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Nonequilibrum dynamics in the strongly excited inhomogeneous Dicke model
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Using the exact eigenstates of the inhomogeneous Dicke model obtained by numerically solving the Bethe
equations, we study the decay of bosonic excitations due to the coupling of the mode to an ensemble of two-level
(spin 1/2) systems. We compare the quantum time evolution of the bosonic mode population with the mean-field
description which, for a few bosons, agree up to a relatively long Ehrenfest time. We demonstrate that additional
excitations lead to a dramatic shortening of the period of validity of the mean-field analysis. However, even in the
limit where the number of bosons equal the number of spins, the initial instability remains adequately described
by the mean-field approach leading to a finite, albeit short, Ehrenfest time. Through finite size analysis we also
present indications that the mean-field approach could still provide an adequate description for thermodynamically
large systems even at long times. However, for mesoscopic systems one cannot expect it to capture the behavior
beyond the initial decay stage in the limit of an extremely large number of excitations.
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I. INTRODUCTION

Since they constitute one of the broad classes of proposed
physical realizations of quantum computing devices,1–4 co-
herently interacting light-matter systems have received lately
a considerable level of attention. The interest has been
further enhanced by relatively recent progress in a variety
of systems ranging from polaritons in quantum wells5–7 to
semiconductor quantum dots8–10 which nowadays make it
possible to realize solid-state based quantum systems which
couple to a single photon eigenmode of optical microcavities.
At the same time the many-body effects in these systems are
becoming increasingly important in the context of engineering
of semiconductor lasers11–14 motivated by potentially a great
enhancement in performance of designs in which quantum
dots serve as an active medium.15

While an ideal system of identical two-level (spin 1/2) emit-
ters coupled uniformly to a single light mode is describable
in terms of the Dicke Hamiltonian,16,17 a more realistic setup
would need to include possible inhomogeneities in both the
energy splitting of the individual spins and in their respective
coupling strengths to the bosonic light mode. In previous
studies19,20 the comparison of the quantum and mean-field
dynamics of the resulting generalized Dicke model

H = ωb†b +
N∑

j=1

εjS
z
j +

N∑
j=1

Vj (b†S−
j + S+

j b) (1)

was performed by solving the Schrödinger equation in the
limit of small excitation numbers. Since the total number of
excitations M = b†b + ∑

i(S
z
i + 1

2 ) is conserved, the dimen-
sion of the Hilbert space involved in the unitary evolution of
the system is drastically reduced. Thus it became possible to
solve the explicit time dependence of every quantum amplitude
involved.

In this work we revisit this problem by exploiting the
quantum integrability of a certain generalized Dicke model.
Using the algebraic Bethe ansatz (ABA) one can numerically
compute exact eigenstates of the system and study its dynamics

rendered trivial by the use of the proper eigenbasis. Addi-
tionally, this approach allows, in the strong coupling regime,
a drastic truncation of the Hilbert space granting access to
relatively large system sizes. On the other hand, integrability
imposes the constraint that every spinlike subsystem be
uniformly coupled to the bosonic mode and consequently we
study the specific Hamiltonian

H = ωb†b +
N∑

j=1

εjS
z
j + V

N∑
j=1

(b†S−
j + S+

j b). (2)

It is known19 that the eigenstates of Eq. (1) are the eigenstates
of Eq. (2) with V =√∑N

j=1 V 2
j /N, at least21 when the number of

excitations is small, M � N .
As in Ref. 20, this work focuses on the decay of a number

of bosonic excitations due to the coupling of the mode to
an initially unexcited set of two-level emitters. Such a state
could, in principle, be obtained by first preparing the spin
system in its ground state then exciting the bosonic mode via
an external radiation pulse. For small number of excitations,
a crossover between two distinct regimes was found. At weak
coupling, the bosonic occupation number 〈b†b〉 undergoes
an exponential decay and at strong enough coupling, the
occupation undergoes nondecaying periodic oscillation with
frequency which is enhanced by the Dicke supperradiance
effect. This is a dynamical counterpart of the Hepp and Lieb
superradiance quantum phase transition.23

