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We develop a quantum model for nonequilibrium Bose-Einstein condensation of photons and polaritons in
planar microcavity devices. The model builds on laser theory and includes the spatial dynamics of the cavity field,
a saturation mechanism, and some frequency dependence of the gain: quantum Langevin equations are written
for a cavity field coupled to a continuous distribution of externally pumped two-level emitters with a well-defined
frequency. As an example of application, the method is used to study the linearized quantum fluctuations around a
steady-state condensed state. In the good-cavity regime, an effective equation for the cavity field only is proposed
in terms of a stochastic Gross-Pitaevskii equation. Perspectives in view of a full quantum simulation of the
nonequilibrium condensation process are finally sketched.
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I. INTRODUCTION

Recent experimental demonstrations of Bose-Einstein con-
densation (BEC) phenomena in luminous gases of exciton-
polaritons [1–4] and pure photons [5] in optical microcavities
are opening exciting new perspectives to the study of nonequi-
librium statistical mechanics of open, driven-dissipative sys-
tems. In contrast to the usual statistical mechanics where the
equilibrium density matrix is determined by the Boltzmann
factor ρeq ∝ exp(−H/kBT ), the steady state of open systems
is determined by a dynamical balance of pumping and
losses. The novel features that stem from this difference are
presently attracting a lot of interest from both theoretical and
experimental points of view, in particular for what concerns
phase transitions and critical behavior [6–8].

In optics, the first and most celebrated example of phase
transition is the laser operation threshold and its interpretation
in terms of a spontaneously broken U(1) phase symmetry
was first pointed out in the early 1970s [9–11]. While this
analogy with Bose-Einstein condensation (BEC) is typically
discussed in textbooks for the case of single-mode laser
cavities, rigorously speaking the concepts of phase transition
and of the spontaneous symmetry breaking phenomenon are
restricted to spatially infinite systems. Only recently, the
advances in optical technology are providing examples of
spatially extended laser devices for which the large system
limit is a legitimate approximation, the so-called VCSELs
(vertical cavity surface emitting lasers) [12]. While these
devices have received a great deal of attention from the point
of view of nonlinear optics and of all-optical information
processing [13], their potential to study the nonequilibrium
statistical mechanics of the laser phase transition has been so
far only marginally exploited [14].

As is reviewed in [15], the interest for these condensation
phenomena in optical systems was strongly revived in the
last decade with the experimental observations of polariton
and photon BECs [1,2,4,5]. As a remarkable difference from
standard lasers, it was pointed out that the effective inter-
actions between the individual particles forming the photon

and polariton gases mediated by the underlying medium
may lead to collective behaviors in the gas including, e.g.,
superfluidity [16].

At the same time, significant work has been devoted to
characterizing the equilibrium versus nonequilibrium nature
of these condensates and quantifying the observable conse-
quences of the pumping and loss processes. On one hand,
the photon BEC experiment of [5] has shown clear evidence
of a thermal Bose-Einstein distribution at the temperature of
the cavity medium embedding the dye molecules. On the
other hand, qualitatively novel features of nonequilibrium BEC
have been observed in polariton condensation experiments.
For example, the early experiments of [17] have shown BEC
into a ring of modes at finite k: An interpretation of this
effect in terms of an interplay of driving, dissipation, and
energy minimization was proposed in [18] and experimentally
confirmed by [19]. Another, even more surprising feature
was experimentally reported in [20], where a thermal-like
distribution was observed even in a weak-coupling regime
where collisions are expected to be too weak to allow for any
thermalization.

From the theoretical point of view, the recent work [21] has
quantitatively explored the crossover from the equilibrium-like
regime of [5] where the particle distribution closely follows the
Bose-Einstein distribution, to nonequilibrium regimes where
the distribution is more and more distorted up to the standard
laser regime: in particular, the ratio between the thermalization
rate (encoded by the absorption and emission rates) and the
pumping and photon losses was identified as the key parameter
determining the equilibrium versus nonequilibrium nature of
the momentum distribution of photons.

Going beyond the one-body distribution function, several
authors [22–24] have pointed out a qualitative signature of
nonequilibrium in the dispersion of the collective excitations:
the typical acoustic branch of equilibrium condensates is
replaced by a diffusive plateau at low wave vectors, whose
k-space extension is quantitatively related to the departure
from equilibrium. Furthermore, the nonperturbative functional
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renormalization group calculation in [25] showed the im-
portance of new critical exponents arising from the genuine
nonequilibrium nature of the system. Finally, theoretical
descriptions of the photon BEC phenomenon in purely laser
terms were aimed for in [26]. An interesting proposal to obtain
a chemical potential for photons was proposed in [27].

The situation is even more intriguing in the reduced-
dimensions case that is naturally realized in experiments:
While a well-developed condensate with spatial coherence
extending in the whole gas was observed in the relatively
small systems of [4,5], quasicondensation features are ex-
pected to arise in larger systems because of long-wavelength
fluctuations. In the equilibrium case, the well-known Mermin-
Wagner theorem forbids BEC in translationally invariant
systems [28] of dimension smaller or equal to 2 [29]. In
the nonequilibrium case, first theoretical works based on a
Gaussian linearized theory of fluctuations have anticipated that
the long-distance behavior of the nonequilibrium (interacting)
quasicondensate should be the same as in the corresponding
equilibrium system at finite T , that is an exponential decay
of coherence in one dimension and a power-law decay in two
dimensions [22,23,30]. Pioneering experiments along these
lines were reported in [31,32]. Very recently, more refined the-
oretical studies going beyond the Gaussian theory have started
questioning some aspects of these theoretical predictions. In
particular, it was pointed out in [33,34] that terms beyond the
linearized Bogoliubov theory are essential to correctly capture
the long-distance behavior of the spatial coherence and correct
some pathologies found in the noninteracting limit in [30]. As
a result, the power-law quasi-long-range order of spatially
homogeneous two-dimensional quasicondensates might be
broken and replaced by a stretched exponential decay [33].

The common starting point of all these theoretical works
is phenomenological stochastic Gross-Pitaevskii equations
(SGPE). The only exception is the numerical simulation
reported in [35] where the BEC phase transition was studied in
the so-called optical parametric oscillator (OPO) configuration
which is amenable to an almost ab initio truncated-Wigner
description of the field dynamics. In all other cases, the
strength and the functional form of the noise terms had
to be introduced in a phenomenological way [30,36]. The
purpose of this work is to develop a fully quantum model
of the system from which one can derive a SGPE under
controlled approximations. In contrast to previous derivations
of the SGPE based, e.g., on Keldysh formalism [37] or on
the truncated-Wigner representations of the field [35,36],
our derivation is performed through the quantum Langevin
approach [38]: on one hand, this approach offers a physically
transparent description of the baths and, in particular, of
the incoherent pumping mechanism. On the other hand, it
allows us to capture within a simple Markovian theory the
frequency dependence of the pumping and dissipation baths.
In the good-cavity limit, we can then adiabatically eliminate
the matter degrees of freedom, which results in an effective
dynamics for the cavity photon field only: in particular, explicit
expressions for the Langevin terms are provided, which can
eventually be used as a starting point for more sophisticated
statistical mechanics calculations.

This article is organized as follows. In Sec. II we present
the model and we derive the quantum Langevin equations. In

Sec. III, we present the mean-field theory of the condensation
process and we illustrate the U(1) spontaneous symmetry
breaking phenomenon. In the following Sec. IV we study the
excitation modes of the system and the effect of fluctuations
around the condensate; in particular, predictions for the
momentum distribution of the thermal component and for
the luminescence spectrum are given. In Sec. V we discuss
the good-cavity limit where our equations can be reduced to a
stochastic Gross-Pitaevskii equation. Conclusions are finally
drawn in Sec. VI.

