterized by three parameters: the couping
between the two levels, the level bigs and the nonlinear
parametelC describing the level energy dependence on the -o.8

populations. The amplitudessandb satisfy the Schidinger 05 00 05 05 00 05
equation, Y
FIG. 1. Adiabatic energy levelssolid lineg for two typical
.dfa a nonlinear cases(a) C=0.1, V=0.2; (b) C=0.4, V=0.2. The
la(b :H(Y)(b)’ 2) dashed lines are for the linear casé=0). The corresponding

eigenstates are the fixed poir®s (i=1, .. .,4) of theH, system
which conserves the total probabilitg|?+|b|? that is set to  (4) as shown inb): OXT—P;, MXW—P,, WT—P3. Only P,
be 1. is an unstable saddle point, others are stable elliptic points.

We want to examine the nonlinear Landau-Zener tunnel- ) ) o _
ing, i.e., how the system evolves when the level bjas @an equivalent classical Hamiltonian, where the nonzero adia-
Changes with time ag= at. We call« Sweeping rate. In this batic tunneling probablllty is viewed as the result of collision
section, we focus on the adiabatic limit, that is, the sweeping€tween fixed points.

rate o tends to zero. With a=|ale'’a andb=|b|e'’, we introduce the popula-
As in the linear model, it is useful to find the adiabatic tion differences=|b|?—|a|* and the relative phase=6,
levels e(y) by diagonalizing the Hamiltoniar(1). It is  — 6a- In terms ofsand 6, the nonlinear two-level system is

readily found that there are two eigenvalues wi@mV/  cast into a classical Hamiltonian syst¢8)13],
while there can be four eigenvalues whéir-V, as demon-
strated in Fig. 1. AC/V=2 [Fig. 1(b)], as the result of four
eigenvalues, a loop appears at the tip of the lower level in the
regime — y.< y<vy,, where

C
H(s,6,v)= Esz+ ys—V+/1—s%cosé, (4

o3 <o/ 3 which has the form of a Josephson Hamiltonian. The fixed
Ye=(CTP= V™2 (3)  points of the classical Hamiltonian correspond to the eigen-

] ] states of the nonlinear two-level system, and are given by the
The corresponding eigenstates are not orthogonal to eagb|iowing equations:

other for finite v, but become so in the limits of— * o,

wheree— *|y|/2. For instance, at the lower level, we have Vs
(a,b)—(1,0) aty——c and @,b)—(0,1) aty— +x. 0*=0m, y+Cs"+ —==cos6* =0. (5)
The direct consequence of the loop structure in Fig),1 Vl-s

as first discussed in Ref12], is that as a quantum state = The number of the fixed points depends on the nonlinear
moves along the lower lever to the singular pointhere is  parameterC. For weak nonlinearityC/V<1, there exist

no way to go further except to jump to the upper and loweronly two fixed points P, andP, in Fig. 2), corresponding to
levels. As a result, the nonlinear Landau-Zener tunneling ishe maximum and minimum of the classical Hamiltonian.
not zero even in the adiabatic limit— 0. The underlying They are elliptic points, each being surrounded by closed
mechanism of this interesting phenomenon is revealed witlfelliptic) orbits. The fixed points are located on the lines of
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v — STy —: - lll. CRITICAL BEHAVIOR NEAR  C=V

A. Adiabatic tunneling

For adiabatic change of the level bigsa closed orbit in
the classical dynamics remains closed and the action

0.5 | 1 § 49 5
W "2 §° ©
o) ov=05 720 T(d): cv=0.5 7=0.08 . . o ) ] ) )
1o RO 1. oo | stays invariant in time according to the classical adiabatic
’ theorem[14]. The change ofy is adiabatic as long as the

. T \ relative change ofy in a period of the orbit is small. The
[ ARG action equals the phase-space area enclosed by the closed
. orbit, and is therefore zero for a fixed point. Since the closed
orbits surrounding an elliptic fixed point all have finite peri-

— j )\ =" . odsT, they should evolve with the area of each fixed in time.
Yoy cv=05 =03 Hlyroncos 72 H  We thus expect an elliptic fixed point to remain as a fixed
W S R 1% point during the adiabatic change of the level bjag-or the
= \// | — | case ofC/V<1, the two fixed pointgboth elliptic) evolve
' \ /.// T adiabatically throughout the entire sweepingygfimplying

/ the absence of transition between the eigenstates in the adia-
batic limit. This is still true for the fixed poinP, in the case
C/V>1, meaning a state starting from the upper level will
remain in the upper level.