Starting from a large number of excitations, for weak
coupling strength, the dimension of the necessary Hilbert
space severely limits the system sizes treatable using the
ABA. Still, for very small systems we do find rapidly
decaying short-time dynamics as in the mean-field treatment.
However, our capacity to make quantitative comparisons with
the mean-field approach is hindered since its validity is
necessarily limited to large systems. Consequently, the bulk
of our results focuses on the strong coupling regime, where
heeavy truncation of the Hilbert space allows a nearly exact
treatment of larger systems. In this case, for a small number of
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initial excitations, the spectrum obtained in the full quantum
treatment is characterized by set of equally spaced frequencies,
leading to nearly periodic real-time dynamics. The mean-field
approach, which also leads to periodical oscillating bosonic
populations, then reproduces the quantum dynamics up to
some relatively long Ehrenfest time at which both solutions
start to differ significantly.

When the number of initial excitations becomes of the order
of the system size, the spectrum shows strong deviations from
a harmonic progression no longer reproducing the periodic
oscillations obtained in mean field. Nonetheless, we find that
the mean-field approach remains valid for the very short-time
dynamics of the system leading to a finite, but considerably
shortened, Ehrenfest time.

The crossover to the regime of periodic oscillations occurs
when the superradiantly enhanced coupling with the boson
mode becomes larger than the bandwidth of the spin energy
splittings. For example, this effect can manifest itself as a
suppression of the inhomogeneous broadening in a system of
self-assembled quantum dots in a zero dimensional cavity.
A realistic high in-plane density of InGaAs dots24 (∼5 ×
1010 cm−2) will enhance coupling of a single dot to a photonic
crystal cavity,9 a micropillar,25 or a concave microcavity,26

which is ∼3–100 μeV, by two to three orders of magnitude
in the optical domain27 that is well inside or even above
the range of natural bandwidths of ensembles of such dots28

(∼5–50 meV). Thus for sufficiently high densities a spectrally
broadened ensemble of the self-assembled dots will exchange
all of its excitations with a boson mode without a decay, at
least on a finite time scale, in the same way as an ideal atomic
system without any broadening, making it suitable to engineer
a high power semiconductor laser.

When such a system is in the strong coupling regime, the
effect of quantum fluctuations could be observed in a direct
time-resolved measurement at different excitation powers. At
low to intermediate number of excitations the many Rabi
oscillations would be visible without any significant decay.
However, when the number of excitations reaches ∼80% of
the number of spins, a strong decay on a time scale of a
single period would appear due to quantum fluctuations. The
dependence of this effect on the number of spins can be used
to discriminate it from other sources of relaxation that occur at
large probing powers such as charge or phonon fluctuations.

The paper is organized as follows. Section II describes the
exact solution (ABA) and the numerical techniques used to
exploit it in order to compute the nonequilibrium dynamics we
are interested in. Section III covers the mean-field approach
to the same problem. The resulting behavior which stems
from both descriptions are then compared and analyzed in
Sec. IV where both the spectrums and the real-time dynamics
are studied.

II. THE EXACT SOLUTION

In the following analysis we use εi (single spin excita-
tion energies) which are uniformly distributed εi+1 − εi =
εdN/(N − 1) within a band of total width � = εN − ε1 = N ,
here εd is a “level spacing” for spins. This width � will
serve as a natural energy scale of the problem. Furthermore,
we introduce the Rabi frequency � = V

√
N , which is the

oscillation frequency for bosons in the case of equal splittings
εi ≡ ε. The ratio �/� is thus a dimensionless parameter that
we will use to specify the coupling strength.

A. Constructing eigenstates

We exactly solve the Dicke Hamiltonian (2) using the
method introduced in Refs. 29 and 30. Hereby we exploit
the quantum integrability of the Dicke Hamiltonian, which
was proven in Ref. 31. Unnormalized eigenstates can thus be
constructed by creating M pseudoparticles,

M∏
α=1

S+(λα)|0; ↓ · · · ↓〉, (3)

on the vacuum state |0; ↓ · · · ↓〉 which contains no bosons and
has all spins in their lowest energy states. For the Dicke model
(2) the creation operator takes the form

S+(λα) = b† +
N∑

j=1

V

λα − εj

S+
j . (4)

States of the form (3) become eigenstates of the Dicke
Hamiltonian when the M rapidities λa fulfill the M Bethe
equations