II. THE MODEL

Our microscopic theory extends early models on laser
operation [39–42] to the spatially extended case of planar
cavities with a parabolic dispersion of the cavity photon as
a function of the in-plane wave vector k,

ωk = ω0 + k2

2m
, (1)

with a cutoff frequency ω0 and an effective mass m [15]. This
simple description of cavity modes well captures the physics
of planar DBR semiconductor microcavities in both the weak
and the strong light-matter coupling regimes: in particular,
low-momentum polaritons used in the condensation exper-
iment [4] are straightforwardly included as dressed photon
modes with suitably renormalized ω0 and m parameters. When
supplemented with a harmonic potential term accounting for
the mirror curvature, this same formalism also describes the
mesoscopic cavity of [5].

As is sketched in Fig. 1, the cavity field is then coupled to
a set of two-level emitters. Both the emitters and the cavity
are subject to losses of different natures, while energy is
continuously injected into the system by pumping the emitters
to their excited state. The steady state of the system is therefore
determined by a dynamical balance of pumping and losses. In
this description, both Bose-Einstein condensation and lasing
consist in the appearance of a macroscopic coherent field
in a single mode of the cavity (typically the k = 0 one),
monochromatically oscillating at a given frequency ω and
with a long-distance coherence extending in the whole system.
Part of the in-cavity light eventually leaves the cavity via the
nonperfectly reflecting mirror and ends up forming a coherent
output beam of light.

FIG. 1. (Color online) A pictorial representation of the model.
Emitters lose energy at a rate γ while energy is pumped in at a rate
d . Photons can leave the cavity after a time κ−1.
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While this theory directly builds on standard laser theory,
it is generic enough to capture the main specificities of
exciton-polariton condensation under an incoherent pumping
scheme which was experimentally demonstrated in [4]. In
this case, the dispersion is the polariton one and the two-
level emitters provide a model description of the complex
irreversible polariton scattering processes replenishing the
condensate [43,44]. The main gain process consists of binary
polariton scattering where two polaritons located around the
inflection point of their dispersion are scattered into one
condensate polariton and one exciton (which is then quickly
lost). In our model, the excited state of the emitters correspond
to pairs of polaritons located around the inflection point of their
dispersion, while the ground state of the emitter corresponds
to having one exciton resulting from the collision. At simplest
order, the emitter energy ν is then approximately equal to the
difference of the energy of the pair around the inflection point
and of the exciton, �ν ≈ 2Einfl − Eexc, that is the energy where
the collisional gain is expected to be maximum. Extensions
of this theory including more complicate emitters can be
used to describe the dye molecules involved in the photon
condensation experiments of [5]. Several possibilities in this
direction are explored in [21,45].

A. The field and emitter Hamiltonians and the
radiation-emitter coupling

Given the translational symmetry of the system along the
cavity plane, the in-plane momentum k of the photon is a
good quantum number and the (bare) photon dispersion of a
given longitudinal mode is well described by the parabolic
dispersion (1). The emitters are fixed in space according to a
regular square lattice and do not have any direct interaction.

Taking for notational simplicity � = 1, the free Hamiltonian
of the field and of the emitters has the usual form

Hfree =
∑

k

ωkb†kbk +
∑

i

νSz
i , (2)

where ωk is the cavity dispersion defined in (1) and ν is
the emitter frequency. The bk,b

†
k operators satisfy bosonic

commutation rules [bk,b
†
k′ ] = δk,k′ , while the emitter operators

S±,z satisfy the usual algebra of spin-1/2 operators.
Within the usual rotating-wave approximation, the

radiation-matter coupling is then

Hint = ig√
V

∑
i

∑
k

(eik·xi bk S+
i − e−ik·xi b†k S−

i ), (3)

where xi is the position of the ith emitter and V is the total
volume of the system.

Assuming periodic boundary conditions, we can introduce
the D-dimensional real-space cavity field

φ(x) = 1√
V

∑
k

eik·x bk. (4)

In terms of the field φ(x), local binary interactions between
the cavity photons can be added to the model via a two-body
interaction term of the form

H (4) = λ

2

∫
V

dDx φ†(x)φ†(x)φ(x)φ(x), (5)

which in momentum space reads

H (4) = λ

2V

∑
kk′q

b†k+qb†k′−qbk′bk. (6)

Physically, such a term can describe a Kerr χ (3) optical
nonlinearity of the cavity material or, equivalently, polariton-
polariton interactions [15].

B. Dissipative field dynamics: Radiative losses

The cavity field is coupled to an external bath of radiative
modes via the nonperfectly reflecting cavity mirrors. As usual,
this can be modeled by coupling each k mode of the field with
a bath of harmonic oscillators [46]. The resulting quantum
Langevin equations [38] then have the form

db†k
dt

=
(

iωk − κ

2

)
b†k + F

†
k . (7)

Here, κ is the decay rate of the field and the zero-mean quantum
noises F

†
k are uncorrelated and have a delta-like correlation in

time:

〈F †
k (t)Fk′(t ′)〉 = 0, (8)

〈Fk(t)F †
k′(t ′)〉 = κ δ(t − t ′) δk,k′ . (9)

This form of the quantum Langevin equation requires that the
initial total density matrix factorize in the cavity and bath parts
and that the bath density matrix correspond to an equilibrium
state at very low temperature. Both approximations are well
satisfied by realistic systems, since the frequencies involved in
optical experiments are very high as compared to the device
temperature, typically at or below room temperature. As a
result, cavity photons can only spontaneously quit the cavity
after a lifetime κ−1, while no radiation can enter the cavity
from outside.

C. Dissipative emitter dynamics: Losses and pumping

The dissipative dynamics of the emitter requires a bit more
care because of the intrinsic nonlinearity of a two-level system.
We take each emitter to be independently coupled to its own
loss bath with a Hamiltonian of the form

Hγ =
∑

q

(γ ∗
q S+Aq + γqA

†
qS

−). (10)

Here, q indicates the modes of the bath, γq , are the coupling
constants, and Aq are the bath operators, assumed to have
bosonic nature and an initially very low temperature. Perform-
ing a Markov approximation, the quantum Langevin equations
for the spinlike operators of the emitter read

dSz

dt

∣∣∣∣
γ

= −γ

(
1

2
+ Sz

)
+ Gz

γ ,

(11)
dS+

dt

∣∣∣∣
γ

=
(

iν − γ

2

)
S+ + G+

γ .

The deterministic part of these equations shows that each
emitter tends to decay towards its lower state independently
of its neighbors. Differently from what happened to the cavity
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mode in (8) and (9), the noise operators G+
γ and Gz

γ now
depend on the initial state of the bath Aq(t0) as well as on the
instantaneous spin operators:

Gz
γ (t) = −i

∑
q

[γ ∗
q e−iωq (t−t0)S+(t)Aq(t0)

− γqe
iωq (t−t0)A

†
k(t0)S−(t)], (12)

G+
γ (t) = −2i

∑
k

γke
iωk(t−t0)A

†
k(t0)Sz(t). (13)

Under the same conditions assumed for the cavity operators,
the quantum noises on the different emitters are uncorrelated
and have a delta-like temporal correlation,〈

Gα
γ,i(t)G

α′
γ,j (t ′)

〉 = 2Dαα′
γ (t)δ(t − t ′) δij . (14)

Among the many α,α′ = +, − , z terms, the only nonzero
diffusion coefficients are

D−+
γ = γ

2
, D−z

γ = γ

2
〈S−〉, (15)

Dz+
γ = γ

2
〈S+〉, Dzz

γ = γ

2

(
1

2
+ 〈Sz〉

)
. (16)

The dependence of the diffusion coefficients on the spin
operator averages stems from the intrinsic optical nonlinearity
of two-level emitter and makes calculations much harder.