The adiabaticity is broken, however, whéh collides

with the hyperbolic fixed poinP5 to form a homoclinic orbit
0 where the period diverges. Nevertheless, the classical “par-
ticle” will remain on this orbit, because the orbit is sur-
. i i rounded from both outside and inside by closed orbits of
tonian systenH, at C/V=0.5 asy changes adiabatically. The ar- e nerinds, which form barriers to prevent the particle

rows indicate the shifting direction of the fixed poi asy g, aseaning. After this collision, the homoclinic orbit turns
increases. The closed curves are the periodic trajectories. In this

case, no collision between fixed points occurs, implying zero adia!mp an.ordmary closed orblt of finite period, and evolves

batic tunneling probability. a}d|abat|(;ally fory> vy, according _to the_ rule of constant ac-
tion, which is now nonzero. This orbit eventually evolves

6* == and 0, meaning that the two corresponding eigeninto a straight line of constarst

states of the two-level system have relative phaser.ofs With these observations, we can obtain the tunneling

the level bias changes frony=—« to +, P; moves probability in the adiabatic limit,

smoothly along the liné@* = = from the bottom ¢=—1) to

the top 6= +1), corresponding to the lower energy level in 1 1

Fig. 1(a); the other pointP, moves from the top to the bot- Pag=51(sc)= 71— fﬁ S(6,E.)dé, @

tom, corresponding to the upper level.

For stronger nonlinearitys/V>1, two more fixed points \yhere

appear in the window— y.<y<wvy.. As shown in Figs.

3(c)-3(e), bc_)th of _thg new fixed points lie on the ling* _ scz—\/l—(\/—/C)z’é ®)

=11, one being elliptic P,) and the other being hyperbolic

(P3) as a saddle point of the classical Hamiltonian. One ofand

the original fixed poinf,, still moves smoothly withy, cor-

responding to the upper adiabatic level in Figb)l The c

other P; moves smoothly up toy=1vy., where it collides EC:_S§+ YeSe—V 1_35_ 9

with P3, corresponding to the bran€hX T of the lower level 2

in Fig. 1(b). The new elliptic pointP,, created aty= — 7, o . . ] .

together withPs, moves up to the top, corresponding to the The above analysis is c0n5|stent with the no.nlllnear hysteresis

branchWXM of the lower level. The hyperbolic poirR;, ~ Pheénomenon presented in REE3], where a similar formula

moves down away from its partn@;, after creation and is for adiabatic tunneling probability was obtained.

annihilated with P, at y=1y., corresponding to the top .The gdlabatlc. t.unnelmlg probability can be evalua}ted ana-

branchWT of the lower level. The collision betwed®, and ~ Vtically in the critical region of6=C/V—1—-0. The singu-

P, leads to nonzero adiabatic tunneling from the lower level@" POint of the level bias is found to leading order as

to the upper level, which is determined by the eventual fate

of the fixed pointP;. ye=V(%68)%2 (10)

FIG. 2. Evolution of the phase-space motions of the Hamil-
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(a): civ=2 y=-5 "fb): c/v=2 y=-0.12 " The homoclinic orbit is confined near the critical point, with
. its top at

S=S.+ J64. (11

We expand the classical Hamiltonian to leading orders of
—s. and #—r, and find

o /2ycs Sc) 1\/270(3 o (12

From the area of this orbit the adiabatic tunneling probability
for this limiting case is found to be

r ! (a )ds—453’2 (13)
ad= 5 ™ 37

Clearly, bothl" .4 and its first-order derivative are continuous
at the critical point. However, its second-order derivative
turns to be discontinuous.

B. Nonadiabatic tunneling

In the linear caseC=0, there is an exact formula that
prescribes an exponential dependence of tunneling probabil-
ity on the sweeping ratg2],

wV?
F|Z=exp{ - 2(1) . (14

It is interesting to know how this exponential law is changed
due to the nonlinearity. We first focus on the near adiabatic
case(i.e., a#0 anda<1).

For this purpose, we need to investigate the evolution of
the fixed pointP; as well as the nearby periodic orbits by
I R ZNEE. YRU introducing the angle variable, the canonical conjugate of

_____ ,-"' (@P, A /-‘ :' ) \ the action variabld. As in the adiabatic case considered
S -10- - i R A ‘\-_u- N above, the transition probability is still given by the incre-
(g) c/v_ZY =012 "Th): c/v=2y=5 ) ment of the action, i.eI’=3Al. According to the standard
. : theory on the nonadiabatic correctipiv], we have

Al=fij(l ¢>)dy ; (15)

whereR(l, ¢) is the periodic function ofp with zero aver-
age, and related to the generating function of the canonical
transformation from variabless(#) to (I,¢). The concrete
form of the functionR is not important our following discus-
sions.

