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The eigenstates of many-body localized (MBL) Hamiltonians exhibit low entanglement. We adapt the
highly successful density-matrix renormalization group method, which is usually used to find modestly
entangled ground states of local Hamiltonians, to find individual highly excited eigenstates of MBL
Hamiltonians. The adaptation builds on the distinctive spatial structure of such eigenstates. We benchmark
our method against the well-studied random field Heisenberg model in one dimension. At moderate to large
disorder, the method successfully obtains excited eigenstates with high accuracy, thereby enabling a study
of MBL systems at much larger system sizes than those accessible to exact-diagonalization methods.
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Introduction.—Many-body localization generalizes
Anderson localization to interacting systems and entails
disorder induced breakdown of ergodicity and thermal-
ization. Its existence was only recently settled, following
precursors [1–3], via a series of perturbative arguments
[4,5] and numerical studies [6–10]. An intense effort has
followed revealing an extremely rich set of properties
exhibited by MBL systems; see e.g., the review [11] and
references therein. This work has revealed the centrality of
many-body eigenstates to understanding a regime where
quantum statistical mechanics simply does not apply. The
phase transition between the ergodic and localized regimes
[7,10,12–16] involves a singular change in the entangle-
ment entropy of eigenstates from volume law to area law.
Moreover, further transitions in the localized regime can
involve the development of eigenstate order [16–21],
whereby individual highly excited eigenstates can display
patterns of order (both symmetry breaking and topological)
that may even be forbidden in an equilibrium setting.
Such eigenstate phase transitions can take place at T ¼ ∞
and even while usual thermodynamic functions remain
nonsingular. As such transitions are completely invisible
to the traditional tools for studying finite energy-density
phases, they necessitate a study of individual highly excited
eigenstates.
Since typical MBL eigenstates have only local, area law,

entanglement [7,22]—although deviations from the area law
due to rare many-body resonances and Griffiths effects are a
complication to bear in mind—the well-known connection
between area laws and matrix-product state (MPS) and
tensor-network representations of many-body states [23–26]
implies that they can be efficiently described, even at largeL.
Indeed, Pekker and Clark [27] have examined the unitary
operators that exactly diagonalize fully MBL (fMBL)
systems and have shown that they can be represented
efficiently—in contrast to delocalized systems which

require the full many-body Hilbert space for their specifi-
cation. Parallel work [28] argued for the existence of a
single “spectral tensor network” that efficiently represents
the entire eigenspectrum of fMBL systems. Recently the
present authors and Cirac developed an efficient variational
algorithm [29] to actually find an approximate, compact
representationof the diagonalizing unitary for fMBLsystems
—and hence obtain all the eigenstates. This algorithm
captures the gross features of the spectrum very well, but
does not target individual eigenstates to high accuracy. Here
we describe an alternative, complementary, procedure that
can be used to obtain specific excited MBL eigenstates to
high accuracy for large system sizes.
Our approach is directly inspired by the density matrix

renormalization group (DMRG) [30,31] which has been
used to great effect to obtain modestly entangled ground
states in low-dimensional systems. In the MPS formalism,
the DMRG algorithm variationally optimizes the MPS to
minimize the ground state energy of a given Hamiltonian
H. Naively, we could modify this algorithm for MBL
systems by targeting the eigenstate with energy closest to a
specified excitation energy. However this is, in its simplest
form, problematic due to the extremely small—Oðe−LÞ—
generic many-body level spacings as we will explicitly
show below.
We show that this problem can be overcome by making

use of a defining characteristic of MBL phases, namely the
existence of an emergent set of L commuting Z2-valued
local integrals of motion (often called“l-bits”) [32–35].
Importantly, neighboring eigenstates with respect to the
energy differ extensively in their spatial properties—we
must typically flip OðLÞ l-bits to go between them—while
there is a (soft) gap to excitations with finite numbers of
l-bit flips. This leads to a natural algorithm in which
we select excited eigenstates based on their overlap with
particular, localized spatial patterns instead of their
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proximity to particular energies. By this overlap metric,
“nearby” states differ by a few ½Oð1Þ� flips of local l-bits.
But such states are typically far separated in energy and
thus the danger of mixing in eigenstates with exponentially
small energy splittings is minimized.
We start with a brief review of the ground state DMRG

method before describing our modified DMRG-X pro-
cedure. We then apply the method to the random field
Heisenberg chain and evaluate our results using various
metrics like energy variances and overlaps with exact
eigenstates. For strong enough disorder, we obtain eigen-
states with machine-precision variance and find a rapid
convergence of variances with bond dimension. Finally, we
use our eigenstates to efficiently compute local-expectation
values and demonstrate the failure of the eigenstate
thermalization hypothesis (ETH) [36–38] in the MBL
phase. We note unpublished work [39,40] that also general-
izes DMRG to highly excited states using a more complex
energy based targeting approach.
DMRG-X method.—The proposed method is a

reformulation of the standard DMRG algorithm [30,31]
to find highly excited states of MBL systems. For a one-
dimensional system of L sites, a general quantum state jΨi
can be written in the following MPS form:

jΨi ¼
X

j1;…;jL

B½1�j1B½2�j2…B½L�jL jj1;…; jLi: ð1Þ

Here, B½n�jn is a χn × χnþ1 matrix and jjniwith jn ¼ 1;…; d
is a basis of local states at site n (for a spin 1=2 system,
d ¼ 2). Each matrix product

