
PHYSICAL REVIEW B 89, 085430 (2014)

Reversing Berry phase and modulating Andreev reflection by Rashba spin-orbit
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Graphene with Rashba spin-orbit coupling (RSOC) has attracted much attention so far. However, no one has
noticed the topologically nontrivial changes of Berry phase for RSOC from the absence to the presence. We
demonstrate that the Berry phase of electronic wave functions changes from π to 2π in graphene monolayer
(GML) and from 2π to π in graphene bilayer (GBL), driven by RSOC. These reversals of Berry phase result
in anomalous electron-hole conversions at normal conductor-superconductor junctions. The specular Andreev
reflection can be significantly reduced in GML, but obviously enhanced in GBL. Another unusual point caused
by RSOC is that the spin-flipped electron reflection happens due to the spin helical structures on equal-energy
surfaces. An electrically observable effect induced by RSOC is proposed such that the differential conductance
at voltages below the superconducting gap decreases strongly for GML while it increases remarkably for GBL,
attributed to the Berry-phase-dictated interference between incident and reflected states.
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I. INTRODUCTION

In the past decade, one-atomic thick graphene with hon-
eycomb structure has become a promising arena for verifying
several significant phenomena in fundamental physics and pro-
viding many foreseeable applications in nanoelectronics [1,2].
One of the most important findings is that the electronic
states in graphene monolayer (GML) and graphene bilayer
(GBL) exhibit, respectively, Berry phases of π and 2π ,
giving rise to their entirely different behaviors in electron
tunnelings [3] and quantum Hall effects [4,5]. Associated
with the π -Berry phase in GML, a striking phenomenon,
the specular Andreev reflection, has been found at a normal
conductor-superconductor (NS) junction [6], when the Fermi
wavelength in the weakly doped region N is larger than the
superconducting coherence length. This differs very much
from the conventional process of the Andreev retroreflection.
The signal of the specular Andreev reflection in GBL, however,
is very weak [7], due to the 2π -Berry phase. Experimentally,
the Andreev reflections may be detected in a superconducting
device [8], where the superconducting state is introduced in
graphene from the proximity with a superconducting substrate.
Further theoretical work has shown that finite width can
change drastically the NS behavior [9–11] and the magnetic
correlation can enhance the specular Andreev reflection
[12–15] in graphene.

Recently, the specular Andreev reflection has also been
discussed at an NS junction in a two-dimensional electron
gas with Rashba spin-orbit coupling (RSOC), for the different
topological structures of equal-energy surfaces of electrons
and holes [16]. For a GML with RSOC, the spin helical struc-
tures on equal-energy surfaces [17] have been shown. Through
theoretical treatment, we notice that the GML and GBL
with RSOC have basically the same spin helical structures
on equal-energy surfaces. Our further analysis indicates that
both of them exhibit the RSOC-driven topological changes,
characterized by the changes of their Berry phase, from π to
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2π for GML and from 2π to π for GBL. Considering the
strong dependence of Andreev reflections on band topology,
we would like to make clear the electron-hole conversions at
an NS junction in the presence of RSOC. The NS device is
illustrated in Fig. 1, where the RSOC in the level of 10 meV
can be applied in the region N and can be realized in experiment
by placing a GML (GBL) in Ni(111) substrate, with an Au
monolayer intercalated [18]. Alternatively, through doping
with adatoms [19], the RSOC may be applied as well.

By solving the Bogoliubov-de Gennes (BdG) equation of
superconductivity [6,7], we find that the specular Andreev
reflection is completely suppressed by RSOC in GML while
observably enhanced in GBL, when the region N is weakly
doped, attributed to the interference between incident and
reflected states. This leads to a measurable effect that the
differential conductance at voltages below the supercon-
ducting gap is strongly decreased by RSOC for GML but
significantly increased for GBL. These results originate from
the RSOC-driven nontrivial changes of the Berry phase.
This paper is organized as follows. In Sec. II, we give the
spinor structures of GML and GBL and argue the topological
properties characterized by the Berry phase. The phenomena
of the Andreev reflections are discussed in Sec. III, and the
differential conductance is given in Sec. IV. A summary is
presented in Sec. V.

II. SPINOR STRUCTURES OF ELECTRONIC STATES

In this section, for simplicity, we discuss the Hamiltonian
and electronic states when the GML and GBL are undoped,
i.e., the Fermi energy is zero. Certainly, the nonzero Fermi
energy does not alter our main conclusions.