The incoherent external pumping of the system is modeled
by coupling each emitter with a bath of inverted oscillators
as typically done in laser theory [38]. This leads to quantum
Langevin equations of the form

dSz

dt

∣∣∣∣
d

= d

(
1

2
− Sz

)
+ Gz

d,

(17)
dS+

dt

∣∣∣∣
d

=
(

iν − d

2

)
S+ + G+

d .

Again, the noise operators Gα
d depend on the spin operators

and satisfy delta-like correlation functions in time. The only
nonzero diffusion coefficients are now

D+−
d = d

2
, D+z

d = −d

2
〈S+〉, (18)

Dz−
d = −d

2
〈S−〉, Dzz

d = d

2

(
1

2
− 〈Sz〉

)
. (19)

Combining the two loss and pumping contributions to the
emitter dissipative dynamics, one finally obtains

dSz

dt

∣∣∣∣
γ+d

= �

(D
2

− Sz

)
+ Gz,

(20)
dS+

dt

∣∣∣∣
γ+d

=
(

iν − �

2

)
S+ + G+,

where � = d + γ and Gα(t) = Gα
γ (t) + Gα

d (t). The stationary
value of the average inversion operator Sz in the absence of any
cavity field can be called unsaturated population inversion and

depends only on the ratio between damping rates x = d/γ ,

D = d − γ

d + γ
. (21)

In the α,α′ = +, − , z basis, the diffusion matrix Dαα′
of the

total external noise operators Gα is given by⎛⎜⎝ 0 γ

2
γ

2 〈S+〉
d
2 0 − d

2 〈S−〉
− d

2 〈S+〉 γ

2 〈S−〉 �
2

(
1
2 − D〈Sz〉)

⎞⎟⎠ . (22)

D. The quantum Langevin equations

Putting all terms together, we obtain the final quantum
Langevin equations for the ith emitter and the k cavity mode
operators,

dSz
i

dt
= �

(D
2

− Sz
i

)
+ g√

V

∑
k

(eik·xi S+
i bk + e−ik·xi b†k S−

i ) + Gz
i , (23)

dS+
i

dt
=

(
iν − �

2

)
S+

i − 2g√
V

∑
k

e−ik·xi b†k Sz
i + G+

i , (24)

db†k
dt

=
(

iωk − κ

2

)
b†k − g√

V

∑
i

eik·xi S+
i + F

†
k . (25)

These equations can be rewritten in real space in terms of
field and spin-density operators. Assuming the emitters to be
arranged on a regular square lattice with density nA and to
have a fictitious size equal to the lattice cell volume a = n−1

A ,
these latter can be defined as

Sα(x) =
∑

i

δ(D)
a (x − xi) Sα

i (26)

in terms of delta distributions broadened over a spatial area a.
Assuming that the bosonic field φ(x) is almost constant over a
length ∼a allows us to approximate δ(D)

a (x) as a delta function,
simplifying the algebra of the spin densities and the form of
the quantum Langevin equations. In this representation, the
spin algebra in the Cartesian αi = x,y,z basis has the form

[Sα1 (x),Sα2 (x′)] = iεα1α2α3S
α3 (x)δ(D)

a (x − x′). (27)

Summing up, the real-space quantum Langevin equations can
be written as

∂Sz(x)

∂t
= �

[
nA

D
2

− Sz(x)

]
+ g[S+(x)φ(x) + φ†(x)S−(x)]

+Gz(x), (28)

∂S+(x)

∂t
=

[
iν − �

2

]
S+(x) − 2gφ†(x)Sz(x) + G+(x), (29)

∂φ†(x)

∂t
=

[
iω(i∇x) − κ

2

]
φ†(x) − gS+(x) + F †(x), (30)

with a spatially local noise correlation

〈Gα(t,x)Gα′
(t ′,x′)〉 = Dαα′

(x)δ(D)
a (x − x′)δ(t − t ′), (31)
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with⎛⎜⎝ 0 γ

2 nA
γ

2 〈S+(x)〉
d
2 nA 0 − d

2 〈S−(x)〉
− d

2 〈S+(x)〉 γ

2 〈S−(x)〉 �
2

(
nA

2 − D〈Sz(x)〉)
⎞⎟⎠ . (32)

Another useful representation of the previous equations is
in momentum space: defining the Fourier transform of the spin
density as

Sα
k =

∫
ddx Sα(x)e−ik·x, Sα(x) = 1

V

∑
k

Sα
k eik·x, (33)

we have the spin commutation relations[
S

α1
k ,S

α2
k′

] = iεα1α2α3S
α3
k+k′ , (34)

and the quantum Langevin equations

dSz
k

dt
= �

(
δk,0NA

D
2

− Sz
k

)
+ g√

V

∑
q

(S+
k−qbq + b†qS

−
k+q) + Gz

k, (35)

dS+
k

dt
=

(
iν − �

2

)
S+

k − 2
g√
V

∑
q

b†qS
z
k+q + G+

k , (36)

db†k
dt

=
(

iωk − κ

2

)
b†k − g√

V
S+

−k + F
†
k . (37)

Momentum-space noise operators then satisfy〈
Gα

k(t)Gα′
k′ (t ′)

〉 = 2Dαα′
k+k′δ(t − t ′), (38)

with⎛⎜⎝ 0 γ

2 NAδk,−k′ γ

2 〈S+
k+k′ 〉

d
2 NAδk,−k′ 0 − d

2 〈S−
k+k′ 〉

− d
2 〈S+

k+k′ 〉 γ

2 〈S−
k+k′ 〉 �

2

(
NA

2 δk,−k′ − D
〈
Sz

k+k′
〉)
⎞⎟⎠ .

(39)

Before proceeding with our discussion, it is worth pointing
out that what we have introduced so far is a minimal quantum
model to describe condensation in a spatially extended geom-
etry. Depending on the specific system under investigation,
other terms might be needed, for instance dephasing of the
emitter under the effect of a sort of collisional broadening, or
several species of emitters with different resonance frequencies
νi so to account for more complex gain spectra.

In our formalism, dephasing corresponds to terms of the
form

ρ̇ = �coll

2
(4SzρSz − ρ) (40)

in the master equation [47], �coll being the contribution of
the dephasing to the dipole relaxation rate. In the quan-
tum Langevin formalism, these processes give additional

deterministic terms

dS+

dt

∣∣∣∣
coll

= −�collS
+ + G+

coll,
dSz

dt

∣∣∣∣
coll

= 0, (41)

and an additional contribution to the noise:

〈G+
coll(t)G

−
coll(t

′)〉 = 2�coll
(

1
2 + 〈Sz〉)δ(t − t ′),

(42)
〈G−

coll(t)G
+
coll(t

′)〉 = 2�coll
(

1
2 − 〈Sz〉)δ(t − t ′).

We have checked that including such terms does not introduce
any qualitatively new feature in the model.

III. MEAN-FIELD THEORY

As a first step in our study of nonequilibrium condensation
effects, we study the mean-field solution to the quantum
Langevin equations. This amounts to neglecting the quantum
noise terms in (35)–(37) and replacing each operator with its
expectation value. This study is the simplest in momentum
representation, where the mean-field motion equations for
β∗

k = 〈b†k〉 and σα
k = 〈Sα

k 〉 have the form

σ̇ z
k = �

(
δk,0NA

D
2

− σ z
k

)
+ g√

V

∑
q

(σ+
k−qβq + β∗

qσ−
k+q),

(43)

σ̇+
k =

(
iν − �

2

)
σ+

k − 2
g√
V

∑
q

β∗
qσ z

k+q, (44)

β̇∗
k =

(
iωk − κ

2

)
β∗

k − g√
V

σ+
−k + iλ

V

∑
qq′

β∗
q+q′β

∗
k−q′βq,

(45)

very similar to the ones of the semiclassical theory of
lasers [48].

