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It is typical of modern quantum technologies employing nanomechanical oscillators to demand few mechan-
ical quantum excitations, for instance, to prolong coherence times of a particular task or to engineer a specific
nonclassical state. For this reason, we devote the present work to exhibiting how to bring an initially thermalized
nanomechanical oscillator to near its ground state. Particularly, we focus on extending the novel results of
D. D. B. Rao et al. [Phys. Rev. Lett. 117, 077203 (2016)], where a mechanical object can be heated up, squeezed,
or cooled down to near its ground state through conditioned single-spin measurements. In our work, we study
a similar iterative spin-mechanical system when N spins interact with the mechanical oscillator. Here, we have
also found that the postselection procedure acts as a discarding process; i.e., we steer the mechanics to the ground
state by dynamically filtering its vibrational modes. We show that when considering symmetric collective spin
postselection, the inclusion of N spins in the quantum dynamics is highly beneficial—in particular, decreasing
the total number of iterations to achieve the ground state, with a success rate of probability comparable with the
one obtained from the single-spin case.
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I. INTRODUCTION

With the startling advancement of micro- and nanofabri-
cated quantum mechanical oscillators (NMOs) [1–5], the in-
clusion of high-quality nanomechanical devices for quantum
technological purposes has become of pivotal importance. In
the light of this, myriad current quantum architectures have
already implemented NMOs as a central element to enable
specific quantum tasks. For instance, in the domain of quan-
tum sensing, ultrasensitive measurement applications can be
carried out by microscale force microscope cantilevers [6,7].
Faithful conversion can be achieved from photonic states to
the motion of a micrometer-sized mechanical resonator [8].
And, in quantum networking schemes, the NMO can serve
as a quantum transducer entailing two initial uncorrelated (or
incompatible) subsystems [9–11], to name a few.

Nonetheless, for many of the above implementations to
hold, it is highly required to consider the NMO near its
ground state, or at least, counting with just a few quantum
excitations on average (see also Refs. [8,9,12–15]). Thus,
cooling methods of mechanical objects become transversely
necessary to pave the way towards quantum technologies.
Nowadays, the most common directions for ground-state cool-
ing of NMOs are [16] passive optical cooling [17,18], active
optical feedback cooling [19–22], and cooling via coupling to
a different heavily damped solid state system [16,18,23–25].
Recently, tripartite spin-optomechanical schemes have also
been proposed for the ground state cooling of NMOs [26–29],
and, in quantum optomechanics, in the nonresolved sideband
regime [30]. The central idea behind several of the above
routes consists of adding an extra dissipation channel, there-
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fore, extracting energy from the mechanical object [31–35];
see also Ref. [36] for cooling of a two-dimensional me-
chanical membrane. Interestingly, a recent proposal by Rao
et al. [37] achieves full control of an NMO by coupling the
mechanics to a single-spin state. The oscillator goes under
a spin-induced thermal filter generated by conditioned spin
measurements, where under certain circumstances the authors
can heat-up, squeeze, and more particularly for our goal,
asymptotically cool-down a nanocantilever to its ground state.
The process, analytically solved, is probabilistic due to the
iterative conditioned spin measurements required to obtain
the desired state. A similar scheme to cool down an NMO to
its ground state was also addressed in Ref. [38], where the
protocol (operating on-resonance or off-resonance between
the qubit and the NMO) works through random-time-interval
projective measurements on an auxiliary flux qubit.

In this paper, we present a theoretical proposal to cool-
down an NMO to its ground state through iterative spin
postselections (see Fig. 1). In particular, the spin-mechanical
interaction is modeled via a conditioned displacement Hamil-
tonian, i.e., where the NMO displacement is conditioned on
each spin eigenstate, thus resulting in an effective shifting
of the NMO’s potential center. The main idea of our work
is clearly illustrated by considering an initial coherent me-
chanical state coupled to a quantum superposition of a single
spin state. There, it is readily observed that a conditioned
measurement of the spin subsystem (spin postselection) will
collapse the NMO state into its ground state. We understand
this process as a discarding step; in other words, we drive
the NMO to its ground state by dynamically separating each
mechanical state; the spin postselection step intends prob-
abilistically to keep the mechanical mode as close to the
ground state as possible. One may wonder whether some
enhancement in the cooling rate (which is the figure of merit
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FIG. 1. Schematic depiction of the iterative cooling process for
the NMO. N spins are coupled to a single-mode NMO. After
the spin-mechanical system has evolved a time t , we proceed to
postselect the N spins. If the postselection is successful (“True”),
we then repeat the process, where in the next step the NMO state
will correspond to the one collapsed by the spin postselection.

throughout our work) can be produced by coupling N spins
(independently) to the NMO and, at a later stage, optimally
postselected. This last step accounts for a highly nontrivial
task due to the large number of independent degrees of free-
dom 2N − 1. Although throughout this paper we study various
spin postselections scenarios, one way to solve this issue is
to consider a quite natural basis for this sort of dynamics,
namely, the collective spin angular momentum framework.
There, for the symmetric case, we found that the inclusion
of a collective spin postselection leads to a decreasing of the
total number of iterations to achieve the ground state with a
non-negligible success probability.

This paper is organized as follows. In Sec. II, we motivate
our work by solving the dynamics of a single spin coupled
to an NMO (initialized as a coherent state); we readily show
that a conditioned spin measurement can drive the NMO into
its ground state. In the following sections, we study the role
of the spin postselection when N spins are interacting with
the NMO (initialized as a thermal state). To address this case,
we contrast three scenarios. First, in Sec. III A, we proceed
to postselect the spins independently. Here, it is shown that
as N increases fewer iterations must be performed to reach
the NMO ground state. Second, in Sec. III B, we make use
of spin postselection in a correlated basis. Although this joint
basis can drive the NMO to the desired state with fewer spins,
this case suffers from a major drawback as the total success
probability becomes rapidly negligible. Last, in Sec. III C, we
show a quite balanced case, i.e., collective spin postselection,
for which not only we can achieve the ground state faster,
but also we can achieve it with a similar success probability
when the spins are independently postselected. In Sec. IV,
we study the feasibility of our scheme in an open quantum
system. Concluding remarks are presented in Sec. V.