Graphene monolayer. A GML is constructed of two
trigonal sublattices A, B. In the basis {ψA↑ ,ψA↓ ,ψB↑ ,ψB↓},
the effective Hamiltonian of an undoped GML with the RSOC
for one valley is written as

Hξ = �vF(σxkx + ξσyky) ⊗ s0 + λR

2
(σx ⊗ sy − ξσy ⊗ sx),

(1)

1098-0121/2014/89(8)/085430(8) 085430-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.085430


XUECHAO ZHAI AND GUOJUN JIN PHYSICAL REVIEW B 89, 085430 (2014)

superconductor
s-wave

Ni(111)

Au GML

GBL

G

x = 0

y
xN S

1

2

e

e h

h 3

4

FIG. 1. (Color online) Schematic of an NS junction, based on a
GML or GBL. The Rashba region N is experimentally realized by
placing a GML or GBL in Ni(111) substrate, with an Au monolayer
intercalated, and the region S contacts with an s-wave superconductor.
The possible interface scattering processes are sketched, including
the specular Andreev reflection (1), Andreev retroreflection (2), and
transmissions of electronlike (3) and holelike (4) BdG-quasiparticles.

whereHξ is divided into two partsHξ = H 0
ξ +HR

ξ . The first

term H 0
ξ is the intrinsic term, and the second term HR

ξ is
the Rashba term. The notation ξ = +(−) indicates valley K
(K′), the constant vF = 106 ms−1 is the Fermi velocity [3,5],
and λR is the Rashba parameter. The 2 × 2 Pauli matrices
(σx , σy), (sx , sy) are in the pseudospin, real-spin spaces,
with the unit matrices denoted by σ0, s0. The Hamiltonian
(1) is the low-energy approximation of the tight-binding
Hamiltonian [17,20].

The whole Hamiltonian including the two valleys reads

H =
(H+ 0

0 H−

)
, (2)

which is time-reversal invariant, i.e., THT−1 = H. The time
reversal operator can be given as

T = i

(
0 σz ⊗ sy

σz ⊗ sy 0

)
C, (3)

with σz the Pauli matrix for pseudospin and C the operator
of complex conjugation. One can verify T2 = −1, which is a
necessary property satisfied by fermions [21].

By solving the stationary equation Hψ = Eψ , we obtain
the eigenvalues as

Eμν(k) = μν

2

(√
λ2

R + 4(�vFk)2 − νλR
)
, (4)

where μ,ν = ± can distinguish four different subbands. The
wave vector modulus satisfies k = √

k2
x + k2

y . At a given μ,
the spinor wave vectors read

ψK
μ+ = c0(iμ�e−iθ ,μ�′,i�′,�eiθ )T,

ψK
μ− = c0(iμ�′e−iθ , − μ�, − i�,�′eiθ )T,

ψK′
μ+ = c0(μ�′, − iμ�eiθ ,�e−iθ , − i�′)T,

ψK′
μ− = c0(−μ�, − iμ�′eiθ ,�′e−iθ ,i�)T,

(5)

where the superscript T represents the transpose, c0 = 1/
√

2
is the normalized constant, and θ = arctan(ky/kx) is the angle
of the wave vector k. It is defined that � = cos (ϑ/2), �′ =
sin (ϑ/2) with ϑ = arctan(2�vFk/λR). The expectations of the
real-spin operator σ0 ⊗ s and the pseudospin operator σ ⊗ s0
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FIG. 2. (Color online) Band structures of an undoped (a) GML
and (b) GBL under RSOC in the vicinity of valley K (identical for
valley K′), given by Eqs. (4) and (10), respectively. The red (green)
boundary lines between different background colors indicate the outer
(inner) subbands relative to the central axis kx = 0. Each subband
energy is labeled by Eμν , where μ, ν take the signs ±. The value 2λR

in (a) denotes an energy splitting at the point K (K′). The circles with
arrows in (a) and (b) sketch the spin helical structures of equal-energy
surfaces in the (kx,ky) plane.

are given as

〈σ0 ⊗ s〉μν = ν sin ϑ(x sin θ − y cos θ ) = (ek × z)ν sin ϑ,

(6)

〈σ ⊗ s0〉μν = μν sin ϑ[x cos θ + y sin θ ] = ekμν sin ϑ, (7)

where sin ϑ = 2�vF k/

√
λ2

R + 4(�vFk)2 and ek = k/k. In
Eq. (6), the sign of ν signifies the helical direction of the
real spin, as sketched in Fig. 2(a), identical for valleys K and
K′. In Eq. (7), the sign of μν determines the orientation of the
pseudospin polarization vector ek .

