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Critical current of a quasi-one-dimensional superconducting wire
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We solve the Bogoliubov—de Gennes equations self-consistently to obtain the critical dyrrersus
Fermi energyu for a ballistic quasi-one-dimensional superconducting wire. Instead of the ‘“discretized”
critical current I .(u)=NeAy/% predicted for a superconducting point contact, we find
() =[4€eAie()/n][n(p)/n1(p)] for the superconducting wire. The normalized electron density
n(u)/ny(p)=2= {\‘:1(kFi /ke1)=<N is a slowly increasing function gf. The superconducting order parameter
Ayire(1t) must be obtained self-consistently for each value of the Fermi energy. WA finfw) follows the
normal-metal quasi-one-dimensional density of sthtéa) of the wire, as does the critical currelnu) .

I. INTRODUCTION conducting wire resembles the electronic density of states of
the normal-metal wird(u). That the superconducting order
Recently Beenakker and van Houtdrave predicted the parameter follows the density of states is well known from
“discretization” of the critical current in a superconducting the superconductivity of uniform thin filnfs,small metallic
point contact in units oA /%, where 2\, is the energy islands, and fullerine€ The critical current of the quasi-
gap of the bulk superconductors. Reference 1 has stimulateghe-dimensionalQ1D) wire is proportional to the energy
much additional work on the electrical characteristics of sugapA; of the lowest subband, i.e\;.=A4, as described in
perconducting weak link5:2° Several of these recent Sec. IV.
works*~2% have also emphasized the importance of satisfy- Although one cannot directly vary the Fermi eneggyn
ing the self-consistency requirement for the order parametex metallic superconducting wire to obsenéu), the same
A(r,u) in superconductors subject either to a current flow orqualitative variation of .(B) could be observed by depopu-
spatial variations in geometry. Satisfying the self-consistencyating the subbands with an applied magnetic fiBldThe
condition forA(r,u) is necessary both to predict the critical resultingl(B) will be an interplay of the Pauli depairing,
current in any geometry and to ensure electrical currenorbital depairing, and depopulating of the confinement sub-
conservatiort®=*¥The multimoded superconducting wire we bands. The variation of order parameter and critical current
consider in this paper illustrates several effects the selfean also be observed by varying the wire width as suggested
consistency condition foA(r, ) has on electronic transport in Ref. 21. In clean, type-l superconducting wire, which is
in restricted geometries. wide enough such that phase slippage does not limit the criti-
We compare the superconducting point contact and supegal current, it should be possible to observe quantum con-
conducting wire geometries in Fig. 1. Reference 1 argues
that, because the electrical current density is geometrically
diluted in a point contact, the order parameter for the bulk  Point Contact - - - QID Wire
superconductoa ,, cannot greatly change when connected
to another bulk superconductor through a point contact. For \ /
the point contact, the self-consistency requirement then has

minimal effect on the critical current, as numerically con- fuk  Aeuk  Auk Bwire ABuik
firmed in Ref. 14. We therefore choose to study a supercon- /\ / \\
ducting wire geometry, where several coherence lengghs

separate the bulk superconducting reservoirs terminating the I

wire. The electrical current density is uniform along the -
length of the wire, and is not geometrically diluted until
reaching the distant superconducting reservoirs. The super-
conducting order parametéy, ;. in the wire can then differ
greatly from the bulk order parametas,,., as determined
from the self-consistency condition. Determining the order
parameter A, requires solving a multiple mode
Bogoliubov—de GenneddG) equation described in Sec. Il

The resulting critical currenit,(x) of the supercondunct- E, E, Es
ing point contact and superconducting wire are shown piG 1. Model geometry of a superconducting point and a su-
schematically in Fig. 1. The critical current of the point con- perconducting quasi-one-dimensional wire. Theersusu relation
tact increases in “discretized” increments whenever theof the point contactdashedlincreases in steps wheneyeexceeds
Fermi energy crosses a confinment subband energy confinement subband minint, E,, Es, etc.|.(u) for the su-
E;,E,,E3, ... . In contrast, we find in Sec. lll that the de- perconducting wirgsolid) follows the density of modebl(u) of
pendence of critical current on Fermi energyin the super- the wire in its normal state.