M∑
β=1
β 	=α

V

λα − λβ

= ω

2V
− λα

2V
+ 1

2

N∑
j=1

V

λα − εj

, (5)

which one can obtain from a straightforward application of
the Hamiltonian (2) to a general state (3) with unspecified
rapidities λα .32

Being completely defined by a set of M rapidities {λ},
we denote the (unnormalized) eigenstates by |{λ}〉. The
corresponding eigenenergies are simply given by

E{λ} =
M∑

α=1

λα. (6)

Due to numerical instabilities when trying to solve the Bethe
ansatz equations (5) directly (see, e.g., Ref. 33), we use the
change of variables proposed in Refs. 29 and 30. First we
introduce the complex polynomial

	(z) =
M∑

α=1

1

z − λα

, (7)

which we evaluate at the Zeeman splittings z = εj to obtain
N new variables Kj = V 2	(εj ). For a set of rapidities that
are a solution to (5) one can show that the corresponding new
variables obey a set of quadratic equations

V 2
N∑

i=1
i 	=j

Ki − Kj

εi − εj

+ V 2M = Kj (εj − ω) + K2
j . (8)

Note that instead of M , we now have N equations. As long
as M � N , these equations are equivalent to the Bethe ansatz
equations (5), but they lack the numerical problems mentioned
before. For every quasiparticle number M , which is conserved
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in time, the equations allow for several solutions {K}, all of
them in one to one correspondence to a given set of rapidities
{λ} and thus to a single eigenstate of the system.

At V = 0 the eigenstates of the system are obviously Fock
states with a definite number of spin excitations and bosons.
For example, for N = 2 and M = 2 the Fock states are |2; ↓↓〉,
|1; ↑↓〉, |1; ↓↑〉, and |0; ↑↑〉 where, in this notation, the number
counts the bosonic excitations, whereas the arrows represent
the spin states. From the Bethe equations (5) it immediately
follows that the set of rapidities {λ} of a Fock state consists
of one λα = ω for every boson and one λα = εi if the ith spin
is excited. This leads to Ki = ω − εi if the ith spin is excited
and Ki = 0 if it is not. The total number of excitations M then
differentiates between states with identical spin configurations
but different number of bosons. For example, the state |1; ↑↓〉
has {λ} = {ω,ε1} and {K} = {0,ω − ε1}.

For a desired final coupling V = Vf we obtain the solutions
{K} by deforming the solutions at V = 0 by a stepwise
increasing of V . As detailed in Ref. 29, one can compute
easily the nth first derivatives ∂nKi (V )

∂V n . This provides an good
initial guess for the solution at V + dV using the values Ki(V )
through the truncated Taylor expansion. One can the refine
this guess using a simple iterative Newton-Raphson algorithm
applied to the quadratic system of Eqs. (8). The process can
then be repeated until the target coupling value Vf is reached.

Since the rapidities themselves are used to calculate
physical quantities, we need to extract the set of M values {λ}
corresponding to a given set {K}. In this work it is achieved
by using the fact that

	(z) = Q(z)

Q′(z)
, (9)

with

Q(z) =
M∏

β=1

(z − λβ) =
M∑

α=0

QαzM−α. (10)

The coefficients of this polynomial

Qα = (−1)α
M∑

ki=1
ki 	=kj

λk1 · · · λkα
(11)

are the elementary symmetric polynomials which can be found
by solving the linear system:

M∑
α=1

[
(M − α)εM−α−1

j − Kj

V 2
εM−α
j

]
Qα = Kj

V 2
εM
j − MεM−1

j .

(12)

The last task is to find the rapidities {λ} as the roots of
the polynomial Q(z) by its coefficients Qα , which one can do
using a number of root finding algorithms. Using this method
we can, in principle, calculate the rapidities {λ} characterizing
every single eigenstate of the system.