To characterize the global property of the pseudospin and
real-spin under the RSOC, we give the Berry phase [22] of the
electronic states in Eq. (5) as

�B = i

∫ 2π

0
dθ

〈
ψξ

μν

∣∣ ∂

∂θ

∣∣ψξ
μν

〉 = 0. (8)

One can verify that, using another gauge by multiplying ψξ
μν

by e−iθ [22,23], �B in Eq. (8) becomes 2π . Nevertheless,
this gauge only changes the winding number of the pseu-
dospin [23]. It means that the values of Berry phases 0 and
2π are topologically equivalent. It is understood that, in GML
without RSOC, the singularity of the Dirac node leads to a
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π -Berry phase [24]. Driven by RSOC, the node is removed,
because the relation of Eμν versus k in Eq. (4) changes from the
original linear odd function to an even function. The subbands
E++, E−+ in Fig. 2(a) only touch each other at zero energy but
do not cross. Hence, a topological change is driven by RSOC,
with the Berry phase changed from π (for λR = 0) to 2π (for
λR 	= 0).

Graphene bilayer. A Bernal-stacked GBL consists of two
coupled GMLs, with inequivalent sublattices A, B and Ã,
B̃ on the top and bottom layers, respectively. The interlayer
coupling γ = 0.39 eV [25,26] exists between A and B̃. Under
the RSOC, the full Hamiltonian constructed from two 4 × 4
matrices in Eq. (1) is an 8 × 8 matrix. Using perturbation
method under low-energy condition E < γ [27,28], an effec-
tive 4 × 4 Hamiltonian is derived to describe four low-energy
subbands,

Hξ = H 0
ξ + H R

ξ

= − (�vF k)2

γ

(
0 e−2iξθ

e2iξθ 0

)
⊗ s0 − �vFλR

γ

× [σx ⊗ (kxsy + kysx) − ξσy ⊗ (kxsx − kysy)], (9)

where {ψÃ↑ ,ψÃ↓ ,ψB↑ ,ψB↓} is the basis. The time-reversal

invarianceTHT−1 = H can be verified using Eqs. (2) and (3).
By solving the equationHψ = Eψ for the undoped GBL,

the eigenvalues are given as

Eμν(k) = μ�vFk

γ

(√
λ2

R + (�vF k)2 − νλR
)
. (10)

Here, μ,ν = ± distinguishes four subbands, as labeled in
Fig. 2(b). The eigenvectors read

ψK
μ+ = c0(−iμ�e−2iθ , − μ�′e−iθ ,i�′,�eiθ )T,

ψK
μ− = c0(iμ�′e−2iθ , − μ�e−iθ , − i�,�′eiθ )T,

ψK′
μ+ = c0(−μ�′eiθ ,iμ�e2iθ ,�e−iθ , − i�′)T,

ψK′
μ− = c0(−μ�eiθ , − iμ�′e2iθ ,�′e−iθ ,i�)T,

(11)

where � = cos (ϑ/2), �′ = sin (ϑ/2) with ϑ =
arctan(�vF k/λR), distinct from those definitions in Eq. (5) for
GML. Expectations of the real-spin operator σ0 ⊗ s and the
pseudospin operator σ ⊗ s0 are given as

〈σ0 ⊗ s〉μν = (ek × z)ν sin ϑ, (12)

〈σ ⊗ s0〉μν = −μ sin ϑ[x cos(2θ ) + ξ y sin(2θ )]. (13)

The spin helicities and pseudospin polarizations here are,
respectively, related to the signs of ν in Eq. (12) and μ in
Eq. (13). Under the RSOC, the spin helical properties for GBL
are sketched in Fig. 2(b), which exhibits basically the same
characteristics as shown in Fig. 2(a) for GML.

The Berry phase of ψξ
μν in GBL with RSOC reads

�B = i

∫ 2π

0
dθ

〈
ψξ

μν

∣∣ ∂

∂θ

∣∣ψξ
μν

〉 =
{

π, for ψK
μν

−π, for ψK′
μν

, (14)

different from 2π in GBL without RSOC [4,23], where no node
exists in a parabolic even function E(k). Under the RSOC, a
node appears at zero energy because Eμν in Eq. (10) is an

odd function of k and the subbands E++, E−+ (E+−, E−−)
in Fig. 2(b) cross each other. Thus, a topologically nontrivial
change is driven by RSOC, with the Berry phase changed
from 2π (for λR = 0) to π (for λR 	= 0). Interestingly, the
Berry phase for GBL with RSOC turns into the value for
GML without RSOC. For a graphene N layer, the Berry phase
is to be changed from Nπ without RSOC [29] to (N − 1)π
under the RSOC.