II. MOTIVATION: COOLING-DOWN A COHERENT
NMO WITH A SINGLE SPIN

For the sake of completeness, we will first illustrate the
case where a single spin interacts with an NMO initialized in

a coherent state. This simple dynamics will serve to build up
a most generic scenario, in which N spins are independently
coupled to the NMO and optimally postselected. In particular,
we consider the following conditioned displacement Hamil-
tonian in a rotating frame at the spin frequency [39] (h̄ = 1)

Ĥint = b̂†b̂ − λσ̂z(b̂† + b̂), (1)

λ = xzpfλ0/ωm being the scaled (by the NMO frequency ωm)
spin-mechanical coupling, xzpf the NMO zero-point ampli-
tude, and λ0 the “natural” spin-mechanical coupling (in gen-
eral, λ0 depends on the geometry of the physical system) [6].
As usual, b̂ (b̂†) is the boson annihilation (creation) operator
for the single-mode mechanical oscillator, whereas σ̂z is the
Pauli operator along the z direction of the spin. The quantum
dynamics can be calculated by considering the following
unitary evolution operator (see Ref. [39] for details):

Û (t ) = exp[λσ̂z(ηb̂† − η∗b̂)]exp[−ib̂†b̂t], (2)

where η ≡ 1 − e−it . To motivate our work, let us simply take
the Hamiltonian in Eq. (1) together with an initial condition
given by 1/

√
2(|↑〉 + |↓〉) ⊗ |β〉 (with β ∈ R for simplicity).

Thus, it is seen that each spin component will result in an
effective center shift of the NMO’s potential b̂†b̂ ± λ(b̂† +
b̂); otherwise speaking, the NMO will follow two different
oscillations according to the (unnormalized) wave function

|ψ (t )〉 = |↑〉|βe−it + λη〉 + e−2iλβ sin t |↓〉|βe−it − λη〉. (3)

From the above, let us suppose that we would like to
decrease the phonon number occupation of the coherent me-
chanical object. To fulfill this task, we could simply collapse
the above wave function into one of its mechanical states
by measuring, for instance, the |↑〉 eigenstate (notice that
the initial spin state could have been simply |↑〉 instead of
1/

√
2[|↑〉 + |↓〉]; however, to link this initial spin state with

the next section, we have preferred to keep the above spin
superposition for clarity purposes) gives us

|ψ (t )〉m = |βe−it + λη〉. (4)

It is then straightforward to compute the NMO mean phonon
number with the above postselected state as follows:

〈b̂†b̂〉post = (β − λ)2 + λ2 + 2λ(β − λ) cos t. (5)

To further illustrate this case, let us consider a spin postse-
lection time to be t = π (half of the NMO cycle). Hence, the
ratio between the phonon occupation after spin postselection
and the initial mean phonon number is reduced to

〈b̂†b̂〉post

〈b̂†b̂〉0
=

(
1 − 2

λ

β

)2

. (6)

For positive β amplitude, the expression above can be
found below unity for coupling values in the region 0<λ<β

(which is typically the case in several spin-mechanical sys-
tems). And more interestingly, the NMO can have zero
phonons on average if the scaled coupling is chosen ade-
quately as λ = β/2—a possible value for coherent amplitudes
of β � 2.

At this point, we have presented a simple idea on how
to decrease the phonons of a coherent NMO on average via
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optimal spin postselection. We wonder now whether we could
extend this idea when the NMO is initially prepared as a
thermal state, and also if there is any advantage to decreasing
the NMO mean phonon number when N spins are interacting
with a thermalized oscillator. We devote the next section to
covering all these questions.

III. COOLING-DOWN A SINGLE MODE
NMO WITH N SPINS

The following section proposes to address whether there
is any advantage to cooling down an NMO with N spins.
As shown in Sec. II, the critical stage of the scheme lies in
the spin postselection step. Hence, if there is such an advan-
tage, one may hypothesize that it should arise from a proper
postselection of the N spins. In what follows we study three
main cases in search of a solution; namely, (i) each spin is to
be measured independently, (ii) N spins are postselected in
a joint basis, and (iii) N spins are collectively measured. The
latter case is the most beneficial for the NMO cooling process.

A. Postselecting the spins individually

Stimulated by the previous section, let us first consider
a single spin directly coupled to a thermalized NMO (this
case is also reported in Ref. [37]; here we would like to
briefly recall the main results). Thus, we proceed to evolve
the following initial state:

ρ̂(0) = |+〉〈+| ⊗ 1

πn̄

∫
|β〉〈β|e− |β|2

n̄ d2β, (7)

|+〉 = 1/
√

2(|↑〉 + |↓〉), n̄ = [exp(h̄ωm/kBT ) − 1]−1 ≡ 〈n̂〉0

being the thermal occupation phonon number, T the distri-
bution temperature, and kB the Boltzmann constant. Due to
the election of the mechanical state in coherent basis, it is
straightforward to write the density matrix for this case as
[37,39]

ρ̂(t ) = 1

2πn̄

∫
d2βe

−|β|2
n̄ (|↑〉〈↑| ⊗ |β↑〉〈β↑|

+ |↓〉〈↓| ⊗ |β↓〉〈β↓|
+ [|↑〉〈↓| ⊗ |β↑〉〈β↓|e2iϑ + H.c.]), (8)

where ϑ ≡ λr cos(φ − t
2 ) sin t

2 and β = reiφ . As discussed
in the previous section, each qubit component displaces the
mechanical state into β↑ = βe−it + λη or β↓ = βe−it − λη.
Nonetheless, contrary to the coherent case, here it is not
readily accessible to know the effects produced by the spin
nondiagonal terms in Eq. (8). That being said, let us make
two simple statements that actually can be done regarding the
diagonal ones; namely, (i) the mechanical energy on average
due to its dynamics alone is (i.e., by tracing out the spin
degrees of freedom)

〈b̂†b̂〉 = n̄ + 2λ2(1 − cos t ), (9)

and (ii) a projective spin measurement onto one of the
eigenstates of σ̂z will not attain a value below the initial
phonon number occupation n̄; i.e., both statements above
show that mechanical cooling is not achieved under such
circumstances. To investigate the role of the nondiagonal
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FIG. 2. Finding the parameters {t, λ} to optimally cool-down
the NMO. In (a), we show the ratio of the phonon number on
average between the postselected state (〈n̂〉post) and the initial state
(〈n̂〉0 = n̄). In (b) we illustrate the mechanical variances after spin
postselection (�x̂post/�ŷpost). Interestingly, only at t = π/2 both
quadratures decrease simultaneously. Once t = π/2 is fixed, the
optimal scaled coupling strength can be obtained from the top panel,
being λ ≈ 0.12.

terms {|↑〉〈↓|, |↓〉〈↑|}, let us postselect the density matrix
shown in Eq. (8) with a general vector parameterized in the
Bloch sphere as

|ψ〉target = cos(θ/2)|↑〉 + sin(θ/2)eiδ|↓〉. (10)

Hence, the normalized NMO state after the spin postselection
reads as follows:

ρ̂(t )post = 1

N

∫
d2β

(
cos2 θ

2
|β↑〉〈β↑| + sin2 θ

2
|β↓〉〈β↓|

+
[

cos
θ

2
sin

θ

2
eiδ|β↑〉〈β↓|e2iϑ + H.c.