B. Obtaining the bosonic occupation number

Eventually we are interested in the time-dependent bosonic
occupation number 〈b†b〉(t) = 〈ψ(t)|b†b|ψ(t)〉 with initial

state |M; ↓ · · · ↓〉. Expanding in the normalized eigenbasis
|φi〉 = |{λ}i〉/

√〈{λ}i |{λ}i〉, we obtain

〈ψ(t)|b†b|ψ(t)〉 =
d∑

i,j=1

〈M; ↓ · · · ↓ |φi〉〈φi |b†b|φj 〉

×〈φj |M; ↓ · · · ↓〉 e
i
h̄

(Ei−Ej )t , (13)

where we denote by d the dimension of the Hilbert space.
The matrix elements occurring in Eq. (13), as well as the
norm of the eigenstates 〈{λ}i |{λ}i〉 can be computed using
Slavnov’s formula.34 Provided the set {μ} fulfills the Bethe
ansatz equations (5), one can write its overlap with a generic
state of the form (3) as the determinant of an M by M matrix

〈{μ}|{λ}〉 =
∏M

k 	=l(λl − μk)∏
k>l(λk − λl)

∏
k<l(μk − μl)

det G, (14)

with

Gα,β =
⎛
⎝ω−λβ+

N∑
j=1

V 2

λβ−εj

+
∑
γ 	=α

2V 2

μγ − λβ

⎞
⎠ λβ − μβ

(λβ − μα)2
.

(15)
For the norms of eigenstates we hence obtain, in the limit
{μ} → {λ},

〈{λ}|{λ}〉 = det(W ), (16)

where

Wαβ = 2V 2

(λβ − λα)2
. (17)

In a way similar to Ref. 35, we can furthermore derive a
single determinant expression for the form factor appearing in
Eq. (13):

〈{μ}|b†b|{λ}〉=
∏M

k 	=l(λl−μk)∏
k>l(λk−λl)

∏
k<l(μk − μl)

det(G+Q),

(18)

with the M × M matrices Q defined by

Qαβ =
∏
l 	=β

(λβ − λl)

(λβ − μl)
. (19)

On the other hand, since |M; ↓ · · · ↓〉 = 1/
√

M! b†M |0; ↓
· · · ↓〉, we can rewrite the overlaps between eigenstates and
the initial state by noting that only the bosonic parts of the
eigenstates (4) do not vanish in this projection

〈M; ↓ · · · ↓ |φi〉 =
√

M!

〈{λ}|{λ}〉 . (20)

Hence we are left with the norms of the eigenstates 〈{λ}|{λ}〉
which are computed by (17). In this fashion we are able to
compute the bosonic occupation (13) fully in terms of the
rapidities of all eigenstates.

C. Hilbert space truncation

Although every term in Eq. (13) can be easily computed,
the double sum over the complete Hilbert space remains
remarkably large. For a system with O(10) spins this sum
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already becomes impossible to perform fully. In this work we
rely on the fact that, at weak enough (� � �/N ) or strong
enough (�  �) coupling, the main contributions to (13)
comes from only a small number of eigenstates.

The truncation scheme for very small coupling works
as follows. For V = 0, the initial state |M; ↓ · · · ↓〉 is an
eigenstate itself and therefore the only relevant state for the
given scenario. Perturbation theory then provides a natural
hierarchy such that states where a single excitation is swapped
from the bosonic mode to a spin are the most relevant ones.
Therefore, keeping only states with a single spin excitation,
for example, the state |M − 1; ↑↓ · · · ↓〉, would lead to a large
contribution. One could then add two spin-excitations states
and so on.

At strong coupling, considering Eqs. (3) and (4), we see that
as V → ∞ any finite rapidity leads to an excitation [created
by S+(λ)] which exclusively affects the spin sector. On the
other hand, any rapidity which diverges when V → ∞ creates
an excitation that significantly populates the bosonic mode.
When looking at the projection of any eigenstate onto the
purely bosonic initial state Eq. (20), we can infer that at large
enough couplings only the eigenstates for which every one of
the M rapidities diverge will lead to significant overlaps. Since
the form factors 〈φi |b†b|φj 〉 in Eq. (13) are bounded by M ,
only the eigenstates with all rapidities diverging are needed in
the V → ∞ limit. At finite but large V , similar argument can
be used to show that states with M − 1 diverging rapidities are
the first ones to become important, and so on. This provides
a rough ordering of the relative contribution to the sum of
different classes of eigenstates.