III. ANDREEV REFLECTION AT AN NS JUNCTION

Now, we consider the electron-hole conversion at the
interface of an NS junction, where the RSOC is present only
in the region N of GML (GBL), as illustrated in Fig. 1.
The excitations of quasiparticles from the regions N and
S can be described by the BdG equation, Hψ(r) = εψ(r).
In the Nambu space, the spinor basis reads ψ = (u,υ)T =
[(ψA↑ ,ψA↓ ,ψB↑ ,ψB↓ )ξ ,(−ψ∗

A↓ ,ψ
∗
A↑ ,ψ

∗
B↓ , − ψ∗

B↑ )ξ̄ ]T, where

A indicates the sublattice A (Ã) for GML (GBL), ξ̄ = −ξ ,
and υ = Tu. Due to the valley degeneracy, the BdG equation
can be decoupled and then written as

(Hξ (x) − EF ��(x)

�∗�(x) EF −Hξ (x)

) (
u

υ

)
= ε

(
u

υ

)
, (15)

where the position-dependent Hamiltonian reads Hξ (x) =
H0

ξ +HR
ξ �(−x) − U0�(x), with �(x) the Heaviside step

function. In comparison with Eqs. (1) and (9), the Fermi
energy EF here is a variable tuned by a gate. The potential
−U0�(x) gives the relative shift of EF in N and S, and can
be adjusted by an additional gate voltage or doping. In S, the
s-wave superconducting pair potential � = �0e

iφ is used, and
a fixed value �0 = 1 meV is assumed. Of course, a larger pair
potential should lead to easier observable results.

The use of a sharp Heaviside step potential at the interface
is based on such an approximation that � reaches its value at a
negligible distance from the interface. This requires the Fermi
wavelength in S should be much smaller than the value in
N [6]. Meanwhile, to ensure the validity of the mean-field ap-
proximation, phase fluctuations of the order parameter should
be small. This requires the Fermi wavelength in S should be
much smaller than the superconducting coherent length [6,7],
or equivalently the energy relation E′

F = (EF + U0) � �0.
In our calculations, a highly doped condition E′

F = 300�0 is
adopted in S. Because the equal-energy surfaces are identical
for the two valleys, as sketched in Fig. 2, electrons in either
valley follows the same incident/reflection trajectory. Hence
we only need to consider the case of incidence in valley K.

In the case of EF < |E − EF| (E is the incident energy
of electron) and λR = 0, the specular Andreev reflection in
Fig. 1 happens: The conduction-band electron is incident and
the valence-band hole is reflected. The signal of the specular
Andreev reflection has been proved to be very strong in
GML [6] due to the electron-hole constructive interference
induced by the π -Berry phase, but very weak in GBL [7]
because of the electron-hole destructive interference induced
by the 2π -Berry phase. In the case of λR 	= 0, the specular
Andreev reflection should be reduced in GML with the
2π -Berry phase, but enhanced in GBL with the π -Berry phase.
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In the following, we discuss the Andreev reflections in detail
for GML and GBL with RSOC, respectively.

Graphene monolayer. By solving the BdG equation in
GML, the excitation spectrum of quasiparticles in N (x < 0)
can be given as

εμν = 1
2

∣∣√λ2
R + 4(�vF k)2 − νλR − 2μνEF

∣∣. (16)

In comparison with Eq. (4), εμν = |Eμν(k) − EF| > 0. This
means that the excited quasiparticles comes from the conduc-
tion (valence) bands in Fig. 2(a) when Eμν > EF(Eμν < EF).
Because the Hamiltonian simplifies toHξ (x > 0) = H0

ξ − E′
F

in S, the excitation spectrum of the BdG quasiparticles can be
obtained as εμν = √

�2
0 + (E′

F + μν · �vFk)2. In both N and S,
all the incident and interface-scattering states (u,υ)exp(ik · r)
in the Nambu space could be solved from Eq. (15). Using
the continuity of the wave functions at x = 0, the reflection
amplitudes can be calculated in principle. Because the wave
functions depend on both the modulus and angles of wave
vectors here, it greatly increases the complexity to analytically
solve the reflection amplitudes, and thus numerical calcula-
tions are performed to obtain the useful results.

We are mainly concerned with the Andreev reflections
when the region N is within the weakly doped regime I
(EF < �0 < λR) and the strongly doped regime II (E′

F �
EF > λR � �0), as discussed previously [6,7]. For the former,
the specular Andreev reflection is present when ε > EF and the
Andreev retroreflection is present when ε < EF; for the latter,
only Andreev retroreflection happens because ε � EF. The
incident and reflected particles, as described in Fig. 1, should
satisfy (i) energy conservation, (ii) momentum conservation in
the y direction, and have (iii) opposite directions of their group
velocities in the x direction. According to these conditions,
Figs. 3(a) and 3(b) plot the momenta of all possible incident
and reflected states on the equal-energy surfaces (denoted by
circular contours) for EF = 0 and EF � �0, respectively: ψa