A. Stationary state: Bose condensation

While a trivial solution with all β∗
k = σ+

k = 0 is always
present, for some values of the parameters to be specified
below, this solution becomes dynamically unstable and is re-
placed by other condensed solutions with a nonvanishing field
amplitude. Inspired by experiments, we focus our attention on
the case where condensation occurs on the k = 0 state. This
corresponds to inserting the ansatz

β∗
k(t) = δk0

√
V β∗

0 eiωt ,

σ+
k (t) = δk0 V σ+

0 eiωt , (46)

σ z
k (t) = δk0 V σz

0

into the mean-field equations, with the amplitudes β∗
0 and

σ+
0 , the population inversion σ z

0 , and the frequency ω to be
determined in a self-consistent way.

In the λ = 0 case where direct photon-photon interactions
vanish, a direct analytical solution of the mean-field equations
gives

ω =
ν
�

+ ω0
κ

1
�

+ 1
κ

= ω0 + κ

2
δ, (47)
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where δ = 2(ν − ω0)/(� + κ) is the dimensionless detuning:
the frequency ω is therefore equal to an average of the bare
field and dipole frequencies, weighted with their bare lifetimes.
Analogously, we find for the field and emitter observables

|β0|2 = �

κ

[
nA

D
2

− �κ

8g2
(1 + δ2)

]
, (48)

σ z
0 = �κ

8g2
(1 + δ2), (49)

σ+
0 = − κ

2g
(1 + iδ)β∗

0 . (50)

The condensation threshold is clearly visible in these results:
for D/� < κ(1 + δ2)/4g2nA, the right-hand side of (48) is
negative, so only the trivial β0 solution is possible. ForD/� >

κ(1 + δ2)/4g2nA, a condensed solution appears with a finite
field intensity (48) and a corresponding emitter dipole moment
proportional to (50). We recall that bothD = (d − γ )/(d + γ )
and � = d + γ = γ (1 + x) are here functions of the pumping
rate.

For finite values of λ, a similar derivation can be carried
out. For the frequency, it gives

ω =
ν
�

+ 1
κ

(ω0 + λ|β0|2)
1
�

+ 1
κ

= ω0 + λ|β0|2 + κ

2
δλ, (51)

where the dimensionless detuning δλ = 2(ν − ω0 −
λ|β0|2)/(� + κ) now involves also the nonlinear frequency
shift of the field mode. For the field and the emitter
observables, it gives

|β0|2 = �

κ

[
nA

D
2

− �κ

8g2

(
1 + δ2

λ

)]
, (52)

σ z
0 = �κ

8g2

(
1 + δ2

λ

)
, (53)

σ+
0 = − κ

2g
(1 + iδλ)β∗

0 . (54)

B. Physical discussion

The most remarkable feature of the mean-field equations
is the spontaneous symmetry breaking phenomenon at the
condensation threshold. The mean-field equations (43)–(45)
are symmetric under the U(1) transformation (β∗

k,σ+
k ) →

(eiϕβ∗
k,eiϕσ+

k ) with arbitrary global phase ϕ. While for all
values of the parameters there is a trivial β0 = σ+

0 = 0 solution
which fulfills this symmetry, any nontrivial solution has to
choose a specific phase for β0 and σ+

0 , only their modulus being
fixed by (48) or (52); as a result, the U(1) symmetry is sponta-
neously broken. In actual experiments, this phase is randomly
chosen. Note that since the symmetry transformation does not
involve σ z

0 , its mean-field value can always be nonzero.
The behavior of the field intensity |β0|2 and of the oscilla-

tion frequency ω is plotted in Fig. 2 as a function of the pump-
ing strength x = d/γ for different (negative) values of the
natural field-emitter detuning ν − ω0 < 0 (different curves)
and different values of the (positive) nonlinear coupling λ > 0
(different panels). In all cases, two thresholds are quite visible:
The lower one corresponds to the standard switch-on of laser
operation for sufficiently large pump strength. The upper one
is a consequence of our specific model and is due to the fact
that the gain offered by the emitters is suppressed when the
effective emitter linewidth � = d + γ = γ (1 + x) appearing
in (24) is very much broadened by the pumping term d. As
usual, whenever a nontrivial β0 �= 0 condensate solution is
available, the trivial solution becomes dynamically unstable.
For all cases shown in this figure, the order parameter β0

grows continuously from zero, so the condensation resembles
a second-order phase transition.

The behavior of the oscillation frequency shown in the
lower panels of Fig. 2 is determined by a complex interplay of
the bare frequencies of the cavity and of the emitter, weighted
by their respective linewidths and shifted by the nonlinear
interaction energy λ according to (51).

The situation for positive detuning ν − ω0 > 0 is
more complicated and a complete analysis of the rich
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FIG. 2. Intensity of the field (upper panels) and oscillation frequency of the condensate (lower panels) as a function of the pumping
parameter x = d/γ . Both quantities are shown for different values of self-interaction λ and natural detuning ν − ω0. In all panels, γ = 10κ

and g
√

nA = 7κ .
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phenomenology goes beyond the scope of this work. Not only
the order parameter as a function of pumping strength can be
discontinuous [49] and bistable, but also the spatial shape of
the condensate can develop a complicated structure. As the
gain is maximum on a k-space ring of modes at a finite k,
the choice of the specific combination of modes is determined
by complex mechanisms involving the interplay of pumping
and dissipation, but also the geometrical details of the system
beyond the idealized spatially homogeneous approximation.
This complex physics is typical of nonequilibrium systems
where no minimal free-energy criterion is available to deter-
mine the steady state of the system and is closely related to
pattern formation in nonlinear dynamical systems [7]. The first
experimental evidence of condensation in spatially nontrivial
modes was reported in [17] and discussed in [18]. More
complicate spatial features were investigated in [37,50].

IV. QUANTUM FLUCTUATIONS

A. Linearized theory of small fluctuations

The mean-field steady-state solution obtained in the pre-
vious section is the starting point for a linearized theory of
fluctuations. In the spirit of Bogoliubov and the spin wave
approximations, we can linearize Eqs. (35)–(37) around the
steady state by performing the operator replacement:

b†k = (δk0

√
V β∗

0 + δb†k)eiωt ,

S+
k = (δk0 V σ+

0 + δS+
k )eiωt , (55)

Sz
k = δk0 V σz

0 + δSz
k;

β∗
0 , σ+

0 , and σ z
0 are here the mean-field steady states as

defined in (52)–(54) with a frequency ω determined by (51).
Fluctuations around the mean field are described by the δb†k,
δS+

k , and δSz
k operators which inherit the commutation rules

from the original b†k, S+
k , and Sz

k operators.
Substituting the previous expressions into the motion

equations (35)–(37) and neglecting terms of second or higher
order in the fluctuation operators, we obtain a set of coupled
linear equations

dvk

dt
= Akvk + F̃k, (56)

for the (rescaled) fluctuation vector

vt
k = (

δ̃b†−k,δ̃bk,δS
+
k ,δS−

k ,δSz
k

)
, (57)

with a quantum noise vector

F̃t
k = (

F̃
†
−k,F̃k,G̃

+
k ,G̃−

k ,G̃z
k

)
. (58)

For notational convenience, we have used the rescaled
quantities δ̃b†k = √

V δb†k with rescaled noise terms F̃
†
k =√

V e−iωtF
†
k and G̃+

k = e−iωtG+
k and G̃z

k = Gz
k. The equa-

tions for the Hermitian conjugate quantities δS−
k and δbk

follow straightforwardly from δS−
−k = (δS+

k )† and δbk =
(δb†−k)†.