Having identified the heavily contributing states, we can
truncate the sum in Eq. (13) to a smaller dimension d̃ using
only a subset of the most important eigenstates. We estimate
the validity of the truncated sum by computing the sum rule

�(d̃) =
d̃∑

i=1

|〈M; ↓ · · · ↓ |φi〉|2. (21)

For the complete sum d̃ = d we have �(d̃) = 1 since we are
projecting the initial states on the complete eigenbasis. In view
of bounding the total error δ in the time evolution for arbitrary
times, we require at least �T (d̃) � 1 − δ. While the factor
〈φi |b†b|φj 〉 in Eq. (13) is different for different eigenstates, it
is of the same order of magnitude for eigenstates containing
the same number of divergent rapidities, which can be seen
from Eq. (4). Therefore, the saturation of the sum rule is
a clear indication of the error generated by the truncation.
Nevertheless, we crosscheck the validity of the truncated sum
by checking if 〈b†b〉(0)/M > 1 − δ at t = 0. Due to the trivial
time evolution in the true eigenbasis, the absolute error should
remain bounded by this initial value.

III. MEAN-FIELD ANALYSIS

In this section we study the dynamics of the model Eq. (2)
using the mean-field approximation. We derive the Hamilton
equations of motion in terms of the expectation values of
the boson and spin operators, and solve them for the initial
conditions from Sec. II B for arbitrary M .

Heisenberg equations of motion for quantum operators are
obtained from Eq. (2) by use of commutation relations (e.g.,
ḃ = i[H,b]). The complete set of equations of evolution for
the boson and spin operators is

Ṡj = Bj × Sj , (22)

ḃ = −iV

N∑
j=1

S−
j , (23)

where z and in-plane components of vector Bj =
(2V bx,2V by,εj ) are a single spin splitting and boson oper-
ators; bx + iby = b† and bx − iby = b. When the harmonic
oscillator is highly excited the boson operator can be approx-
imated by a time-dependent c number 〈b〉 = a which makes
the systems of Eqs. (22) and (23) linear in operators. Here
〈· · ·〉 is the time-dependent quantum mechanical expectation
value. Averaging the linearized equations over an initial state
we obtained the dynamical mean-field equations

Ċj = Bj × Cj , (24)

ȧ = V

N∑
j=1

C−
j , (25)

where Cj = 〈Sj 〉 is a set of N vectors of length |Cj | = 1/2 and
Bj = (2V ax,2V ay,εj ); here C−

j = Cx
j − iC

y

j and a = ax −
iay .

Alternatively, Eqs. (24) and (25) can be derived using
Dirac’s analogy for dynamical variables: Commutation rela-
tions between quantum operators correspond to Poisson brack-
ets between classical degrees of freedom [,] → −i[,]cl. In the
model Eq. (2) spin operators Sj can be associated with classical
vectors Cj and the boson operator b with a classical field a. By
analogy, the Poisson brackets between the classical variables
correspond to an angular momentum [Cα,Cβ]cl = −εαβγ Cγ

and a boson field [a,a∗]cl = i commutation relations. The
Hamilton equations of motion for such a classical model
are equivalent to the mean-field approximation. In this way
Eqs. (24) and (25) can be interpreted as the classical limit of
Eqs. (22) and (23).

In Sec. II we wrote down explicit expressions for the
quantum dynamics of the initial state |M; ↓ · · · ↓〉. The initial
condition for the dynamical mean-field equations, which cor-
responds to this state, is all spins down, Cj (0) = (0,0,−1/2),
and a finite amplitude of the bosonic field, a(0) = √

M . Below
we solve set of differential equations (24) and (25) for the
evolution of classical variables with this initial condition.

For a small number of excitations in a system with many
spins, M � N , these equations were solved in Ref. 20. Using
the approximation Cz

j (t) ≈ −1/2, the equation for Cz
j (t) drops

out from Eq. (24) and the remaining system of equation
is harmonic. In the regime �  � this gives the following
solution for the bosonic mode:

a(t) =
√

M cos(V
√

Nt). (26)

The period of the oscillatory function in this limit is T =
2π/(V

√
N ), see Fig. 5 for M = 10. In the following will

use the Rabi frequency � = V
√

N which was introduced in
Sec. II.