FIG. 3. (Color online) (a) and (b) Equal-energy surfaces of GML
shown by the circular contours labeled with (μ,ν), given by Eq. (16),
under EF = 0 � �0 and EF � �0, respectively. For the incident
states ψa and ψa′ , reflected states ψb and ψb′ , Andreev reflection states
ψc and ψc′ , their momenta, and angles in the (kx,ky) plane are marked.
The horizontal dashed lines indicate the momentum conservation, and
all the reflected states can be proved to satisfy vg,x = (1/�)∂ε/∂kx <

0 where vg,x represents the group velocity in the x direction.
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FIG. 4. (Color online) Excitation spectra at normal incidence, (a)
and (b) for GML and (c) and (d) for GBL. (a) and (c) are plotted at
EF = 0, while (b) and (d) at EF � �0. The solid and dashed lines
indicate the subbands located, respectively, in valleys K and K′, and
here electron excitations in K are coupled by the BdG equation to
hole excitations in K′ (both valleys are needed because time-reversal
symmetry is broken within one valley). The possible incident states
ψa , ψa′ and the forbidden (×) reflected cases are denoted in panels (a)
and (c). The incident state ψa , ψa′ and all of their possible reflected
states are marked in panels (b) and (d).

is the only incident state in regime I and lies in subband
(μ,ν) = (+,+), while ψa′ in subband (−,−) denotes the other
incident state (except ψa) in regime II; ψb and ψb′ describe the
intravalley reflected electron states for ψa or ψa′ ; ψc in subband
(−,+) [valence band in Fig. 2(a)] is the intervalley specular
Andreev-reflection state for ψa in regime I, while ψc, ψc′ in
subbands (+,+), (−,−) [conduction band in Fig. 2(a)] indicate
the intervalley Andreev-retroreflection states for ψa or ψa′ in
regime II. It can be further proved that the specular Andreev
reflection state satisfies vg,y = (1/�)∂ε/∂ky > 0, while the
Andreev retroreflection state satisfies vg,y < 0.

After determining the subband indexes (μ,ν) for each
incident and reflected state in N, the reflection process could
be analyzed. Specifically at normal incidence, the dispersion
at EF = 0 is shown in Fig. 4(a). From Eq. (5), it is inferred that
the specular Andreev reflection must be forbidden, because the
reflected hole state ψc is orthogonal to the incident electron
state ψa . Then on the equal-energy surface in Fig. 3(a), there
is only one possible reflected state ψb that is nonorthogonal to
ψa , and thus ψb is completely reflected. It is just the 2π -Berry
phase of the spinor wave function that is responsible for
this phenomenon. Another unusual point is that the reflected
electron, at normal incidence, has the opposite spin with that
of the incident electron, due to the spin helical structure of
the equal-energy surface induced by RSOC. Such spin-flipped
electron reflection does not occur at other graphene-based
junctions previously studied [6,7,30–32], and can find its use
in spintronic devices [33]. Figure 4(b) gives the dispersion
at normal incidence under EF � �0, where the electron
reflection and Andreev retroreflection happen. Likewise, it can
be verified that ψa (ψa′) is orthogonal to ψb′ , ψc′ (ψb,ψc).
The nonorthogonality of ψa and ψc suggests the existence
of Andreev retroreflection. All these analyses from Figs. 4(a)
and 4(b) reveal that an NS junction, based on GML with RSOC,
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should display the same reflection phenomena with that based
on GBL without RSOC [7], due to the 2π -Berry phase under
λR 	= 0.

Graphene bilayer. By solving the BdG equation, the
excitation spectrum (εμν > 0) of quasiparticles in region N
read

εμν =
∣∣∣∣�vF k

γ

(√
λ2

R + (�vF k)2 − νλR
) − μEF

∣∣∣∣. (17)

In comparison with Eq. (10), εμν = |Eμν(k) − EF|. The
Hamiltonian in S without RSOC simplifies to Hξ (x > 0) =
H0

ξ − E′
F. The excitation spectrum of the BdG quasiparticles

can be given as εμν = √
�2

0 + [E′
F + μ(�vF k)2/γ ]2. In both

N and S, all the incident and interface-scattering states
(u,υ)exp(ik · r) in the Nambu space could be obtained by
solving Eq. (15). Matching the wave functions at x = 0, all
the reflection amplitudes can be calculated.