Defining the shorthands zλ = 1 + iδλ and εk = k2/2m, the
Bogoliubov matrix Ak is equal to

Ak =

⎛⎜⎜⎜⎜⎜⎜⎝

− κ
2 zλ + iεk + iλ|β0|2 iλ(β∗

0 )2 −g 0 0

−iλβ2
0 − κ

2 z∗
λ − iεk − iλ|β0|2 0 −g 0

−2gσ z
0 0 −�

2 z∗
λ 0 −2gβ∗

0

0 −2gσ z
0 0 −�

2 zλ −2gβ0

gσ−
0 gσ+

0 gβ0 gβ∗
0 −�

⎞⎟⎟⎟⎟⎟⎟⎠ . (59)

Evaluation of the noise correlation matrix requires a bit
more care as the emitter noise depends on the emitter operators
themselves. Inserting into (39) the steady-state value of the
emitter operators, we have that〈

G̃α
kG̃α′

k′
〉 = 2Dαα′

k+k′ δ(t − t ′)δk+k′,0 ∝ NA; (60)

as in this equation the emitter noise terms Gα
k ∝ √

NA are of
the same order as the other terms in the linearized equations,
it is legitimate to replace the spin operators in the diffusion
coefficients with their mean-field values. Note that the δk+k′,0
coefficient in (60) is a consequence of the assumed ordered
arrangement of the emitters: Had we considered a disordered
configuration, the zero value for k + k′ �= 0 would be replaced
by something proportional to

√
NA, still negligible with respect

to the value proportional to NA of the k + k′ = 0 term.
The correlation matrix of F̃k is

〈̃Fk(t )̃F†
k′(t ′)〉 = Dδ(t − t ′)δk,k′ (61)

with

D = V

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 κ 0 0 0

0 0 d nA 0 −dσ+
0

0 0 0 γ nA γ σ−
0

0 0 −dσ−
0 γ σ+

0 �
(

nA

2 − Dσ z
0

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (62)

As a final remark on the linearization procedure, let us
emphasize how our approximations are controlled by the total
number of atoms NA. Assume the scaling

Sα
k=0 ∼ NA, bk=0 ∼

√
NA, Dαα′

k=0 ∼ NA (63)

and

Sα
k �=0 ∼

√
NA, bk �=0 ∼ 1, Dαα′

k �=0 ∼
√

NA; (64)
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together with g ∼ 1/
√

nA the dependence on NA of each
term in Eqs. (35)–(37) can be made explicit. Then, in the
thermodynamical limit NA → +∞, retaining the leading
order in NA from such equations is equivalent to performing
the mean-field approximation of Sec. III. If the next-to-leading
order is also retained, the linearized Bogoliubov theory is
recovered.

In analogy with the systematic expansion of equilibrium
Bogoliubov theory in powers of the dilution parameter [51],
we can make use of these considerations to define a systematic
mean-field limit for our nonequilibrium system. To this pur-
pose, it is useful to consider the real-space form of the quantum
Langevin equations (28)–(30). If we let the atomic density and
the photon density |φ(x)|2 ∼ Sα(x) ∼ nA → ∞ at constant
g
√

nA ∼ g|φ(x)| and λ|φ(x)|2, the mean-field equations are
not affected [in particular, their steady states (52)–(54)], while
the relative importance of the noise terms in the quantum
Langevin and of the commutators tends to zero. As a result, the
relative magnitude of quantum fluctuation expectation values
versus mean-field terms scales as 1/nA in the mean-field limit.

B. The collective Bogoliubov modes

A first step to physically understand the consequences
of fluctuations is to study the dispersion of the eigenvalues
λ

Bog
k of Ak as a function of k, which gives the generalised

Bogoliubov dispersion of excitations on top of the non-
equilibrium condensate.

An example of dispersion is shown in Fig. 3: the upper
panels show the real part of the dispersion Re[λBog

k ] (describing
the damping/growth rate of the mode) and the lower panels
show the imaginary part Im[λBog

k ] (describing the oscillation
frequency of the mode). The left column give magnified views
of the same dispersion shown on the right column.

As expected there is a Goldstone mode corresponding to the
spontaneously broken U(1) symmetry, whose frequency tends
to 0 in both real and imaginary parts as k → 0. As typical
in nonequilibrium systems [7], this mode is however diffusive
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FIG. 3. Dispersion λ
Bog
k of the collective modes as predicted by

the eigenvalues of the Bogoliubov matrix Ak in the interacting case
with λnA = 0.1κ and ν − ω0 = −10κ . Left panels show magnified
views of the low-k region of right panels. System parameters: γ =
100κ , g

√
nA = 25, and x = 5.

rather than sonic; that is, Im[λBog
k ] = 0 for a finite range around

k = 0 and the real part starts from zero as Re[λBog
k ]  −ζk2.

At higher momenta, the diffusive Goldstone mode trans-
form itself into a single-particle cavity photon mode with a
parabolic dispersion. Between the two regimes, for λ > 0 or a
finite cavity-emitter detuning δ, there is a sonic-like dispersion
of the Im[λBog

k ] ≈ cs |k| form (see Fig. 3): for λ > 0, this is a
standard feature of the Bogoliubov dispersion of interacting
photons/polaritons [15]. For a finite δ, it follows from the
intensity dependence of the refractive index of detuned two-
level systems [47]. A connection with the Gross-Pitaevskii
formulation of [24] will be given at the end of Sec.V.

In the larger view displayed in the right column, in addition
to the Goldstone mode we see two other, almost dispersionless
excitation modes. As their origin is mostly due to emitter
degrees of freedom, they could not be captured by the Gross-
Pitaevskii approach of [24]. Their splitting is related to the
Rabi frequency of the optical dressing of the atoms due to the
coherent field in the cavity corresponding to the condensate
and they are visible in the emitter emission spectrum as the
external sidebands of the so-called Mollow triplet of resonance
fluorescence [47].

The effect of these additional modes is more evident in
Fig. 4, where the chosen parameters are close to a secondary
instability. The finite instability wave vector is located at the
point where the cavity field dispersion crosses the ones of
the dispersionless modes: in this neighborhood, the real part
of the dispersion Re[λBog

k ] approaches 0 from below. Should
Re[λBog

k ] go above 0, our ansatz with a uniform condensate
localized in the k = 0 mode would no longer be valid and
more complicated condensate shapes with spatial modulation
should be considered [37,52–54], analogous to secondary
instabilities in pattern formation theory [7]. Physically, this
Mollow instability can be easily interpreted in terms of the
well-known optical gain offered by a two-level emitter driven
by a strong coherent beam and probed by a weak probe
beam detuned by approximately the Rabi frequency of the
dressing [47].
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FIG. 4. Imaginary (a) and real (b) part of the dispersion of the
collective modes and steady-state momentum distribution (c)–(d) in
the vicinity of the Mollow instability onset. (c) shows a magnified
view of the low-k region of (d). System parameters: γ = 10κ ,
g
√

nA = 42κ , x = 5, λnA = 0.1κ , ν − ω0 = 0.
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C. Momentum distribution

From the quantum Langevin equation (56), it is
straightforward to extract predictions for one-time physical
observables. As a most remarkable example, here we shall
concentrate our attention on the steady-state momentum
distribution of the cavity field,

ns
k = 〈b†k bk〉 = 〈δb†k δbk〉. (65)

On one hand, in contrast to the mean-field approximation
where the cavity field is concentrated in the k = 0 mode, this
observable is a sensitive probe of fluctuations. On the other
hand, it is an experimentally accessible quantity, easily mea-
sured from the far-field angular distribution of emitted light.
By Fourier transform, it is directly related to the two-point,
one-time coherence function of the cavity field, a quantity
which is of widespread use in experiments [3,4,31,32].