For arbitrary M the solution to Eqs. (24) and (25) are
hyperelliptic functions.36 Here we will not consider the full
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FIG. 1. (Color online) Numerical solution of the equation√
L2(u) = 0 with L(u) from Eq. (27) for N = 50, M = N , and

�/� = 10. The roots that merge into a continuous line are plotted in
green and two pairs of discreet roots are plotted in blue.

analytic form of general solution but will use only the spectral
analysis developed in Ref. 37. Introducing the following vector
function (Lax vector) of an auxiliary parameter u,

L(u) =

⎛
⎜⎝

ax (0)
V

ay (0)
V
u

2V 2

⎞
⎟⎠ +

∑
j

Cj (0)

u − (εj − ω)
, (27)

the frequency spectrum is related to the roots of the equation√
L2(u) = 0. We analyze them numerically in the limit N  1,

and find that, in the high coupling regime �  �, all roots
merge into a continuous line except two complex conjugated
pairs, see example in Fig. 1. Note that all coefficients of
the polynomial L2(u) are real thus every complex root has
a complex conjugated partner. The dynamical variables that
correspond to the continuous band form a decay part of the
solution and the two discreet frequencies give an oscillating
part that we will be interested in. The discreet roots can be
found by turning the summation over j in Eq. (27) into an
integral,

∑
j → N

�

∫ ω+�/2
ω−�/2 dε. Then the equation

√
L2(u) = 0

turns into

± 2iga(0) = u − V 2N

�
ln

(
u + �/2

u − �/2

)
, (28)

where the total width of splittings � = εN − ε1 is finite.
In the limit M = N , opposite to M � N , the roots of

Eq. (28) have zero real part. Parametrizing the roots as
u = iu0�/2 we obtain

±4V a(0)

�
= u0 + 2V 2N

�2
(π − 2 tan−1 u0). (29)

Then a 1/u0 expansion gives the imaginary parts as u1,2 =
u0�/2 = ±(V

√
N

2 ± �

2
√

3
).

In the case of two discreet roots the hyperelliptic function
of many variables reduces to an elliptic function of only one
variable37 which corresponds to an effective model of a single

collective spin coupled to a boson. Following the procedure in
Ref. 36 we write

u̇ = −i
√

Q4(u), (30)

ȧ = iau, (31)

where Q4(u) = (u2 + u2
1)(u2 + u2

2) is a polynomial given by
the imaginary roots of Eq. (28). Here we choose u2 > u1.

The differential Eq. (30) defines a Jacobi elliptic function

u(t) = iu1sn(|u2|t − A,k), (32)

where k = |u1/u2| is the elliptic modulus, and A is an un-
known constant of integration. Integrating the second equation
separately for a and u we get

a(t) = B

(
dn(A) − √

kcn(A)

dn(u2t − A) − √
kcn(u2t − A)

)√
k

, (33)

where B is a second constant of integration.
From the initial conditions, the phase of the oscillation at

t = 0 is A = 0. The second constant of integration is obtained
from the condition a(t = 0) = √

N as B = √
N . Finally,

expanding the parameters in Eq. (33) for �2/(V 2N ) � 1 we
obtain

a(t) =
2�√
3V

dn
(

V
√

Nt
2

) − √
kcn

(
V

√
Nt

2

) . (34)

The period of the oscillatory function for this initial condition
is given by the complete elliptic integral of the first kind,
T = 8K(k)/(V

√
N ), see Fig. 5 for M = 50.

IV. RESULTS

Following the different regimes of interaction strength, we
discuss now the effect of a large number of excitations on
the time-evolved bosonic occupation. When the interaction
strength is very weak, the discreetness of the spin subsystem
plays a major role. Indeed, when the Rabi frequency �

is smaller than the spacing between εj , only spins which
are very close to resonance with the bosonic mode are
significantly hybridized with the cavity while the rest only
plays a weak perturbative role. The resulting dynamics are
therefore expected to exhibit nonuniversal behavior linked to
the specific choice of the band’s εj . This results only in weak
oscillations around 〈b†b〉 = M . A large M (25 and 50 are
shown) does not bring any major qualitative changes to the
time evolution, see Fig. 2.