Q
iB

½i�ji in Eq. (1) produces a
complex number which is the amplitude of jΨi on the basis
state jj1 � � � jLi. The key insight behind the success of
DMRG is that ground states of one-dimensional systems
are efficiently approximated by MPS [26]. Starting from an
initial random MPS, the DMRG algorithm sweeps through
the system and iteratively optimizes the matrices B½n�jn
by locally minimizing the energy with respect to a given
Hamiltonian H [41]. For the commonly used two-site
update which simultaneously updates the matrices B½n�jn
and B½nþ1�jnþ1 , an effective Hamiltonian H is constructed
by projecting H to a mixed χnχnþ2d2 dimensional basis.
Here, the local basis states jjnijjnþ1i represent the two
updated sites, and the eigenstates of the reduced density
matrix jχniL and jχnþ2iR compactly represent the environ-
ment to the left and right of the updated sites. The ground
state of H is found and the matrices on sites n, nþ 1 are
updated. The procedure is then repeated for all sites until
convergence is achieved.
The DMRG-X method for finding excited eigenstates

proceeds similarly to the standard DMRG algorithm in that
we iteratively optimize an MPS. The key difference is that
the algorithm does not attempt convergence in the energy of
H but instead in the local spatial structure of the eigenstate.
We start by initializing the algorithm with a product

state that has a finite overlap with some l-bit state; e.g.,
for the random-field Heisenberg model discussed below,
we choose random states in the σz basis of the form
jψi0 ¼ j↑↓↓↑…↓↑i. We start our DMRG-X algorithm
with the following local two-site update: (i) Construct the
effective Hamiltonian H; (ii) pick the eigenstate of H that
hasmaximum overlapwith the current MPS; (iii) update the
tensors B½n�jn and B½nþ1�jnþ1 . To produce the data below, we
use a full diagonalization of H which scales as χ6 with χ
being the mean bond dimension. Alternatively, it is also
possible to find a small set of k eigenstates of H near
the energy of the current MPS and then pick the eigenstate
with largest overlap. This yields an algorithm that scales
approximately as χ3, but an optimal k has to be found for
each case.
This DMRG-X prescription ensures that no individual

update step of the MPS matrices results in a large spatial
reorganization, which is appropriate for a localized phase.
By contrast, if we pick excited eigenstates of H that are
closest in energy to some target energy, the exponentially
small energy gaps mean that we could be picking very
different eigenstates (as labeled by their l-bit quantum
numbers) at each step. This will, in general, result in a slow
convergence and/or a final state that is a superposition of
many nearby eigenstates.
Comparison with ED for small systems.—We now

benchmark our method against the Heisenberg model with
random z-directed magnetic fields:

H ¼ J
X

n

~Sn · ~Snþ1 −
X

n

hnSzn; ð2Þ

where J ¼ 1, ~Sn are spin 1=2 operators and the fields hn are
drawn randomly from the interval ½−W;W�. This model has
been studied extensively in the context of MBL and several
numerical studies [7,10,44] indicate that H is fMBL for
W ≳ 3.5 − 4. At strong disorder, typical eigenstates look
like product states in the σz basis with small fluctuations.
Equivalently, the “l-bits” τzi look like σ

z
i with exponentially

decaying corrections from operators away from site i.
As the disorder is lowered, the probability of many-body
“Mott-type” resonances [45,46], wherein the eigenstates
are approximately equal-weight superpositions of a few
basis states, increases. These resonant states have energy
splittings that decay exponentially with the maximum
distance involved in the resonance. At even smaller Ws,
the approach to the ergodic transition is marked by a
“Griffiths” region [12,45] in which locally ergodic or
critical inclusions start to proliferate.
Figure 1 shows a comparison between eigenenergies

obtained using exact diagonalization (blue) and variational
DMRG-X (red) for a system of size L ¼ 12, disorder
strengthW ¼ 8, and bond dimension χ ¼ 16. To obtain the
full spectrum, we feed the algorithm all possible σz product
states as initial states. We find that the variance in the
energy of all variationally obtained DMRG-X eigenstates
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is less than machine precision (∼10−12), and the overlap
of these states with the exact eigenstates is unity up to
machine precision.
The zoomed in energy levels show that the method