])
e

−|β|2
n̄ ,

(11)

with normalization constant

N =
∫

d2βe
−|β|2

n̄ (1 + sin θRe[ei(δ+2ϑ )〈β↓|β↑〉]). (12)

In the following, we will discuss the optimal parameters
to achieve the mechanical cooling. For simplicity, after the
spin-mechanical system has evolved a time t , we proceed to
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postselect the |+〉 spin state (θ = π/2 and δ = 0). In Fig. 2(a),
we plot the ratio between the phonon number occupation with
the postselected state (〈n̂〉post) and the initial energy of the
NMO on average (〈n̂〉0). As seen, there is a wide region of
both time and coupling parameters where 〈n̂post〉 < 〈n̂〉0. Nev-
ertheless, in Fig. 2(b) we illustrate the ratio between the NMO
variances, i.e., position (momentum) variance �x̂post (�ŷpost)
when the spin has been postselected in |+〉. There, it is shown
in fact that not every set of {t, λ} values leads the mechanical
state to cool down, at least not in the sense of thermal cooling
�x̂post = �ŷpost. In Fig. 2(b), we can observe that when t <

π/2 (t > π/2), the mechanical state is more likely to be
position (momentum) squeezed at earlier (later) time. Conse-
quently, only at a very specific time t = π/2 do both quadra-
tures decrease simultaneously �x̂post ≈ �ŷpost. Because of
this, throughout our work we will uniquely consider the spin
postselection time to be t = π/2 (even for N spins interacting
with an NMO), which also sets the optimal (dimensionless)
spin-optomechanical strength λ ≈ 0.12 [see Fig. 2(a)]. No-
tice, however, that for a single iteration the condition of
�x̂post ≈ �ŷpost holds for the usual (canonical) x axis and p

axis in the phase space, where in reality the NMO state ex-
hibits squeezing properties in a π/2-rotated “new” x ′ axis and
p′ axis (being the main axes of the squeezed state). Nonethe-
less, further iterations of the protocol assure that the NMO
will be steered into a state with variances �x̂post ≈ �ŷpost in
the canonical axis, thus approaching the desired ground-state
cooling. With the above results, it is now clear that to cool-
down an NMO from a thermal distribution, we must demand
both to evolve the spin-mechanical dynamics from a spin
superposition and to postselect the spin subsystem to a state
with nonzero coherence—this, as opposed to the previous
coherent case, where a spin postselection with zero coherence
could drive the NMO to even zero phonons on average.

Additionally, from the top panel of Fig. 2, we can see that
the best cooling rate that we could achieve is about 〈n̂〉post ≈
0.7〈n̂〉0 with a single spin. One could ask, therefore, whether
this ratio might be improved (i.e., 〈n̂〉post < 0.7〈n̂〉0) with the
inclusion of more spins coupled to the NMO (ground-state
cooling, for a family of physical systems, via one-shot projec-
tive measurement was reported in Ref. [40]). To investigate
this case, we can generalize the Hamiltonian from a single
spin to N independent spins interacting with a single-mode
NMO as follows:

Ĥint = b̂†b̂ −
N∑

i=1

λiσ̂z,i (b̂
† + b̂). (13)

In the above Eq. (13), λi = xzpfλ
(i)
0 /ωm corresponds to the ith

scaled spin-mechanical coupling strength, and σ̂z,i is the Pauli
operator along the z direction for the ith spin.

Naturally, even though one could expect to assess a cooling
enhancement when N spins are considered in the dynamics
(due to the 2N mechanical displacements that will take place),
the question regarding the optimal spin postselection becomes
highly nontrivial. As a first result for the N -spin case, let us
commence by evolving the system from an equiprobable spin
superposition in conjunction with a thermal distribution for
the NMO. Therefore, the initial state reads

ρ̂(0) = ρ̂q (0) ⊗ 1

πn̄

∫
|β〉〈β|e− |β|2

n̄ d2β, (14)

where

ρ̂q (0) = 1

2N

N⊗
i=1

(|↑〉〈↑| + |↑〉〈↓| + |↓〉〈↑| + |↓〉〈↓|)i .
(15)

It is straightforward to generalize the unitary evolution opera-
tor for this case, it being

Û (t ) = exp

⎡
⎣i

N∑
{i,j}=1

λiλj σ̂z,i σ̂z,j (t − sin t )

⎤
⎦

× exp

[
N∑

i=1

λiσ̂z,i (ηb̂† − η∗b̂)

]
exp[−ib̂†b̂t]. (16)

Notice that for N = 1, the phase exp[i
∑N

{i,j}=1
λiλj σ̂z,i σ̂z,j (t − sin t )] translates into a global phase, and
hence we recover the unitary evolution operator shown
in Eq. (2). Because the spins are both independent and
linearly coupled to the NMO, we can notice that any spin
arrangement is in fact interchangeable; i.e., the NMO will
be displaced in the exact same amount if it is coupled to a
spin state, for instance, |↑〉|↓〉|↓〉, |↓〉|↓〉|↑〉, or |↓〉|↑〉|↓〉.
Therefore, let us consider a generic array of N spins
given by |{↑}n, {↓}N−n〉 = |↑,↑, . . . ,↓,↓, . . . ,↓〉 [i.e., a
vector state with n spin-up (|↑〉) and N − n spin-down
(|↓〉) components] operated under the action of the unitary
operator (16),

Û (t )|{↑}n, {↓}N−n〉
= e4iλ2[n(n−N )−m(m−N )](t−sin t )

× D̂[(2n − N )λη]e−ib̂†b̂t |{↑}n, {↓}N−n〉, (17)

D̂[· · · ] being the mechanical displacement operator, and
where for simplicity we have considered λi = λj = λ. There-
fore, a coherent state for the mechanical object will be dis-
placed in a quantity