Grouping in the Vk = 〈vs
kvs†

k〉 variance matrix the steady-
state variances of all operator pairs, from a straightforward
integration of the quantum Langevin equations [55], we obtain
a Lyapunov equation,

AkVk + VkA
†
k = −D, (66)

from which standard linear algebra methods allow us to extract
the variance matrix Vk.

While no simple analytical form is available for ns
k, plots

of its behavior are given in the bottom panels of Fig. 5
for several most relevant cases. For small k, the momentum
distribution follows the same 1/k2 behavior as equilibrium
systems provided photons are effectively interacting; that is,
either λ > 0 or δ �= 0. In the λ = δ = 0 case, the situation is
more complicated and the distribution appears to diverge as
1/k4. Both these results are in agreement with the predictions
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FIG. 5. Steady-state momentum distribution. Left panels show
magnified views of the low-k region of right panels. (a), (b) Nonin-
teracting case λnA = ν − ω0 = 0. (c), (d) λnA = 0, ν − ω0 = −10κ .
(e), (f) λnA = 0.1κ , ν − ω0 = 0. System parameters: γ = 100κ ,
g
√

nA = 25, and x = 5.

of the stochastic Gross-Pitaevskii equation in [30]. However,
as was noted in [34], great care has to be paid when applying
the linearized Bogoliubov-like formalism to low-k modes in
nonequilibrium, as the effects beyond linearization can play a
dominant role.

At large k, the momentum distribution always decays to
zero as 1/k4. The large-k decay qualitatively recovers the pre-
diction we guessed in [30] from a phenomenological stochastic
Gross-Pitaevskii equation with a frequency-dependent pump-
ing. The specific 1/k4 law is a consequence of our choice
of monochromatic emitters, whose amplification spectrum
decays as 1/(ω − ν)2; other choices of the emitter distribution
would lead to correspondingly different high-momentum tails
of nk. The ab initio confirmation of this large-k decay of
nk is one of the main results of this article, as it shows that
thermal-like momentum distributions can be found also in
models where the quasiparticles are not interacting at all and
therefore cannot get thermalized by collisional processes. A
similar feature was experimentally observed in [20] using a
VCSEL device in the weak-coupling regime where photons
are practically noninteracting.

The intermediate-k region shows a quite structureless
plateau connecting the low-k and high-k regimes. The most
interesting feature in this window is the peak that appears at the
crossing point of the Goldstone mode and the dispersionless
branch when the Mollow instability is approached; see Fig. 6.
As usual, the peak height diverges at the onset of the instability.

D. Photoluminescence spectrum

In addition to the one-time observables discussed in the
previous section, the quantum Langevin equations also allow
for a straightforward evaluation of two-time observables. In
particular, we shall concentrate here on the photoluminescence
spectrum,

Sk(ω) =
∫

dt

2π
e−iωt 〈b†k(t) bk(0)〉, (67)

which is accessible from a frequency- and angle-resolved
measurement of the emission from the cavity. A detailed
study of this quantity in an equilibrium context can be
found in [56]. A nonequilibrium calculation using linearized
Keldysh techniques was reported in [22].

In our quantum Langevin approach [55], this spectrum is
directly obtained as the top-left element of the matrix

Sk(ω) = 1

2π
(Ak − iω)−1D(A†

k + iω)−1; (68)

the resonant denominators on the right-hand side of this
equation show that the photoluminescence spectrum is peaked
along the real part of the Bogoliubov dispersion, while the
linewidth of the peaks is set by the imaginary part.

Among the most interesting and nontrivial examples, we
show in Fig. 6 the photoluminescence spectrum for two cases
of a negative detuning δ < 0 (left) and of finite photon-photon
interactions λ > 0 (right); in both cases, photons are effectively
interacting and the Bogoliubov transformation is expected to
give spectral weight to the negative “ghost” branch of the
Goldstone mode as well [57]. While this feature is clearly
visible in the central panel, the effective interaction in the left
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FIG. 6. (Color online) Normalized momentum- and frequency-resolved spectrum of the photoluminescence from the cavity. Left panel:
Detuned ν − ω0 = −35κ case with λnA = 0. Right panel: Resonant cavity ν − ω0 = 0 with photon-photon interactions λnA = 0.1κ . Other
system parameters: γ = 10κ , g

√
nA = 7κ , x = 7.

panel is too weak to give an appreciable effect on this scale:
the emitter-cavity detuning that is required for this purpose is
in fact much larger than the amplification bandwidth of the
emitters and therefore hardly compatible with condensation.

At generic wave vectors and frequencies, the cavity
luminescence from the dispersionless branches is typically
suppressed by the detuning from the cavity mode. The only
exceptions are the crossing points with the cavity mode,
where clear peaks can be observed thanks to the resonance of
the upper sideband of the Mollow triplet with the cavity mode
(not shown).

V. THE STOCHASTIC GROSS-PITAEVSKII EQUATION

In the previous sections we have developed a microscopic
model of condensation from which we have obtained
predictions for some most interesting observable quantities. In
this final section, we are going to discuss how our model can be
reduced under suitable approximations to a simpler quantum
Langevin equation for the cavity field only. In particular, we
shall concentrate on the good-cavity limit �/κ � 1, where the
dynamics of the cavity field occurs on a much faster time scale
as compared to the one of the emitters, which can therefore be
adiabatically eliminated. Throughout this last section, we will
sacrifice mathematical rigor in favor of physical intuition.

A. Adiabatic elimination

Expressing the fields in the rotating frame as

φ† = ψ†eiωt , S+ = S+eiωt , Sz = Sz, (69)

the real-space equations of motion (28)–(30) can be rewritten
as

∂Sz

∂t
= �

(
nA

D
2

− Sz

)
+ g(S+ψ + ψ†S−) + Gz, (70)

∂S+

∂t
= −�

2
(1 − iδ)S+ − 2g ψ†Sz + G̃+, (71)

∂ψ†

∂t
= −κ

2
(1 + iδ)ψ†− i ∇2

2m
ψ† − gS+ + iλψ†ψ†ψ + F̃ †,

(72)

where G̃+ = e−iωtG+ and F̃ † = e−iωtF †. In the spirit of [58],
the limit σ → +∞ can be taken provided that the quantities
g
√

nA/�, δ, 〈G̃αG̃α′ 〉/n2
A�2 remain finite and that the average

λ〈ψ†ψ〉 remains negligible with respect to �.
While rigorous ways to perform adiabatic elimination for

ordinary differential equations exist, the situation is more
complicated for our stochastic and quantum case. In what
follows we shall then follow a heuristic path inspired from laser
theory [40,59] whose validity can be checked a posteriori by
comparing its predictions with the full model in the linearized
case; a brief discussion of a simplified but illustrative example
is given in the Appendix. A rigorous derivation of the whole
approach is of course needed, but goes far beyond the scope
of the present work.