successively resolves the exponentially small splittings in
the spectrum extremely accurately. However, a few exact
eigenenergies have no DMRG-X partner—when two or
more eigenstates of H have maximum weight on the same
input basis state, the input state converges to one of these
eigenstates leaving the other unpaired. We can avoid this
duplication by requiring every new state to be orthogonal to
the prior ones, but this will not be necessary in larger
systems where our goal will never be to obtain every
eigenstate.
One might worry that this is method biased towards

product states and fails to capture resonant eigenstates.
The bottom-right panel of Fig. 1 shows a representative
eigenstate with a many-body “Mott” resonance involving a
few distant basis states which is exactly captured by the
variational state. We emphasize that the algorithm only uses
a product state as an initial input; after that, the algorithm
converges to the previously chosen eigenstate of H. As
long as the bond dimension χ is sufficiently large for the
eigenstates of H to capture resonances, it is easy for the
algorithm to converge to a resonant superposition starting
from one of the product states with significant weight in
the resonant eigenstate.
Larger systems.—We now turn to an evaluation of the

algorithm for system sizes inaccessible to ED by examining
typical variances in the energy, σ2 ¼ hH2i − hHi2 for
approximate eigenstates of the Hamiltonian (2) obtained
using DMRG-X at different disorder strengths W and
system sizes L. Figure 2(a) shows the disorder averaged

value of log10 σ2 as a function of bond-dimension χ for
randomly chosen excited states from 200–1000 disorder
samples at different values of W and L. The grey line at
10−12 marks the approximate value of machine precision
and we average log σ2 to capture typical behavior instead
of deviations due to rare eigenstates.
At strong and moderate disorder (W ¼ 8, 12), we see

an initial rapid decrease of σ2 with χ followed by a
saturation—the saturation is expected to happen when
the bond dimension becomes large enough to capture
entanglement over a correlation length log2 χ ∼ ξ. Even
at moderate disorder W ¼ 8, the bond dimension saturates
quickly and χ ∼ 40 ≪ 2L=2 is already sufficient to capture
states to machine precision accuracy. In this regime, this
method can be used to really push the boundaries on the
system sizes that we have been able to study through ED.
As the transition to the ergodic phase is approached, locally
thermal Griffiths regions become more probable and the
eigenstates become more entangled. We see that the

FIG. 1. Comparison between eigenenergies obtained using
exact diagonalization (blue) and variational DMRG-X (red) for
a system of size L ¼ 12, disorder strength W ¼ 8 and bond
dimension χ ¼ 16. The successive panels which zoom into the
shaded regions of the spectrum show that all individual eigene-
nergies are obtained extremely accurately. The bottom right
panel shows the exact and variational amplitudes for a particular
eigenstate with Mott resonances, showing that the method
successively captures resonant states.

FIG. 2. (a) Disorder averaged logarithm of the energy variance
σ2 plotted against bond-dimension χ for different disorder
strengths W and system sizes L. We see a rapid decrease of
the typical σ2 with χ for moderate-strong disorder, with variances
falling below machine precision (shaded grey region below
10−12) at small χ ≪ 2L=2. (b),(c) Variance and hσz12i plotted
against DMRG time steps for a typical run in which χ is
successively increased after each 25 steps to obtain a single
eigenstate with L ¼ 24, W ¼ 12 using our overlap-based
DMRG-X method (red), and a more naive energy-targeting
method (blue) showing vastly better convergence for the overlap
method.
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accuracy of the method for the small bond dimensions
considered starts to break down around W ¼ 5, though a
rough extrapolation suggests that we can still make
significant improvements by using larger χ. The increase
in variance with system-size at fixed χ is to be expected
since even clean ground state DMRG methods make a
constant error per unit length and yield a variance that
grows with system size.
At even larger sizes or/and small W, inevitable locally

thermal or critical Griffiths inclusions will require special
handling as a subset of the l-bits now look more delocalized
and the eigenstates have a very different structure from
product states within the inclusions. A comparison with ED
(not shown) on a system with an artificially engineered
thermal inclusion shows that the variationally obtained
states correctly capture local observables away from the
inclusion, but make superpositions between eigenstates that
differ primarily in the inclusion region. In principle, it is
possible to purify these states to obtain an eigenstate by
using a hybrid energy-overlap method; an inclusion of
length l occurs with probability [45] pl