D̂[(2n − N )λη]D̂[βe−it ]|0〉 = eiθ |βe−it + λ(2n − N )η〉,
(18)

where we recall that we have considered complex coher-
ent amplitude β = reiφ , and thus θ = 2λ(2n − N )r cos(φ −
t/2) sin(t/2) was calculated by using the relationship
D̂[α1]D̂[α2] = e(α1α

∗
2−α∗

1α2 )/2D̂[α1 + α2].
With the aid of Eqs. (17) and (18), and postselecting the

spins’ degrees of freedom with a target state

|ψ〉target = 1

2
N
2

N⊗
i=1

(|↑〉 + |↓〉)i , (19)

we can write the postselected state for the mechanics as
follows:

ρ̂(t )post = 1

22Nπn̄P

N∑
n,m=0

Cn,m

×
∫

d2βei(θn−θm )e− |β|2
n̄ |ϕn(t )〉〈ϕm(t )|, (20)
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FIG. 3. Ratio of the phonon number on average (〈n̂〉post/〈n̂〉0) as
a function of the coupling parameter (λ) for several spins coupled to
the NMO, where N stands for the number of the interacting spins.
We have considered the spin postselection as in Eq. (19).

where we have defined

Cn,m =
(

N

N − n

)(
N

N − m

)
e4i(t−sin t )[n(n−N )−m(m−N )],

ϕn(t ) = βe−it + λ(2n − N )η,

θn = 2λ(2n − N )r cos(φ − t/2) sin(t/2),

P = 1

22Nπn̄

N∑
n,m=0

Cn,m

×
∫

d2βei(θn−θm )e− |β|2
n̄ 〈ϕm(t )|ϕn(t )〉. (21)

We now have explicitly derived the density matrix for
the NMO when N spins are independently postselected as
shown in Eq. (19). As a next step, we calculate in Fig. 3 the
mean phonon energy ratio (〈n̂〉post/〈n̂〉0) versus the coupling
value (λ) for a spin-mechanical system with up to four spins
(N = 4) interacting with the NMO. To calculate 〈n̂〉post =
Tr[n̂ρ̂(t )post], we have used the analytical expression shown
in Eq. (20), where for the numerics we consider t = π/2
and n̄ = 10. From Fig. 3 we can readily notice two results;
namely, (i) the optimal coupling value λ ≈ 0.12 for which the
ratio reaches its minimal value does not depend on the num-
bers of postselected spins (N ), and (ii) although increasing
N improves the mechanical-cooling effect, the fact that the
enhancement ratio 〈n̂〉(N+1)

post /〈n̂〉(N )
post goes rapidly towards unity

makes considering N > 4 redundant. For instance, for N = 5,
〈n̂〉(6)

post/〈n̂〉(5)
post ≈ 0.98.

As a consequence of the above nonlinear enhancement
ratio, it is unviable to fulfill the task of cooling-down an NMO
to its ground state by uniquely postselecting N spins [as in
Eq. (19)] only once. Because of this, we proceed to iterate
the protocol as follows: once the spin-mechanical system has
evolved a time t = π/2, we perform a spin postselection col-
lapsing the mechanical state as shown in Eq. (20). Naturally,
if the postselection happens to be successful the spin state will
also be found in the state |ψ〉target =1/(2

N
2 )

⊗N
i=1(|↑〉+|↓〉)i ,

for which therefore we continue to repeat the above steps.
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FIG. 4. In the top panel, we show the ratio of the phonon number
on average (〈n̂〉post/〈n̂〉0) against the number of iterations for several
spins coupled to the NMO. In the bottom panel, we illustrate the
success probability at each iteration.

Numerical results for the iteration procedure [41] are
shown in Fig. 4(a). There, we have considered the optimal val-
ues t = π/2 and λ = 0.12 assuring “thermal” cooling. More
importantly, controlling N = 4 spins during the whole itera-
tion process results in a considerable reduction of iterations.
Moreover, in Fig. 4(b), we have plotted the success probability
showing that we could achieve a similar cooling outcome
regarding both probability and its cooling ratio 〈n̂〉post/〈n̂〉0

in fewer iterations. For instance, the cooling procedure with
a single spin iterated eight times (hence eight postselections
must be performed) can be efficiently converted to the one
with four spins iterated only twice (although a same total
number of postselections must be realized).

B. Spin postselection with a correlated basis

In the previous section, we have investigated the case
where N � 1 spins are coupled to an NMO and, particularly,
we have realized an independent postselection on each spin
to decrease the mechanical energy on average. Nonethe-
less, when N > 1 the optimal postselection becomes highly
nontrivial, mainly due to the 2N − 1 free parameters to be
considered in the optimization procedure. In this section, we
will study the case where the postselection is carried out
using a correlated basis. The simplest nontrivial case is to
consider N = 2, where for our purpose we will make use of
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the following well-known correlated basis:

|�−〉 = 1√
2

(|↓〉|↓〉 − |↑〉|↑〉), (22)

|�+〉 = 1√
2

(|↓〉|↓〉 + |↑〉|↑〉), (23)

|�−〉 = 1√
2

(|↓〉|↑〉 − |↑〉|↓〉), (24)

|�+〉 = 1√
2

(|↓〉|↑〉 + |↑〉|↓〉). (25)

Above, the four Bell vectors {|�−〉, |�+〉, |�−〉, |�+〉} form a
2×2 basis; i.e., any vector spanned in the computational basis
(with

∑
i |ci |2 = 1)

|�〉 = c1|↑〉|↑〉 + c2|↑〉|↓〉 + c3|↓〉|↑〉 + c4|↓〉|↓〉 (26)

can be written in terms of the Bell basis as follows:

|�〉 = 1√
2

[(c4 + c1)|�+〉 + (c4 − c1)|�−〉 (27)

+ (c3 + c2)|�+〉 + (c3 − c2)|�−〉]. (28)

Certainly, the cooling scheme remains the same; only the
target spin for the postselection has now changed to be per-
formed in a joint basis:

|ψ〉(2)
target = b1|�−〉 + b2|�+〉 + b3|�+〉 + b4|�−〉, (29)

1 = |b1|2 + |b2|2 + |b3|2 + |b4|2. (30)

Numerical simulations (with real coefficients) show that the
optimal target spin is

|ψ〉(2)
target = 1

2
(|↓〉|↓〉 + |↑〉|↑〉) + 1√

2
|↓〉|↑〉 (31)