As described in GML, we will consider the Andreev
reflections at an NS junction of GBL in the weakly doped
regime I (EF < �0) and strongly doped regime II (E′

F �
EF � �0). For the former, the specular Andreev reflection
is present only when ε > EF); for the latter, only Andreev
retroreflection happens because ε � EF. The Fermi energies
EF and E′

F in N and S could be tuned by doping [26]. Because
a GBL with RSOC has no splitting of the four energy bands
at point K or K′ [see Fig. 2(b)], two equal-energy incident
states ψa , ψa′ always survive together, irrespective of which
regime one operates. The equal-energy surfaces could also
be described by Fig. 3(b), due to the identical spin helical
structures of GML and GBL. The subband indices (μ,ν),
however, change correspondingly: The incident states ψa , ψa′

lie in subbands (+,+) and (+,−), respectively; ψb and ψb′

describe the reflected electron states for ψa or ψa′ ; the reflected
hole states ψc, ψc′ are contributed by subbands (−,+) and
(−,−) [valence band in Fig. 2(b)] in regime I, whereas they
are contributed by subbands (+,+) and (+,−) [conduction
band in Fig. 2(b)] in regime II. Meanwhile, the incident and
reflected particles should satisfy the momentum conservation
in the y direction and have opposite directions of their group
velocities in the x direction.

Particularly at normal incidence, we analyze the reflection
process without calculation, after determining (μ,ν) for each
incident and reflected state. The dispersion at EF = 0 is
displayed in Fig. 4(c). From Eq. (11), we find ψa (ψa′ ) is
orthogonal to ψb (ψb′ ), due to the π -Berry phase at λR 	= 0.
As a consequence, the corresponding electron reflections are
suppressed, and the related specular Andreev reflections are
enhanced. The other nonorthogonality of ψa and ψb′ (ψa′ and
ψb) suggests the existence of scattering between two different
subbands in addition to the specular Andreev reflection. It is
inferred that the net signal of specular Andreev reflection at
an NS junction based on GBL with RSOC is stronger than
that in the case without RSOC, but it should be weaker than
that happening at a GML NS junction [6] without scattering
between different subbands. Figure 4(d) shows the dispersion
under EF � �0. In this situation, ψa (ψa′) is orthogonal to ψb,
ψc′ (ψb′ , ψc), and ψa (ψa′ ) is nonorthogonal to ψc (ψc′), and
then the Andreev retroreflection is enhanced.

IV. SUBGAP DIFFERENTIAL CONDUCTANCE

As a result of spin splitting of energy bands induced by
RSOC, we need to extend the Blonder-Tinkham-Klapwijk
formalism [34] for a single-band incident state to the case of
two incident states ψa , ψa′ in different subbands. The reflection
amplitudes (r1,r2,rA1 ,rA2 ), (r ′

1,r
′
2,r

′
A1

,r ′
A2

) are, respectively, for
the incident states ψa and ψa′ , corresponding to their four
shared reflected states ψb, ψb′ , ψc, ψc′ . The subgap (eV < �0)
differential conductance is then written as

G

G0
= 1

N0

∫ π/2

0
dθ cos θ

[
N1

(
1 − |r1|2 − Pb′ |r2|2 + Pc

∣∣rA1

∣∣2

+Pc′ |rA2 |2
) +N2

(
1 − |r ′

1|2 − Pb′ |r ′
2|2 + Pc

∣∣r ′
A1

∣∣2

+Pc′
∣∣r ′

A2

∣∣2)]
. (18)

The scaling coefficient G0 ≡ ∂I0/∂V = (2e2/h)N0 is the
ballistic conductance of GML or GBL without RSOC, and
the number of available channelsN0 is determined by the bias
eV and the dispersion. The channel numbers N1, N2 are for
ψa , ψa′ . The other coefficients take Pb′ = kb′ cos θ ′/(kacos θ ),
Pc = kc cos θA/(kacos θ ), Pc′ = kc′ cos θ ′

A/(kacos θ ), where
(ka,θ ), (kb′ ,θ ′), (kc,θA), (kc′ ,θ ′

A) are the wave-vector modulus
and angles for the states ψa , ψb′ , ψc, ψc′ , determined by the
conservation of energy and momentum at a given θ , as shown
in Fig. 3 for GML.