W with pW < 1 and
has a level spacing Δ ∼ 2−l. We identify the Griffiths
inclusion by looking for a diminished value of the frozen
moment jhσzi ij in the states obtained by DMRG-X. We
then feed these states into a hybrid algorithm which picks
states at a chosen energy from the subset of states which
have large overlap with the starting state away from the
inclusion. This ensures that we are only trying to resolve
the larger level spacing Δ ≪ 2−L, while also maintaining
the integrity of the state away from the inclusion.
Note that for a typical cut somewhere along the chain,

the entanglement entropy scales an area law with co-
efficient ξ proportional to the localization length since
the state looks thermal on length scales shorter than ξ [15].
This implies that the typical bond dimension scales
exponentially with ξ. On the other hand, the maximum
entanglement entropy across all cuts in the chain scales
logarithmically with L [a thermal region of size l is
exponentially rare in l, but has OðLÞ chances for occuring
somewhere in a system of size L, thereby giving
l ∼ logðLÞ]. This implies a polynomial scaling with L
for the maximum bond-dimension χmax. Combining this
with the χ6L scaling of the cost of the DMRG-X algorithm
means that the algorithm scales exponentially in ξ and
linearly in L if the maximum χ is fixed at some O(1)
number ∼eξ. On the other hand, if the bond dimension is
allowed to grow to achieve a certain accuracy, then the cost
scales polynomially in L with a power larger than 1 and
dependent on W.
We end with two comments. First, for large system sizes,

we can randomly sample from the spectrum and approxi-
mate the underlying density of states by randomly choosing
initial product states. Even though the DMRG-X sweep
does not use energy targeting, we can still effectively target
different energy densities. Deep in the disordered phase, the

initial product state is exponentially close to an actual
eigenstate, and thus hHi is almost constant during a run.
Second, since the variationally obtained states are MPSs,

few-point observables can be computed extremely effi-
ciently. In Fig. 3(b) we show hαjσzi jαi plotted against
Eα ¼ hαjHjαi for ∼500 variationally obtained eigenstates
jαi of an MBL Hamiltonian with W ¼ 8 and L ¼ 18, 24.
We see a clear violation of ETH since the local observable
does not vary smoothly with Eα and the fluctuations do
not decrease with L. This also lends additional support that
our method is correctly capturing MBL eigenstates since
the violation of ETH would have been much weaker if the
states jαi were superpositions of actual eigenstates. Such a
test is especially useful at large Ls where the average level
spacing is smaller than machine precision and we need to
rely on methods other than the variance to diagnose the
goodness of the variational states. Figure 3(a) shows the
analogous calculation in an ergodic system with W ¼ 1.5
and eigenstates obtained via ED. Here we do see a smooth
variation of the observable with Eα, and the characteristic
decrease in fluctuations [47] with increasing L.
Energy targeting.—We now compare the convergence

of our overlap method with the simplest energy targeting
method which picks the eigenstate ofH closest to a chosen
energy. Figure 2(b) shows a typical DMRG-X run with
L ¼ 24 andW ¼ 12 to obtain a single eigenstate. The bond
dimension is increased every 25 steps and takes the values
χ ¼ ð4; 8; 16; 24; 32Þ. We see that the overlap method
(shown in red) converges extremely quickly each time
the bond dimension is increased and rapidly reaches
machine precision. On the other hand, the energy targeting
method (shown in blue) run for the same disorder reali-
zation and a target energy equal to the energy of the state
obtained via the overlap method (up to four digits of
precision) shows an extremely poor convergence and very
large variances. In Fig. 2(c) we plot the expectation value of
σz for a site in the middle of the chain evaluated using the
states at each DMRG step. As expected, the overlap method
shows very little fluctuation in this quantity, while the naive
energy approach is clearly seen to be rattling between states
with extremely different local quantum numbers.

FIG. 3. (a) hαjσzi jαi plotted against Eα ¼ hαjHjαi for an
ergodic system with W ¼ 1.5 and eigenstates jαi obtained via
ED. This is an ETH obeying phase where the observable varies
smoothly with energy and the fluctuations decrease with increas-
ing L. (b) Same quantity evaluated with ∼500 variationally
obtained eigenstates jαi of an MBL Hamiltonian withW ¼ 8 and
L ¼ 18, 24 showing a clear violation of ETH.

PRL 116, 247204 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
17 JUNE 2016

247204-4



Summary and outlook.—In summary, we have developed
a DMRG-Xmethod that successfully obtains highly excited
eigenstates of MBL systems to machine precision accuracy
at moderate-large disorder in a time that scales only
polynomially with L. This method explicitly takes advan-
tage of the local spatial structure and order characterizing
MBL eigenstates, thereby moving away from traditional
energy based DMRG algorithms.
A natural next step is to use the DMRG-X method to

obtain phase boundaries between localized phases with
different kinds of eigenstate order present. The nature of
the phase transition between different localized phases is
an important open question, and refining this technique to
access these transitions at larger system sizes should help
settle some of these questions.
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