= 1√
2
|�+〉 + 1

2
(|�+〉 + |�−〉). (32)

Furthermore, another simulation run, where we have con-
sidered up to three spins, gives us the following optimal
correlated target spin:

|ψ〉(3)
target = a(|↑〉|↑〉|↑〉 + |↑〉|↑〉|↓〉 + |↑〉|↓〉|↑〉

+ |↑〉|↓〉|↓〉 + |↓〉|↓〉|↑〉 + |↓〉|↓〉|↓〉)

+ 1
5 (|↓〉|↑〉|↑〉 + |↓〉|↑〉|↓〉), (33)

a = −
√

1
6

(
1 − 2

25

)
. (34)

In Fig. 5 we compare the ratio of the phonon occupation
number from the previous section (where we have postse-
lected the spins independently) with the spin postselection
making use of correlated spin basis. Notice that in this present
case, after the spins are postselected, we require to restart the
spins in the subsequent iteration such as in Eq. (15). This
could be considered as a disadvantage in itself compared
with the former case, where no reinitialization of the spin
subsystem is necessary. On the other hand, as seen in Fig. 5,
and considering the optimal target spin state with N = 3

1 2 3 4 5 6 7 8 9 10

Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

n̂
p
o
st
/

n̂
0

Prs = 1.5 × 10−5, N = 3(corr)
Prs = 0.028 , N = 4

N = 2
N = 2(corr)
N = 3
N = 3(corr)
N = 4

FIG. 5. We compare the ratio of the phonon number occupa-
tion at each iteration when N = 2, N = 3, and N = 4 spins are
postselected independently, with the case when two and three spins
are postselected in a joint basis, N = 2(corr ) and N = 3(corr ),
respectively. We also show that although the ratio 〈n̂〉post/〈n̂〉0 for
N = 3(corr ) can in fact surpass N = 4, its negligible success prob-
ability (Prs) at the tenth iteration makes it impracticable. Other values
are t = π/2, λ = 0.12, and 〈n̂〉0 = 10.

[Eq. (34)], the result is translated into a slight enhancement of
the cooling ratio when contrasted to the case of postselecting
N = 4 spins independently. Concerning probability, we have
embedded in Fig. 5 the success probability for the 10th
iteration. Certainly, for the case of N = 3 with a correlated
basis it is seen to be extremely unfeasible, as the success
probability turns out to be on the order of ∼10−5 (and situated
way below the case of N = 4 with a success probability of
0.028). Moreover, even for the sixth iteration using a joint
basis its success probability is quite modest, being a value of
≈0.006—still far below the independent N = 4 case at the
tenth iteration.

The above analysis shows two notable disadvantages when
postselecting N spins utilizing a correlated basis. First, the
optimization of the target spin is numerically implausible.
Even for a few numbers of spins coupled to the NMO such
as N = 4, the numerics take longer to be fully optimized.
Second, and more important, even if the target is optimized,
the usage of a correlated basis is not comparable to the
independent spin postselection case because of the very low
success probabilities. In the above study, we have found that
although the cooling rate could be improved, the scheme
suffers from not being genuinely feasible. The next section
aims to find a case where the cooling rate is improved at
each iteration by almost no cost of the success probability.
We will show that this is indeed the case when considering
the collective configuration of the spins.

C. Collective spin postselection

At this very stage of our work, we have addressed the
system by considering either independent spin postselection
or measurement on a joint basis for the spin subsystem, i.e.,
2N degrees of freedom. It has been shown in the latter case that
under specific optimal joint measurements the mean phonon
number decreases faster than in the independent measurement
case. However, finding the optimal target state is far from
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being a straightforward computational task (even for just a
few spins coupled to the NMO, such as N = 4). In fact,
the independent spin degrees of freedom (2N − 1) result in
a highly demanding way to achieve the desired mechanical
ground-state cooling. To surpass this difficulty, we proceed
to describe the spin-mechanical evolution in a very natural
collective spins manner. This description has been extensively
studied in the cavity-QED regime, more particularly in the so-
called Dicke model (where homogeneous coupling between
the emitters and the quantized field mode is usually consid-
ered; an inhomogeneous Dicke model has also been studied;
see Ref. [42]), where N independent emitters interact with a
single mode of the quantized electromagnetic field. Typically,
in the Dicke model, the collective operators are introduced as
follows:

Ŝz =
N∑

i=1

σ̂z,i , (35)

Ŝ± =
N∑

i=1

σ̂±
i , (36)

satisfying the angular momentum algebra

Ŝz|s,m,D〉 = m|s,m,D〉, −s � m � +s, (37)

Ŝ2|s,m,D〉 = s(s + 1)|s,m,D〉, Ŝ2 = S · S, (38)

Ŝ±|s,m〉 =
√

(s ∓ m)(s ± m + 1)|s,m ± 1〉. (39)

In the above, m is the angular momentum’s component
along the z direction (|m| � s), s is related to the total angular
momentum (s � N/2, smin = 0, 1/2 for N as an even or
odd number, respectively), and D stands for the degeneracy
parameter (with respect to the irreducible representation of
the uncoupled spin basis); each Dicke state |s,m,D〉 has a
degeneracy [43]

DN,s = (2s + 1)
N !(

N
2 + s + 1

)
!
(

N
2 − s

)
!
. (40)

As seen from the above, the states with s = N/2 have no
degeneracy and are symmetric.

The unitary evolution operator for the Hamiltonian in
collective representation

Ĥ = b̂†b̂ − λŜz(b̂† + b̂) (41)

reads as follows:

Û (t ) = eiλ2Ŝ2
z (t−sin t )eiλŜz (ηb̂†−η∗b̂)e−ib̂†b̂t . (42)

We now proceed to consider the initial condition as an
array of noninteracting spins coupled to a thermalized NMO
(we have dropped the D degeneracy parameter, as we are only
considering the symmetric case, s = N/2):

ρ̂(0) =
∑

m = −s, s

m′ = −s ′, s ′

cmcm′ |s,m〉〈s ′,m′| ⊗ ρ̂(0)NMO. (43)

Therefore, the dynamics can easily be written as

ρ̂(t ) =
∑

m = −s, s

m′ = −s ′, s ′

eiλ2(t−sin t )(m2−m′2 )cmcm′ |s,m〉〈s ′,m′|

⊗ D̂[λmη]e−ib̂†b̂t ρ̂(0)NMOe+ib̂†b̂t D̂[λm′η]†. (44)