Graphene monolayer. We now calculate the differential
conductance at an NS junction based on a GML with width W

using Eq. (18). According to the linear dispersion [6], it is ob-
tained N0 = (W/π )k = n0(eV + EF) with n0 = W/(π�vF).
By taking μ = +(−), ν = +(−) in Eq. (16), N1(2) is given
as N1(2) = n0

√
eV + EF · √

eV + EF + (−)λR. In regime I,
ψa is the only incident state, and thus Eq. (18) reduces to
G/G0 = (N1/N0)

∫ π/2
0 dθ cos θ [1 − |r1|2 + P1|rA1 |2], where

the relation |r1|2 + |rA1 |2 = 1 holds. In regime II, because inci-
dent states ψa , ψa′ coexist and the scattering between different
subbands exists,

∑2
i=1 |ri |2 + |rAi

|2 = 1 and
∑2

i=1 |r ′
i |2 +

|r ′
Ai

|2 = 1 hold, according to the particle conservation.
In Fig. 5(a), we plot the differential conductance against the

bias voltage, at different Fermi energies EF/�0 = 0,0.5,50,
when the value of λR/�0 is fixed at 20. For comparison,
the differential conductance, at λR = EF/�0 = 0 [6], is given
here. As usual for an NS junction [35], the differential
conductance always has a singularity at eV= �0. Comparing
the results in the presence and absence of RSOC, at EF = 0,
it is found that the differential conductance is significantly
lowered by the presence of RSOC, as expected, in contrast
to the enhancement effect in magnetic graphene [12–15].
This is just the result of the topological change of the Berry
phase, from π to 2π . Actually, this reversed Berry phase
behavior results in a transition from constructive interference
to destructive interference between the incident and specular
Andreev reflection states. The curve for EF/�0 = 0.5 can
characterize the relation of conductance-bias voltage under
0 < EF < �0. The zero-bias conductance peak is contributed
by the Andreev retroreflections, and the specular Andreev
reflection dominates under eV > 0.5�0. At EF/�0 = 50, the
probabilities of the Andreev retroreflections, |rA1 |2 and |r ′

A1
|2,

contribute most to the differential conductance. It is found
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FIG. 5. (Color online) (a) Differential conductance vs bias volt-
age for GML. The curve at λR = EF/�0 = 0 is for reference.
The results, for EF/�0 = 0, 0.5, 50, are plotted at λR/�0 = 20.
(b) Reflection probabilities vs incident angle θ , at λR/�0 = 20,
EF/�0 = 0.2, ε/�0 = 0.8. The top right inset describes the allowed
reflection and the forbidden transmission at θ = 0, and the other inset
gives the reflection probabilities vs λR at normal incidence.

that the differential conductance in Fig. 5(a) exhibits the same
feature as displayed in the GBL-based NS junction without
RSOC [7]. This demonstrates a topological equivalence,
characterized by the same Berry phase 2π , between the
GML with RSOC and the GBL without RSOC. In addition,
a previous work [36] has proved that a strong topological
correspondence exists between Andreev reflection and Klein
tunneling in GML without RSOC. It can be inferred that the
2π -Berry phase here should be responsible for the origin of the
results previously studied in integer quantum Hall effects [17]
and Klein tunneling for GML with RSOC [37].

Considering that the differential conductance in Fig. 5(a)
washes out those features upon angular integration in Eq. (18),
it is necessary to display the reflection amplitudes against
the incident angle θ . Figure 5(b) plots the probabilities
|r1|2, |rA1 |2 vs the incident angle θ , for the intravalley
electron reflection (solid line) and intervalley specular Andreev
reflection (dashed line), at EF/�0 = 0.2 and ε/�0 = 0.8. In
line with the numerical result, the critical angle can be derived
as θc = arcsin

√
ε−(ε− + λR)/

√
ε+(ε+ + λR) � 0.278π with

ε± = ε ± EF, beyond which the specular Andreev reflection
is forbidden [7,32]. Note that the curve in Fig. 5(b) could show
the main characteristics of reflections under EF � �0. At
θ = 0, we also plot |r1|2, |rA1 |2 vs λR in the middle right inset
of Fig. 5(b). It is shown that |r1|2 and |rA1 |2 are independent

0

0.5

0/ΔFE
50

0
/G

G

1.0 1.50.5
0/ΔeV

2.0

0.5

1.5

0.0

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

θ
0

N S
a
c
b

0

1

0 π/2θ

π/8π/16

FIG. 6. (Color online) (a) Differential conductance vs bias volt-
age for GBL at λR/�0 = 20 and EF/�0 = 0,0.5,50. (b) Reflection
probabilities vs incident angle θ , at λR/�0 = 20, EF/�0 = 0.2,
ε/�0 = 0.8: |r1|2, |rA1 |2 are for the incident state ψa , and |r ′

2|2,
|r ′

A2
|2 are for the incident state ψa′ ; |r1|2, |rA1 |2 vs the whole angle

range 0 � θ � π/2 are given in the top left inset; the top right inset
describes the interface scattering for the incident state ψa at θ = 0.

of λR because of the invariant 2π -Berry phase at any given
nonzero λR here. Actually, the critical angle θc can be changed
by different λR, and G/G0 could change a little.