Considering that the nonuniversal behavior of this particular
regime is characterized by only a few effective degrees of
freedom regardless of the number of excitations, we move
away to Rabi frequencies larger than the level spacing but still
significantly smaller than the total bandwidth, (�/N ) < � <

�. Since more and more spins get significantly mixed with the
bosonic mode, this ultimately leads to the “universal weak-
field regime” which exhibits a decay of the bosonic population.
However, in this particular regime, any truncation of the Hilbert
space leads to an important loss of information and therefore
to a large error evidenced by a badly saturated sum rule (21).
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FIG. 2. (Color online) Time evolution of bosonic occupation
number for N = 50 spins and M = 1, 25, and 50 excitations,
Coupling strength is �/� = 0.002. The truncation error is δ =
0.05%, using only states with a single spin excitation.

In trying to address the validity of the mean-field approach at
such Rabi frequencies we therefore have to limit ourselves to
small system sizes. In fact, the number of eigenstates has to
be small enough to be able to compute every one of them in
a reasonable amount of time therefore accessing exact results.
Figure 3 presents a comparison of the mean field and the exact
quantum dynamics for a small system containing only N = 12
spin degrees of freedom.

In the presence of a single excitation M = 1, the bosonic
occupation number 〈b†b〉(t) rapidly decays to almost 0, which
is remarkably well captured by the solution of the semiclassical
equations (23). The origin of this decay lies in the significant
overlap of many eigenstates of the system with the initial state,
in contrast to the limited number of important eigenstates in
the �  (�/N ) regime. Decomposing the dynamics into a
persistent oscillation [Eq. (26)] and a decay part,

√
〈b†b〉(t) =

∫ 1

0

(4�2/�2) cos(y�t/2)dy[
y − 2�2

�2 ln
( 1+y

1−y

)]2 + (
2π�2

�2

)2 , (35)

as in Ref. 19, we indeed find that the the continuum part of
the energy spectrum is dominant. Moving away from M � N

we look at a strongly excited initial state containing M = 9
bosons. Once again the initial decay is perfectly reproduced by
the mean-field treatment in spite of the relatively large number
of excitations. At later times the exact quantum treatment
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FIG. 3. (Color online) Time evolution of bosonic occupation
number, exact (red solid) and mean field (black dotted) for N = 12
spins and M = 1,9 excitations. For M = 1, the decay part of Eq. (35)
is shown (green dotted-dashed). Coupling strength is �/� = 0.3.

deviates from the mean-field approach due to small size of
the system.

Within the restriction to short times imposed by finite
size effects, the mean-field approach remains valid even at
large excitation numbers in this regime. However, the severe
limitation on the system size makes it difficult to reach a precise
conclusion for any larger systems. We therefore turn our focus
to the strong coupling regime � > �. In this limit a drastic
truncation becomes possible while maintaining a satisfying
saturation of the sum rule (21). We first present in Fig. 4 the en-
ergy spectrum characterizing the time evolution of the bosonic
occupation numbers for a system of N = 50 spins. Specif-
ically, we plot the work distribution P (E) = ∑d

i=1 |〈M; ↓
· · · ↓ |φi〉|2δ(E − Ei) which, according to Eq. (13), describes
the frequency content of the initial condition. For these
calculations the dimension of the Hilbert space is reduced
from d = O(1015) (for M = N ) to d̃ = N + 1 by keeping
only the states with M divergent rapidities. Doing so maintains
the truncation error in 〈b†b〉(t)/M below a maximum of
δ = 5%.

For low excitation numbers, the spectrum presents itself
as a series of nearly equally spaced peaks. According to
Eq. (13), this constant energy difference between the con-
tributing eigenstates indicates a periodic oscillation in the
time evolution. However, as the number of excitations is
increased, deviations from the harmonic progression become
more and more important and is particularly evident in the
M = N results where the low energy contributions are much
closer than the high energy ones. Additionally, the shape
of the distribution is severely altered. Therefore, while one
can expect the periodicity of the semiclassical results to
be adequately reproduced for small M � N , the opposite
regime will be characterized by a set of incommensurate
frequencies ultimately leading to some decay.
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FIG. 4. (Color online) Work distribution function for N = 50
spins and M = 10, 40, 48, and 50 exctitations. Coupling strength
is �/� = 10.

This is evidenced by looking at the explicit time evolution
of the average bosonic occupation presented in Fig. 5 for a
variety of initial number of excitations. Both the mean-field
behavior (black) and the quantum evolution (red) are plotted
for N = 50 spins.