As a first step, we note that time derivatives of the spin
densities can be dropped from the equations as they are
negligible for large �. The spin operators can therefore be
expressed in terms of the cavity field using the equations

0 = �

(
nA

D
2

− Sz

)
+ g

(
S+ψ + ψ†S−

)
+ Gz, (73)

0 = −�

2
(1 − iδ)S+ − 2g ψ†Sz + G̃+, (74)

0 = −�

2
(1 + iδ)S− − 2g Szψ + G̃−. (75)

From (74) and (75), S+ and S− can be expressed in terms of
Sz as

S+ = 2

�(1 − iδ)
(−2gψ†Sz + G̃+), (76)

S− = 2

�(1 + iδ)
(−2gSzψ + G̃−), (77)

and hence inserted in (73), which reads

Sz = nA

D
2

− 8g2

�2(1 + δ2)
ψ†Szψ + Gz, (78)
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where

Gz = 2g

�2(1 − iδ)
G̃+ψ + 2g

�2(1 + iδ)
ψ†G̃− + 1

�
Gz. (79)

While equal-time spin and cavity operators commute in the
full theory, this is no longer true after the elimination, as
was noticed in [59]. An ambiguity therefore arises when
writing (74) and (75). In the following, inspired by [60],
we heuristically propose to choose the generalized normal
ordering, ψ†S+SzS−ψ . This issue is important when solving
Eq. (78) for Sz, which can be done by formally iterating on
Sz:

Sz = nA

D
2

+∞∑
m=0

(−1)m

nm
s

(ψ†)mψm +
+∞∑
m=0

(−1)m

nm
s

(ψ†)mGzψm

= nA

D
2

:
1

1 + ψ†ψ
ns

: + :
1

1 + ψ†ψ
ns

Gz : , (80)

where colons denote normal ordering and the saturation
density is defined as

ns = �2

8g2
(1 + δ2). (81)

The explicit expression for Sz can be inserted back in (76)
to obtain the expression for S+ and S−, which can be
finally substituted in (72) to give a quantum stochastic Gross-
Pitaevskii equation

∂ψ†

∂t
= −κ

2
(1 + iδ)ψ† − i

∇2

2m
ψ† + ψ† :

P0(1 + iδ)

1 + ψ†ψ
ns

:

+ iλψ†ψ†ψ + F†, (82)

where the pumping coefficient has the form

P0 = 2g2nAD
�(1 + δ2)

, (83)

and F† is a new effective noise operator given by

F† = F̃ † − 2g

�(1 − iδ)
G̃+ + 4g2

�(1 − iδ)
: ψ† 1

1 + ψ†ψ
ns

Gz : .

(84)

The diffusion matrix of the noise F† depends on the field state
ψ and ψ† and can be written in the form(

〈F†(x,t)F(x′,t ′)〉 〈F†(x,t)F†(x′,t ′)〉
〈F(x,t)F(x′,t ′)〉 〈F(x,t)F†(x′,t ′)〉

)
=

(
A C∗

C B

)
, (85)

where A, B, C are functions of ψ and ψ†. Note in particular the
nonzero C term in the nondiagonal positions, which originates
from the contribution of the emitter noise operators Gα (α =
+, − ,z) to the resulting noise F.

B. Normally ordered c-number representation

A useful technique to obtain physical predictions from the
operator-valued stochastic Gross-Pitaevskii equation (82) is
to represent it in terms of an equivalent c-number equation.
In doing this, we follow the procedure explained in [61]. As
one typically does for phase-space representations [38], the

first step is to choose an ordering prescription for the operator
products according to which all quantities of the theory have
to be consistently expressed.

A first choice is to assume normal ordering. In this case, the
operator-valued SGPE (82) gets projected onto the c-number
Ito SGPE:

idψ =
[
ω0 − ∇2

2m
+ λ|ψ |2 + P0δ

1 + |ψ |2
ns

+ i

(
P0

1 + |ψ |2
ns

− κ

2

)]
ψ dt + dW. (86)

A similar equation was derived in the early theory of laser [11].
The second-order momenta of the noise have local spatial and
temporal correlations

〈dW (x,t)dW ∗(x′,t)〉 = 2Dψψ∗(x) δ(d)(x − x′)dt, (87)

〈dW (x,t)dW (x′,t)〉 = 2Dψψ (x) δ(d)(x − x′)dt, (88)

and their variances Dψψ∗(x) and Dψψ (x) depend locally on
the field ψ(x). Their value can be determined by imposing
that the motion equation for the second moments of the field
determined by the c-number equation (86) must be equal to the
ones obtained from the operatorial equation (82) in the normal
ordered form. Using this prescription, we obtain

2Dψψ∗ = A, 2Dψψ = C − P0(1 − iδ)(
1 + |ψ |2

ns

)2

ψ2

ns

− iλψ2. (89)

As expected from the U(1) symmetry of the original
problem, both C and the normal ordering terms in (89)
are all proportional to ψ2. The dependence of the diffusion
coefficients on the pumping parameter x = d/γ are plotted
in Fig. 7 for the mean-field steady state. Remarkably, while
Dψ∗ψ and Re[Dψψ ] depend very slowly on x and are not
much affected by the presence of detuning or self-interaction,
the imaginary part Im[Dψψ ] crucially depends on these
parameters. Note that the possibility of a nonvanishing Dψψ

variance was overlooked in the phenomenological discussion
that we published in [30] and has not been taken into account
in [25,33,34].

Due to the saturable pumping term in the SGPE, higher-
order momenta of the noise are present beyond the usual Gaus-
sian noise. Their correlation can be extracted by considering
the equation of motion for higher-order operator products.
Inspired by the so-called truncated Wigner scheme [15,35],
one can expect that their contribution is actually negligible in
the mean-field limit discussed in Sec. IV.

C. Comparison with full calculation

As a check of the validity of this reformulation, in Fig. 8 we
compare the predictions of the SGPE for the dispersion of the
collective Bogoliubov modes (upper and central row) and for
the momentum distribution (lower row) with the predictions
of the full model as derived in Sec. IV.

The Bogoliubov dispersion is obtained by linearizing the
deterministic part of the SGPE equation (86) around the
steady state. A straightforward calculation gives a dispersion

023633-11



ALESSIO CHIOCCHETTA AND IACOPO CARUSOTTO PHYSICAL REVIEW A 90, 023633 (2014)

0 2 4 6 8 10
2

0

2

4

6

x

D
iff

.C
oe

ff.
un

its
of
κ

D
iff

.C
oe

ff.
un

its
of
κ

D
iff

.C
oe

ff.
un

its
of
κ

D
iff

.C
oe

ff.
un

its
of
κ

D
iff

.C
oe

ff.
un

its
of
κ

D
iff

.C
oe

ff.
un

its
of
κ

(a) Normal ordering, δ = 0, λ nA = 0.

0 2 4 6 8 10

1

0

1

2

x
(b) Normal ordering, δ = −150κ, λ nA = 0.

0 2 4 6 8 10
10

5

0

5

x
(c) Normal ordering, δ = 0, λ nA = 0.05κ.

0 2 4 6 8 10

0
2
4
6
8

10
12

x
(d) Wigner ordering, δ = 0, λ nA = 0.

0 2 4 6 8 10
0.5
0.0
0.5
1.0
1.5
2.0
2.5

x
(e) Wigner ordering, δ = −150κ, λ nA = 0.

0 2 4 6 8 10

0
2
4
6
8

10
12

x
(f) Wigner ordering, δ = 0, λ nA = 0.05κ.

FIG. 7. Diffusion coefficients Dφφ∗ (solid lines), Re[Dφφ] (dashed lines), and Im[Dφφ] (dotted lines) appearing in the SGPE for a field
ψ equal to the mean-field steady state. The quantities are plotted as a function of the pumping parameter x = d/γ for different regimes of
photon-photon interactions (left to right). The top (bottom) row refers to the SGPE in the normal (Wigner) ordering case. In all panels, we have
taken γ = 100κ and g

√
nA = 25κ .

analogous to the one originally obtained in [24],

ω±
k = −�p ±

√
�2

p − E2
k (90)

with the damping parameter �p = κ(2P0 − κ)/4P0

and the equilibrium Bogoliubov dispersion Ek =

√
εk(εk + 2λeff|β0|2). In this latter, note that the effective

nonlinear term

λeff = λ − κ

2

δ

ns + |β0|2 (91)

contains two contribution: the former results from the direct
photon-photon interaction λ, and the latter describes the
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FIG. 8. Comparison between SGPE and the full model. First row and second row: Eigenvalues of the Bogoliubov matrix in functions
of the momentum; solid lines refers to SGPE quantities, dashed ones to the full model. Last row: Momentum distributions. In all panels,
λnA = ν − ω0 = 0, x = 2.
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effective Kerr optical nonlinearity due to saturation of the
emitters [47].