Graphene bilayer. We turn to calculate the differential
conductance at an NS junction based on a GBL with width W

using Eq. (18). At a given bias eV, parametersN0,N1, andN2

are solved as N0 = n0
√

(eV + EF)γ with n0 = W/(π�vF),
and N1 = (W/π )kl , N2 = (W/π )km. By taking μ = +(+),
ν = +(−) in Eq. (17), the wave-vector modulus kl(m) could
be solved by (eV + EF)[eV + EF + (−)2�vF kl(m)λR/γ ] =
[�vF kl(m)]4/γ 2. The conductance G/G0 vs the bias eV is
plotted in Fig. 6(a), at λR = 20�0, when EF in region N is
fixed at 0 (solid line), 0.5 (short dashed line), 50 (long dashed
line). As EF/�0 is tuned from 0 to 50, the dominant reflection
varies from the specular Andreev reflection to the Andreev
retroreflection. This result, like that occurring in GML without
RSOC [6], originates from the π -Berry phase. Figure 6(b)
further plots the reflection probability against the incident
angle θ : The parameters are chosen at EF/�0 = 0.2, ε/�0 =
0.8, the same as in Fig. 5(b), but the incident angle is limited
to θ � π/8 for showing precisely the main contribution to the
conductance; in addition, for better comparison with Fig. 5(b),
|r1|2 and |rA1 |2 vs the whole angle range 0 � θ � π/2 are
given in the top left inset. It is shown that the probabilities
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of electron reflections |r1|2, |r ′
2|2 are suppressed while the

probabilities of the specular Andreev reflections |rA1 |2, |r ′
A2

|2
are enhanced. Moreover, just as in GML, one can prove that
Andreev reflection has weak dependence on the value of
nonzero λR.

In analogy with the GML without RSOC [6], the Rashba
system of GBL exhibits the same phenomena of the specular
Andreev reflection at an NS junction. This fact, in a certain
sense, manifests the topological equivalence of these two
systems. A notable difference is that multiband scattering
processes exist in GBL with RSOC. The intravalley reflected
electron, as indicated in the Rashba system of GML, can have
flipped spin in comparison with that of the incident electron,
due to the spin helical structures. Likewise, the Rashba system
of GBL can be used in spintronic devices based on Andreev
reflections [33].

Comparison between monolayer and bilayer. Comparing
the results in Figs. 5 and 6, we can show that the presence
of RSOC, in the weakly doped region N, leads to an anoma-
lous result that the specular Andreev reflection is strongly
suppressed for GML but observably enhanced for GBL. This
reverse phenomenon originates from the topological reversal
of the Berry phase, from π to 2π for GML and from 2π to
π for GBL. Actually, the Berry phase here only describes a
topology of electronic states at either K or K′ valley, but not the
whole Brillouin zone. Because there exists no bulk band gap in
the Rashba systems of GML and GBL, both the Z2 topological
invariant [20,38] and the spin Chern number [39] are trivial. In
this sense, the Berry phase here is a locally good topological
invariant for these two Rashba systems. Additionally, if we
consider a weak intrinsic spin-orbit coupling in GML and
GBL with Rashba interaction [20,25,27], a bulk band gap may
be opened, and the band topology could be very different due
to the competition between Rashba and intrinsic spin-orbit
couplings. The results discussed here might be affected,
especially at very low energies.

Moreover, based on the fact that the Andreev reflection
phenomena have been observed experimentally in graphene

contacted by superconducting electrodes [8], there is the
reason to believe that our predictions on the differential
conductance can be verified. Besides, the previous measured
13-meV RSOC [18] is evaluated to be sufficient to validate
our results, and the signal of differential conductance could be
detected much easier in Rashba systems with a stronger RSOC
up to 100 meV [40]. In turn, the experimental observations on
differential conductance would provide an effective method
to determine Berry phase. Further considering the availability
of two-dimensional Rashba systems in designing topologically
stable Majorana modes [41], there still needs to be more efforts
to reach such a goal in graphene-based Rashba systems.

V. CONCLUSION

In summary, we have found both GML and GBL can exhibit
nontrivial changes of their Berry phase, driven by RSOC, from
π to 2π for GML but 2π to π for GBL. Such changes result
in anomalous electron-hole conversions at NS junctions: The
specular Andreev reflection is significantly reduced in GML,
when region N is weakly doped, but obviously enhanced in
GBL. Another unusual point caused by RSOC is that the
spin-flipped electron reflection happens due to the special
structures of spin helicities induced by RSOC. An electrically
observable result is that the subgap differential conductance,
driven by RSOC, exhibits a remarkable suppression in GML,
but it displays an obvious enhancement in GBL. Our results
provide new insight into the control of Andreev reflections
and supercurrents in other kinds of superconducting hetero-
junctions by introducing RSOC.
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