To evaluate the above integral, we need to exptess a
0 function of ¢ itself. In the near-adiabatic limit, the change of
the angle variable is equal to frequency of the fixed pBint

FIG. 3. Evolution of the phase-space motions of the Hamiltonj e, ¢: o*. The frequency can be calculated by linearizing

H. system aC/V=2 asy changes adiabatically. The arrows refer the equations of motiofd) near the fixed poin(5),
to the moving directions of the fixed points gsincreases. In this

case, the fixed point8, andP; collide at the singular poiny. and 1 C 12
form a homoclinic orbit with nonzero action. This jump of the ac- w*=V ——J1—(s*)?]| . (16)
tion leads to nonzero adiabatic tunneling probability. 1—(s* )2 \
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0
e T T
slope = 3/4 1.0 Analytical
e Numerical (ref.[13])
X Numerical (ours)
e
- (a)
e-z_ >
' from up to down
Critical point C/N=15
CIV=1 3| CN=05 |
o 110 CNV=0.0 ]
N e 0 1 2 3
Ve Vo
FIG. 4. Dependence of the tunneling probability on the scaled 00 02 04 06 08 1.0
sweeping rat&/?/ « (a) for C/V=1, and(b) other values o€/V. In Cc/V
(b) we see a clear breakdown of the exponential lawGov>1.
The open circles are obtained with the integration of &, the FIG. 5. Dependence of the factgron C/V.

solid squares are the numerical results of a Bose-Einstein conden-

sate in an accelerating optical lattice, wherds the acceleration IV. TUNNELING IN THE SUBCRITICAL REGIME, C<V
(see Sec.VI for detailed discussions

We shift our attention to nonadiabatic tunneling for sub-
On the other hand, by substitutirgf = 7 into Eq. (5) and critical nonlinearity,C<V, where the zeros of the frequency

differentiating it with respect to time, we have o* are complex. The principal contribution to the integral
’ (15 comes from the neighborhood of this point and the in-

tegral can be evaluated by deforming the contour of integra-

dt ! 1 _clv 1 tion into the complex plangl4]. The tunneling probability is
ds*  « [1-(s%)2]3?2 : 17 found to be exponential
Combining these equations, we can relsteto ¢ and thus [ exd — 7TV2) 20
expresse as a function ofg itself. d 2a0 )’
The principal contribution to the integral comes from the
neighborhood of the singularities of the integrand, which are . o
the zeros of the frequenay= w* (). These zero points are where the factor in the exponent is given by
easily found from Eq(16) as
312
4 (Jic?E-1 1 C
* _r1_ 2/311/2 = xu4
s;=[1—(VIC)*32 (18) a Wfo (1+x7) (1+x2)32 V dx.
(21)

The integral(15) is exponentially small if there are no real

singularities, and becomes a power law in the sweeping rate _ ) _ )
if there is a singularity on the real axis. For the linear cas€=0, the factorg is exactly unit, consis-

We consider the case of critical non“near@/V:l, tent Wlth the standard Landau-Zener fOrml(]M) For the
for which the singular point occurs st =0. Near this point, honlinear caseC/V>0, this factor becomes smaller than
we find from Eq. (17) that w*=\3/2Vs* and ¢ One, showing the enhancement effect on the nonadiabatic

~(1/4)(3/2P2(V?¥/a)(S*)*. Then, we have an approxi- tunneling. AsC/V goes up to 1, the critical point, this factor
mate relationw* ~ a¥4$Y* near the singularity. Substituting Vanishes, signaling the breakdown of the exponential law.
these expressions back to E#5), and utilizing the fact that Near the cr|t|c3:a| poth/V=%,_we have the approximate
dRI3¢ is independent ofx, we find a power-law behavior expressiom=32/3(1-C/V)?, i.e., the factor converges to

for the tunneling probability zero with a square power law. . -
With numerical integration of the nonlinear Sctnoger

equation(2), we show in Fig. 4 the sweeping ratedepen-
dence of the tunneling probability, where the slope of the
curve tends to be zero fo€/V>1 clearly indicating the
This power law, indicating a drastic change of tunneling be-breakdown of the exponential law. We read the fagtfnom
havior beyond the critical regim@=V, has been verified by the slope and compare it with our analytical results in Fig. 5,
our numerical calculationg=ig. 4(a)]. where we see a reasonable good agreement.