Two main differences between the quantum and mean-field
dynamics are seen. First, the quantum oscillation frequency is
systematically shifted to higher frequencies and, at the same
time, the amplitude is shown to decay. When the number
of excitations is small enough the frequency shift is small
and the decay is slow compared to the time scale set by
the oscillation frequency. However, when M and N become
comparable, the quantum dynamics exhibits a rapid amplitude
decay which, not being captured by the mean-field analysis,
leads to a drastic difference between both descriptions of
the bosonic occupation. As evidenced by Fig. 5, a larger
difference in the oscillation frequency also occurs, making
the distinction between both approaches even more important.
Nonetheless, even for M = N the mean-field approach is
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FIG. 5. (Color online) Time evolution of bosonic occupation
number, exact (red solid) and mean field (black dotted) for N = 50
spins, M = 10, 40, 48, and 50, and �/� = 10.

shown to capture perfectly the initial instability and provides
an accurate description up to some finite time.

In order to characterize the regime of validity of the
mean-field approximation, we extract an Ehrenfest time by

 0.15

 0.155

 0.16

 0.165

 40  42  44  46  48  50

t E
Δ/

2

M

 0

 0.5

 1

 0  10  20  30  40  50

t E
Δ/

2

M

FIG. 6. (Color online) Outer plot: Ehrenfest time for N = 50 as
a function of excitation number M for high filling factors. Dashed
line is a te(M) = (t∞ + be−cM ) fit. Inset: The same plot for the whole
range of M .
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FIG. 7. (Color online) Ehrenfest time for M = 0.9N and M = N

as a function of the system size N for �/� = 10.

looking for the earliest time where the mean field and quantum
bosonic occupations differ by 10% of the initial population.
The resulting times are plotted as a function of the excitation
number in Fig. 6.

For few excitations M � N both the mean field and
quantum numerical calculations were shown to coincide up to
1/N corrections.19 Here we see that the Ehrenfest time initially
undergoes a rapid, seemingly linear, decrease as M increases.
When the strongly excited regime is reached, at M ≈ 0.8N ,
this behavior is drastically modified. It is then well described
by an exponential fit te(M) = (t∞ + be−cM ) with parameters
t∞ = 0.15,b = 1003.65,c = 0.28. The saturating decrease of
the Ehrenfest time indicates that the mean-field description
retains its validity in the description of the initial stages even
as M reaches N .

For a low number of initial excitations,19 the mean-field
approximation is know to be exact in the limit N → ∞.
Moreover, as evidenced in Ref. 19 and in this work, a modest
mesoscopic number of spins N ≈ O(102) is sufficient for the
mean-field treatment to adequately describe the dynamics over
many oscillation periods. For a strongly excited system we
plot in Fig. 7 the system size dependence of the Ehrenfest
time obtained at large fillings (M = N,M = 0.9N ). Even for

a large number of excitations, the growth of tE with increasing
system size indicates that the mean-field approach could
still provide an adequate description, even at long times, for
thermodynamically large N → ∞ systems. However, since
this growth is extremely slow and therefore in stark contrast
to the M � N case, mesoscopic systems remain too small
for the classical mean-field treatment to describe correctly the
behavior past the initial stage of decay.

V. CONCLUSIONS

By exploiting the quantum integrability of the Dicke model,
we were able to calculate the quantum dynamics of an initially
populated single bosonic mode interacting with an ensemble
of inhomogeneous ensemble of two-level systems. For strong
enough couplings, this method based on the algebraic Bethe
ansatz provides a simple truncation scheme, which allowed
us to treat relatively large systems even for a strongly excited
initial state.

We compared the numerical solutions of its nonequilibrium
dynamics with its mean-field description. Focusing on the
strong coupling regime, where mean-field theory predicts
oscillating periodic solutions, we confirm that at low excitation
numbers both solutions agree up to a relatively long finite
Ehrenfest time. However, going to more strongly excited sys-
tems leads to a rapid shortening of the mean-field description’s
period of validity due to a shift in the oscillation frequency
combined with a decay of the oscillation’s amplitude which
are exclusively captured by a full quantum treatment. For
relatively large mesoscopic systems, we demonstrate that,
although it cannot capture the long time dynamics, the initial
decay of the bosonic excitations is still adequately described
by the classical mean-field theory.
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