Following the same procedure as before, we now proceed
to postselect the spins with the target state

|ψ〉target =
s ′′∑

m′′=−s ′′
dm′′ |s ′′,m′′〉. (45)

Thus, the unnormalized state is

ρ̂(t ) =
∑

m = −s, s

m′ = −s ′, s ′

eiλ2(t−sin t )(m2−m′2 )cmcm′dmdm′

⊗ D̂[λmη]e−ib̂†b̂t ρ̂(0)NMOe+ib̂†b̂t D̂[λm′η]†. (46)

Certainly, when considering s = N/2 the dimensions of
the spin subsystem have been reduced linearly from 2N to
2s + 1 = N + 1. Moreover, the collective behavior could be
exploited by an appropriate election of the ci and dj in-
dependent parameters, being the preselection and postselec-
tion weights, respectively. In principle, those weights can
be prepared in any distribution. Nonetheless, for the sake
of simplicity we have determined to consider first only flat
distributions of the above, i.e., ci = di = √

1/(N + 1),∀i ∈
Z. Other distributions, such as Gaussian, sine, or cosine
distributions, have also been considered by us. By these, we
mean that the weights of the c’s and d’s are distributed as
in Gaussian, sine, or cosine shape when plotted as functions
of the angular momentum in the z direction (|m| � s). For
instance, when the Gaussian shape is considered, we make
use of the (unnormalized) discrete Gaussian kernel defined
by T (m,�) = cm = e−�Im(�), where � is related to the
Gaussian’s standard deviation and m takes the values be-
tween {−s, s}; Im(�) denotes the modified Bessel functions
of integer order, m. The above distributions give us a quite
similar cooling performance with similar success probability,
slightly deviating from the flat distribution—which explains
why we explore the flat case as an illustrative example. With
these parameter restrictions, the unnormalized density matrix
is reduced to

ρ̂(t )post = 1

(N + 1)2

∑
m = −s, s

m′ = −s ′, s ′

eiλ2(t−sin t )(m2−m′2 )

⊗ D̂[λmη]e−ib̂†b̂t ρ̂(0)NMOe+ib̂† b̂t D̂[λm′η]†. (47)

In Fig. 6, we illustrate the benefits of considering the col-
lective basis for the spin postselection. The advantage comes
concerning the success probability and the total number of
iterations. In the top panel (a), we present the cooling perfor-
mance (left y axis) and the success probability (right y axis)
as a function of the number of spins for a flat distribution [see
Eq. (47)]. With this, we now intend to address whether there is
a critical number of spins for which we can achieve an optimal
balance between minimizing the cooling rate and maximizing
the success probability as highly as the protocol can attain.
From previous discussions (e.g., see Fig. 4), it is clear that as
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FIG. 6. Cooling rate (left y axis, blue dots) and its related success
probability (right y axis, green crosses) as a function of the number
of spins coupled to the NMO. We have fixed the total number of
iterations (τ ) as τ = 5 (therefore, t = τ × π/2, corresponds to the
total time of the protocol). In the top panel (a), we considered a
flat distribution for the parameters {c′s, d ′s} as shown in Eq. (47).
In the bottom panel (b), we use the symmetric coherent spin state
|CSS〉+ both for the preselection and postselection of the spins—a
state which proves to be the optimal case. In both cases, going
beyond N = 10 spins does not improve the cooling performance
substantially.

τ decreases we will require more spins to optimally achieve
the NMO ground state. Let us investigate the situation where
we iterate our protocol for a maximum value of τ = 5. From
Fig. 6(a), it is seen that having more than N = 10 spins
results in a misuse of resources as the differences between
the cooling rate and the success probability become negligible
when N � 10 (for fixed τ = 5).

Nonetheless, despite the highly beneficial final state
achieved so far (with 〈n̂〉post ≈ 0.07, for N = 10, and Prs ≈
2%), the election of a flat distribution for the pre- and
postselection parameters {ci, dj } might seem purely of the-
oretical interest. In other words, we are unable to give a
truly experimental preparation of this distribution, as we are
blind between the flat distribution in the Dicke basis and
its transformed basis in the “natural” spin computational
basis {0’s, 1’s} or {|↑〉’s, |↓〉’s}. Certainly, this transformation
matrix can be found straightforwardly in our simple case
(s = N/2) as follows:∣∣∣∣N2 ,m

〉
= 1√(

N

m+ N
2

)Ŝ [|↑〉⊗(m+N/2) ⊗ |↓〉⊗(N/2−m)], (48)

where, Ŝ is the symmetrization operator.

As mentioned, even though we have found some other
distributions of c’s and d’s where our protocol still work (e.g.,
a Gaussian distribution), we would like to focus our attention
on states of experimental interest (or theoretical proposals to
achieve them) ([44–50] and references therein), such as the
symmetric coherent spin state (a = b = 1/

√
2)

|CSS〉+ =
N⊗

i=1

(a|↑〉i + b|↓〉i )

=
N/2∑

m=−N/2

√(
N

N
2 + m

)
aN/2+mbN/2−m

∣∣∣∣N2 ,m

〉
, (49)

the antisymmetric coherent spin state |CSS〉− = ⊗N
i (a|↑〉i +

b|↓〉i ), with a = 1/
√

2, b = −1/
√

2, the excited state
|1〉⊗N = |N/2, N/2〉 (all spins up), ground state
|0〉⊗N = |N/2,−N/2〉 (all spins down), the maximally
symmetric superradiant state |N/2, 0〉, the subradiant state
|0, 0〉, and finally, the Greenberger-Horne-Zeilinger (GHZ)
state 1/

√
2 × (|0〉⊗N + |1〉⊗N ) = 1/

√
2(|N/2, N/2〉 +

|N/2,−N/2〉). Thanks to the Permutational Invariant
Quantum Solver (PIQS) [51] and the Quantum Toolbox in
Python (QuTiP) [41], the quantum dynamics considering
the above spin states can be easily computed. Although we
considered several combinations of the spin states, we have
only found that the symmetric, antisymmetric, and GHZ
states are suitable to steer the mechanical state to its ground
state. From the previously discussed sections, both symmetric
and antisymmetric coherent spin states are quite expected
to assess such mechanical cooling, whereas GHZ states can
also achieve near ground-state cooling as they simply can be
written in the spin computational basis as follows:

Û (t )|β〉|↑〉⊗N = eiλ2
eff (t−sin t )eiθeff |β↑,eff〉|↑〉⊗N, (50)

Û (t )|β〉|↓〉⊗N = eiλ2
eff (t−sin t )e−iθeff |β↓,eff〉|↓〉⊗N, (51)

where β↑,eff = βe−it + λeffη, β↓,eff = βe−it − λeffη, θeff =
λeffr cos(φ − t

2 ) sin t
2 , β = reiφ , and λeff = λN . Hence, the

(unnormalized) oscillator density matrix for a GHZ state
postselected with itself is

ρ̂(t ) = 1

4πn̄

∫
d2βe− |β|2

n̄ (|β↑,eff〉〈β↑,eff | + |β↓,eff〉〈β↑,eff |

+ [|β↑,eff〉〈β↓,eff |e2iθeff + H.c.]). (52)

In Fig. 6(b) we summarize our findings for the optimal
collective case, i.e., when the spin pre- and postselection is
performed using |CSS〉+. As in the previous case, the total
time of the protocol consists of a total of five iterations. In this
case, going beyond N � 10 spins is translated once again into
a waste of spin resources. The cooling performance decreases
as low as 〈n̂〉post/〈n̂〉0 ≈ 0.01 with a success probability of
Prs ≈ 2%.

The conclusion so far can be stated as follows. Of all the
states studied by us, the one that brings the mechanical object
to its ground state most efficiently is the symmetric coherent
spin state (from an experimental point of view), i.e., each spin
state initialized individually in |+〉, for which the framework
using the Dicke basis gives us a good advantage concerning
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computational time. Here, we would like to point out that, in-
homogeneous coupling, namely different λi , can also be taken
into account. However, the inhomogeneities forbid represent-
ing the Hamiltonian in terms of the total angular momentum
operators, i.e., Ŝz �= ∑N

i=1 σ̂z,i (see Ref. [42]). Furthermore,
it is also relevant to point out that, as we described, the
postselection state is critical for our scheme. Here we have
mainly focused on preselection and postselection of the spin
in the same state, as in this manner we do not have any need of
restarting the spin state after at each iteration. It is worthwhile
to mention that flat distributions of c and d parameters can
also have a substantial impact on reducing the phonons on
average; however, the experimental realization could be quite
costly. With the above Dicke framework we can study the
performance of our protocol in quantum open systems, which
is the subject of the next section.

IV. OPEN QUANTUM CASE AND
EXPERIMENTAL FEASIBILITY

An unavoidable fact in realistic scenarios is that all physi-
cal systems suffer from decoherence, i.e., detrimental effects
due to the interaction of the system’s relevant degrees of
freedom with the reservoir. This is of special interests for
any cooling scheme, as we need to cool down the NMO by
competing with the thermalization due to the environment.
To simulate this scenario, let us first consider the open quan-
tum case in the presence of both mechanical damping in
a reservoir with n̄ initial phonon occupation numbers, and
local spin relaxation and also including local pure dephasing
terms. Therefore, by considering an initial NMO embedded
in a reservoir with n̄ ≡ 〈n̂〉0 ≈ 10 thermal phonon number
on average, we then commence to evolve (at each iteration)
the spin-mechanical dynamics from a nonequilibrium state,
i.e., where n̄ > 〈n̂〉post. The above open quantum case can be
modeled by the usual master equation in the Markov-Born
approximation as follows:

dρ̂

dt
= −i[Ĥint, ρ̂] + γ (1 + n̄)L [b̂] + γ n̄L [b̂†]

+
N∑

i=1

�(1 + n̄)L [σ̂−
i ] + �n̄L [σ̂+

i ] + γφ

2
L [σ̂z,i],

(53)

where Ĥint = b̂†b̂ − ∑N
i=1 λiσ̂z,i (b̂† + b̂) and

L [Ô] = 1
2 (2Ôρ̂Ô† − ρ̂Ô†Ô − Ô†Ôρ̂ ) (54)

corresponds to the Lindblad term. Furthermore, the scaled
(by the mechanical frequency ωm) quantities {γ,�, γφ} are
the local mechanical damping, local spin relaxation, and the
local spin pure dephasing rates, respectively. To estimate
up to which values our scheme can be accommodated, we
consider the simulation for N = 1 and N = 4 spins. By a
numerical simulation we found that the scheme does not suffer
heavily regarding spin decoherence; for instance, {�, γφ} �
{10−3, 10−2} [52] will not produce any strong effect during
the iterations. On the other hand, we considered the simulation
with mechanical states of (scaled) quality factors as low as
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FIG. 7. Phonon occupation probability [Prob(n)] for the postse-
lected mechanical state. In (a) we solved the unitary evolution and
(b) the open quantum case, where we have considered both local
and collective channels of dissipation {γ = �, γφ = �↓ = �↑ = γ�,

〈n̂〉0} = {10−3, 10−2, 10}. As before, we simulated the protocol up
to five iterations (t = τ × π/2 = 5 × π/2) when N = 10 spins are
coupled to the NMO. Preparation and postselection of the spins have
been performed in the state |CSS〉+.

(Q = γ −1) Q ∼ 103; nowadays, Q > 103 can be achieved
experimentally [53].

Nonetheless, more appropriate for this type of open quan-
tum dynamics is to consider both local and collective losses.
The associated master equation for this general case is

dρ̂

dt
= −i[Ĥint, ρ̂] + γ (1 + n̄)L [b̂] + γ n̄L [b̂†]

+
N∑

i=1

�(1 + n̄)L [σ̂−
i ] + �n̄L [σ̂+

i ] + γφ

2
L [σ̂z,i]

+�↓L [Ŝ−] + �↑L [Ŝ+] + γ�

2
L [Ŝz], (55)

where the corresponding collective phenomena are described
by the scaled quantities {�↓,�↑, γ�}, these being the col-
lective decay (typical of superradiant decay), the collective
pumping (which in this case can be understood as incoherent
pumping from the thermal reservoir), and collective dephas-
ing, respectively.