~a%4 (19
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V. TUNNELING BEYOND THE CRITICAL REGIME, C>V

In this section, we will discuss the nonlinear Landau-
Zener tunneling beyond the critical regime and derive the
tunneling probability using the stationary phase approxima-
tion. We concentrate on the case of strong nonlinearity
C/V>1, where there is a near unity tunneling probability to
the upper adiabatic level even in the adiabatic limit. This
probability can only get larger when the sweeping rate is

PHYSICAL REVIEW A66, 023404 (2002

finite. We thus expect the amplitudein the Schrdinger

equation(2) remains small anda|~1 all the times, and a

perturbation treatment of the problem becomes adequate.
We begin with the variable transformation,

t C

a=a’ex;{—if Z+—(|b|2—|a|2) dt}, (22
272
t C

b=b’ex+f L Z(1bl2—[a]?) | dt|. (23
o272

1-0 T T T T 1-0
/l’-—’.—_-——-—
V"’_
- 0.8
097 C/V=100 |
\ -
~ c/V=10 - 0.6 3
®
4 J -1
0.8 §.
| L o
(a) (b) [°4 8
~
0.7 1 E %
& 0.2
—=— Numerical
Theoretical
0.6 T T T T T 0.0
0 20 400.0 0.2 04 06 08 1.0
N4 Numerical calculation T

FIG. 6. Comparison between our analytic results and the nu-
merical integration of the Schdinger equatior(2).

+oo i )
f_x dtexp — Ea(t_to)

\Vi 2 2
r=1-jb=1- (5]

As a result, the diagonal terms in Hamiltonian are trans-

formed away, and we have V2
=1-—. (29

V [t t 2a

bf:—.f dtexp(—if [y+C(|b|2—|a|2)]dt). | |
2i ) - 0 24 Then the above result yields a closed equation forlthe
24

1 1 2cC

We need to evaluate the above integral self-consistently. 1-T B*’? Vi 1-T, (30)

Because of the larg€, the nonlinear term in the exponent

generally gives a rapid phase oscillation, which makes thevhere P= 7V?%/2«. In the adiabatic limit, i.e., H=0, we
integral small. The dominant contribution comes from thefind thatI'=1—1.7(V/C)?3 in the sudden limit, B— oo,

stationary point, of the phase around which we have
—y+C(1-2|b") = —a(t-to), (25

with

a=a+2C

d
alblz} : (26)

ty
We thus have

2 2

(27)

t [
f_mdtexp( —Ea(t—to)z

Vv
2: —_—
bl (2

we havel'=1- P, which is exact. In Fig. @&, we compare
the above analytical results with that from directly solving
the Schrdinger equation(2) and see a good agreement.

The above deduction is made for the strong nonlinearity,
however, its result can be extended to a wide range of pa-
rameters if we take the quanti® as the +-TI'},, the linear
Landau-Zener tunneling. Then, the above equation indicates
that the nonlinear tunneling probability is a function of the
linear Landau-Zener tunneling and ratio between the nonlin-
ear parameter and the energy gap. This relation has been
confirmed by our numerical calculation. We have calculated
the nonlinear tunneling probability using E@QO) with 2500
pairs of I';, and C/V, randomly distributed in the range
(0.05,0.95) and (1,20), respectively. These results are com-
pared with the tunneling probabilities obtained by directly
integrating the Schidinger equatiori2) in Fig. 6(b), where a

We can differentiate this expression and evaluate its result atery good agreement is shown.
time tg, obtaining a few standard Fresnel integrals with the

result[ (d/dt)[b]?], = (V/2)*V 7/ . Combining this with the
relation (26), we come to a closed equation fag

— V\? T
a=a+2C(§) = (28)

The nonadiabatic transition probability is given by

VI. EXPERIMENTAL REALIZATION

One possible experimental study of this simple two-level
nonlinear model is to use a BEC in an accelerating optical
lattice[11-13. As shown in Refs[12,13, this BEC system
can be reduced to a two-level model near the edge of the
Brillouin zone. The nonlinear Landau-Zener tunneling is the
transition between two lowest Bloch bands, as induced by
the acceleration.
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To check the validity of this experimental realization, we tion from the exponential law to power laws when the non-
numerically solve the Gross-Pitaevskii equation, linearity C gets over the critical valug. Some experiments
with BECs in accelerating optical lattices have already been
i<9_llf: 1 ﬁ/—iat done along this directiofil5].

at 2\ dx In summary, we have investigated analytically the tunnel-
ing dynamics of the nonlinear Landau-Zener model and
which describes a BEC in an Optical lattice with acceleratiorfound many interesting phenomena as the power laws char-
of @. In the above equation, the variables are scaled to bgcterizing the critical behavior of the parameter dependence
dimensionless as in Ref§l1,12. We prepare a Gaussian of tunneling probability. We have also checked the possibil-

wave packet that covers over 200 lattice sites, then slowlyty of experimental study of this nonlinear tunneling with a
turn on the optical lattice and finally accelerate the lattice BEC in an accelerating optical lattice.

The duration of the acceleration is two Bloch periods to en-
sure the well separation of the portion of the wave packet
tunneled into the upper band and the rest remained in the
lower band.

The results are shown in Fig. 4. The agreement with the This project is supported by the NSF, the Welch Founda-
two-level model is rather remarkable, especially the transition in Texas, and the NNSF of China.

2
+V cogx)y+Cly|2y,  (31)
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