The momentum distribution shown in the bottom row
is instead obtained by reintroducing the noise terms in the
linearized equation and then making a small noise expansion:
the average of fluctuation operators like ns

k is written as a linear
function of the noise variances Dψ∗ψ and Dψψ .

In the three columns of Fig. 8, we show the result
of the comparison for different system parameters: as one
moves deeper in the good-cavity limit (left panels), the
agreement becomes very good, while significant discrepancies
are expected outside this limit (right panels). As expected, the
adiabatic elimination procedure for the momentum distribution
is only valid at sufficiently low k when the cavity field detuning
is small as compared to the atomic linewidth: breakdown of
this condition is indeed visible in the bottom-right panel, where
a clear qualitative deviation appears at large k. In particular, the
adiabatic elimination of the emitters in the SGPE loses track of
frequency dependence amplification and therefore is not able
to recover the large k behavior of the momentum distribution.
Note also that the quantitative agreement visible in the figure
crucially relies on the correct inclusion of the Dψψ variance.

In spite of its accurate predictions illustrated in Fig. 8, the
stochastic equation (86) is only meaningful at a linearized
level. A closer look at the top row of Fig. 7 shows in fact
that |Dψψ | is not always lower or equal to Dψψ∗ , as is
expected from the Cauchy-Schwartz inequality for a generic
Ito stochastic equation [55]. While at the linearized level one
can forget this fact and formally solve the linear stochastic
equation irrespectively on the positivity of the noise variance,
this is no longer possible when one wishes to describe the
nonlinear dynamics stemming from large fluctuations, e.g., in
the vicinity of the critical point for condensation. This feature,
often neglected in laser theory [40], is particularly visible
in the interacting case for λ �= 0 or δ �= 0. Techniques for
numerically solving (generalized) stochastic differential equa-
tions with non-positive-definite noise were proposed, the best
known example being the so-called positive-P representation
which however keeps suffering from other difficulties [38].

D. Symmetrically ordered c-number representation

Another possible way out is to make a different choice
for the ordering of operators when performing the projection
of the operator-valued SGPE (82) onto the c-number SGPE,
e.g., the symmetric ordering of the Wigner representation
where c-number averages correspond to symmetrically or-
dered quantities. In this case, the variance matrix of the noise is
indeed positive-definite (see bottom row of Fig. 7), but several
other difficulties appear [15,38]. First, the normal ordered
saturation term in Eq. (82) cannot be easily symmetrized,
which complicates writing of the deterministic part of the
stochastic equation. Second, the symmetrization of any nonlin-
ear term in (82) produces terms proportional to the commutator
[ψ(x),ψ†(x)], which is a UV divergent quantity. Finally, any
nonlinear term in (82) will generate a noise with nonvanishing
third-order momenta, e.g., 〈dW 2dW ∗〉 ∝ dt .

The first two problems can be overcome: the saturation
term can be approximated truncating the power expansion
to some order, so that symmetrization becomes viable. A

finite expression for the field commutator is available if
one discretizes the field on a lattice, which corresponds
to broadening the delta function according to the smallest
accessible length scale of the system. The third problem poses a
more challenging task, as noise with such features is extremely
difficult to treat. Solutions have been proposed [62,63] but
never implemented into the simulation of large systems. Note
that this is a well-known issue in the theory of phase-space
representation of quantum fields, where interaction terms
generate third-order derivatives in the equation for the Wigner
function, spoiling its interpretation as a Fokker-Planck
equation [38,64]. As already mentioned, truncated-Wigner
simulations where these terms are neglected are expected
to be correct in the mean-field limit and have been used in
simulations of polariton condensation in [35].

VI. CONCLUSIONS

In this article, we have built on laser theory to develop
a quantum field model of nonequilibrium Bose-Einstein
condensation of photons and polaritons in planar microcavity
devices. The system under examination consists of a spatially
extended cavity mode coupled to a continuous distribution
of externally pumped two-level emitters and is described
in terms of quantum Langevin equations. In our view, this
is a minimal model that is able to describe nonequilibrium
condensation simultaneously including at a quantum level the
spatial dynamics of the cavity field, a saturation mechanism,
and some frequency dependence of the gain. We expect that
such a model may become an essential tool in view of full
numerical simulations of the nonequilibrium phase transition.

As a first example of application of our theory, we have
worked out the main characteristics of quantum fluctuations
around the condensate state. Our calculations confirm the
nonequilibrium features that were anticipated by previous
theories and/or observed in the experiments: in particular,
the collective Bogoliubov modes include a Goldstone branch
with diffusive properties, photoluminescence is visible on both
upper and lower branches of the Bogoliubov spectrum, and the
momentum distribution shows a large-k decrease even in the
absence of any collisional thermalization mechanism. This
result provides a theoretical explanation to the experimental
observation [20] that a condensate can exhibit thermal-like
features in the momentum distribution even in the absence
of thermalizing collisions. Given the qualitatively different
shape of the collective excitation dispersion, we expect that
a decisive insight in the equilibrium versus nonequilibrium
nature of a condensation process can be obtained by measuring
dispersions from the luminescence spectra or via pump-and-
probe spectroscopy [16,56,57,65].

In the good-cavity limit, we propose a reformulation of our
theory in terms of a stochastic Gross-Pitaevskii equation. In
addition to contributing to the justification of a widely used
model of nonequilibrium statistical mechanics, this connection
allows us to relate the phenomenological parameters of the
SGPE to a more fundamental theory. In particular, it turns
out that the noise term originates from a complex interplay
between pumping and interactions and, in some cases, can
even exhibit a multiplicative dependence on the field. This
unexpected fact may turn out to have important consequences
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on the critical properties. To reliably simulate this physics in
large systems, further work is needed to overcome subtle issues
related to the peculiar statistics of the noise terms.

ACKNOWLEDGMENTS

We are grateful to Andrea Gambassi and Michiel Wouters
for continuous stimulating discussions. I.C. acknowledges
partial financial support from European Research Council
through the QGBE grant and from Provincia Autonoma di
Trento.

APPENDIX: ADIABATIC ELIMINATION

In this appendix we will work out a simple example to give
a more solid ground to the adiabatic elimination of Sec. V. Let
us consider the following simple Ito equations:

dx = (−γ x − g y)dt + dWx,
(A1)

dy = (−� y − g x)dt + dWy.

Assuming that one is interested in the slow function x(t) in the
limit of � � γ,g, one can make formally explicit

y(t) = −g

∫ t

−∞
dt ′ e−�(t−t ′)x(t ′) +

∫ t

−∞
e−�(t−t ′)dWy(t ′)

(A2)

and substitute its expression in the equation for x, to obtain

dx =
[
−γ x + g2

∫ t

−∞
dt ′ e−�(t−t ′)x(t ′)

]
dt + dW̃x, (A3)

where we considered the initial time t0 = −∞ and

dW̃x = dWx − g

∫ t

−∞
e−�(t−t ′)dWy(t ′). (A4)

Equation (A3) is exact and notice that dW̃x now has
a frequency-dependent spectrum. If γ � �, the kernel
exp[−�|t |] has a support which is much smaller than the
time scale on which x(t) varies appreciably. Therefore one
can approximate it as a delta function,

�

2
e−�|t |  δ(t), (A5)

and (A3), (A4) become

dx = −
(

γ − g2

�

)
x dt + dW̃x,

(A6)
dW̃x = dWx − g

�
dWy.

These equations are the same as we would have obtained by
simply dropping the temporal derivative dy/dt in (A1), as we
did in Sec. V.
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