In Fig. 7 we contrast the final NMO state using our protocol
in the absence of any source of decoherence (a) with the one
including several channels of dissipation (b). To observe the
robustness of our scheme in the presence of decoherence, let
us first consider the unitary evolution and explore up to which
values our protocol can be accommodated. In the top panel,
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we depict the phonon occupation probability 〈n|ρ̂m|n〉 for the
final (postselected) mechanical state after five iterations when
N = 10 spins started from the |CSS〉+ and they are postse-
lected accordingly; the NMO was initialized, as throughout
this work, with n̄ = 10 phonons on average. As seen from
the figure, at the end of the protocol, the phonons on average
have been decreased as low as 〈n̂〉post/〈n̂〉0 ≈ 0.01 with a
success probability of Prs ≈ 2.6%. Additionally, we have
included the ratio between the mechanical variances after the
protocol takes place with the mechanical variances of the pure
ground state |0〉m, where �x̂post/�x̂0 ≈ 1.17,�ŷpost/�ŷ0 ≈
1.22. It is then readily observed that the final NMO state truly
resembles the ground state of the oscillator, with a fidelity√〈0|mρ̂(t )post|0〉m ≈ 0.96. In the bottom panel (b), we solve
the dynamics including several dissipation channels with
both local and collective Lindbladians, where we considered
{γ = �, γφ = �↓ = �↑ = γ�, 〈n̂〉0} = {10−3, 10−2, 10} (see
next paragraph regarding experimental feasibility). This result
shows that even in the case of decoherence [as general as the
one described by the master equation in Eq. (55)] the protocol
is positively robust. We can understand this robustness regard-
ing the total number of iterations and, especially, the total
protocol time t = 5×π/2 (approximately two NMO whole
cycles), as it has been highly reduced because of the inclusion
of several spins coupled to the NMO. Therefore, at each spin
postselection both local and collective channels of dissipation
do not have enough time to thermalize the collapsed NMO.
In this last open quantum scenario, 〈n̂〉post/〈n̂〉0 ≈ 0.017 with
a success probability of Prs ≈ 0.9%, with an approximate
fidelity of ≈ 0.93. And, the ratio of mechanical variances are
�x̂post/�x̂0 ≈ 1.31,�ŷpost/�ŷ0 ≈ 1.37.

Although we have not given any specific physical sys-
tem for our cooling scheme so far, we believe that a feasi-
ble system could be the one involving micro- or nanocan-
tilevers coupled to nitrogen-vacancy (NV) centers in diamond
[6,33,37,54]. As also stated in Ref. [37], solid-state spins
are robust regarding long coherence [37,55] as well as long
relaxation times T1 that reach a few milliseconds at room
temperature [56]. For instance, it is well known that the elec-
tron spin coherence time measured by a Ramsey experiment
is around T ∗

2 = 1.35 μs [57]. At first sight, this time might
limit the proper implementation of our protocol. However,
increments of the coherence time have been observed in spin
echo measurements T2 = 395 μs [58] or T2 = 1.8 ms in an
isotopically engineered diamond [59]. Moreover, they can
also be easily initialized and read out with fidelities exceeding
98% [60,61]. On the other hand, the spin-mechanical coupling
can be obtained through magnetic coupling, where the scaled
coupling parameter reads h̄λ ≈ μB∂B/∂z

√
h̄/2mω3

m [6,54].
A typical set of values is μB ∼ 10−23 J/T (Bohr magneton),
mass m ∼ 10−14 kg, mechanical frequency ωm ∼ 106 Hz,
and magnetic gradient between 104 T/m < ∂B/∂z < 107

T/m, thus enabling the needed operational regime 10−4 < λ <

10−1 [6,54].
Finally, preparation, measurement, and control of collec-

tive spin states in experiments related to quantum optics, solid
state physics, etc. [62], have become nowadays plausible tech-
niques. For example, such pioneer experiments as [63–65] are
well-known protocols for realizing squeezing, teleportation,
and entanglement of macroscopic atomic samples with engi-

neered collective spin states [66]. Recently, new experimental
proposals consider hybrid systems, where the main actors
could be the collective spinlike states (atoms, superconducting
qubits, NV centers) coupled, e.g., to superconducting res-
onators [67,68] or mechanical elements [23,69]. Particularly
in Ref. [23], the authors propose an experimental protocol to
cool-down a high-Q mechanical resonator from room tem-
perature. This goal is achieved by coupling collectively a
high-density ensemble of NV-center spins to a mechanical
oscillator via an (excited state) spin-strain mechanism.

V. FINAL REMARKS

In summary, we have explored different alternatives to
cool-down a nanomechanical oscillator (NMO) to its ground-
state when N spins are coupled independently to the NMO
position. Our probabilistic protocol relies on successive spin
postselections iterations conducted at each NMO quarter of
its cycle (t = π/2). For the simplest case of having only a
single spin coupled to the NMO, we have found an optimal
interaction time and spin-mechanical coupling, a set of values
that must happen to reduce the NMO position and momentum
variances simultaneously—other coupling strength at some
other time lead the NMO to mechanical squeezing. We would
like to mention that the single-spin case does not depart much
from the work of Rao et al. [37]. Nevertheless, our primary
aim was to investigate the cooling process in the presence of
N �= 1 spins. Moreover, as the process is intrinsically itera-
tive, one would require to succeed at any stage to efficiently
cool-down the NMO; otherwise, a failure of spin postselection
will drive the NMO to an intricate quantum state, and there-
fore a full reinitialization of the scheme is necessary. When N

spins are coupled to the NMO, the inquiry on how to optimally
postselect the spins become highly nontrivial. For this reason,
we consider three main cases regarding the conditioned spin
measurement, namely, (i) individual postselection of the spins,
(ii) in a correlated basis, and (iii) making use of collective
operators. The latter one is typically used when N indepen-
dent atomic emitters are coupled identically to a quantized
electromagnetic field—for example, being trapped or located
in the antinodes of a standing light wave. Here, we found
that the total number of iterations needed to bring the NMO
near its ground state is highly reduced, where also the final
state is achieved with a non-negligible success probability.
The reduction of the whole protocol time is shown to be vastly
beneficial when the relevant system is in contact with a ther-
mal reservoir at T �= 0. To model this situation we consider
a general master equation shown in Eq. (55), where we in-
cluded local and collective channels of dissipation. We found
that even in this general decoherence picture our scheme
can be accommodated up to feasible values (all scaled by
the NMO frequency) {γ = �, γφ = �↓ = �↑ = γ�, 〈n̂〉0} =
{10−3, 10−2, 10}, where 〈n̂〉post/〈n̂〉0 ≈ 0.017, success prob-
ability Prs ≈ 0.9%, an approximated fidelity of 0.93, and me-
chanical variances �x̂post/�x̂0 ≈ 1.31,�ŷpost/�ŷ0 ≈ 1.37.
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