0163-1829/96/54.3)/93999)/$10.00 54 9399 © 1996 The American Physical Society



9400 CHANG, CHAUDHURI, AND BAGWELL 54

finement effects on the critical current and superconducting
density of states. IQ:J Jo(y)dy. (7)

Note that the summations in E¢p) and Eq.(6) are carried
out over allE,, including E,<0.

The BdG equatiort$?* describe the electron motion ina  We choose a harmonic oscillator confinement potential
superconducting structure according to

(H(x,y)—,u A(X,Y) )(up(x,y)) C(x)——mwoy (8)

AT(y) T [HTOGY) — ] vp(x,y) to represent the quasi-one-dimensional wire. If the wire
(up(x,y)) width is much smaller than the London penetration depth, so

Il. MULTIPLE MODE BdG EQUATION

. (1) that an applied magnetic field penetrates the wire uniformly,
vp(X.y) we can also adopt a vector potent|=—By and A,=0.

We take the coordinateto vary along the length of the wire, The magnetic field is perpendicular to the wire BsBZ

andy to describe spatial variation along the wire width. The The confining potential/;(x) and the vector potentiaﬁ re-

one-electron Hamiltonian functiod (x,y) in Eq. (1) strict the electrons to propagate via magnetoelectric
subband$® In the normal state the subband energies are
H(X,y)=Ho(X,y) +Vc(y), @ E,=ho(n—1), wherew?= w2+ w? and w.=eB/m is the
describes free electron motion withy(x,y) and the lateral ~cyclotron frequency. Here=1,2,3 ..., denote the first,
confinement potential witN(y). HereHy(x,y) is second, etc., subbands.

Assuming the wire is uniform along the direction, the
eigenstate in Eq.l) has the solution form

, C igx _
3 (umew:{ p(V)e )ém. .

_ o _ vp(x,y)| | Dp(y)e™'™
For a uniform superconducting wire, the ordering param- .
eter A(x,y) will have the form In this problem we can take the quantum number

p=(k,B), wherek is the wave number an@ the band in-

1 d 2 1 d
Ho(x,y)z2 (—Iﬁ Ax) Zm(_lh —eAy)

A(X,y)=A(y)e?9x, (4 dex. Inserting Eq(9) into Eq. (1) yields
The magnitudeA(y) of the ordering parameter varies only H.(y) A(y) Cpoly) Coly)
alongy because the wire is uniform in thedirection. We A*ty) —H_p /by ~Eelo ) (10
can further takeA (y) to be a real number, since no super- - P P
current will flow alongy. The phase gradient of the ordering where
parameter 8 determines the superfluid flow velocity 2 2
vs=hqg/m,*® allowing the wire to carry a supercurrent along __n m 2
thex direction. The order parametar(x,y) in Eq. (1) must He =75 W+ 2O (YY) ey, (D
be calculated self-consistently fr3
h? d? ) )
. Ho(y)=— 5Tt so(yty)+e, (12
A(y)e? ™= —g(x,y)% v} (X,Y)Up(X,Y) F(Ep) 2m dy
hogk=q)
X 0(hwp—|Ep|). ) Ye= T T (13
: . . and
Here f(Ep)=1[11+expE,/kgT)] is the Fermi occupation
factor. Any coupling constang(x,y)=g(y)>0 favors su- ﬁz 2
perconductivity. We cut off the summations in E&) for ar= (k+ q)z—— . (14

|Ep|>%wp, Wherewp, is the Debye frequency.
The electrical currenty we find by first evaluating the

electrical current density opera’cBr We expand the wave functiorG,(y) andD(y) of the

superconducting wire in Eq10) as a linear combination of
harmonic oscillator basis statds,(y) of the normal wire as

JoW)=2 [Jy,+3, JH(E) =2 I, . (6)
Q ) Up p p ] p ( Cp()’)) . ( upnq,n(y_y+) (15)
The J, andJ, are the Schidinger currents associated with DoY)/ & \vpnWn(y+y-)/’
the waves Up and Up, namely - . . . .
Jupze(ﬁ/m)Im[u;(x,y)VXup(x,y)] and ;’hg\lfn(y) s diagonalize the harmonic confinement potential
J, =e(ha/m)Im[v; (x,y) Vivp(x,y)]. The total currentlq
fIZ)F;/ving in the x girection ig obtained by summindy(y) h? d?
Q — =

along the width of the wire { 2m dy? T Y2 [Wa(y) =En¥ny), (16
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with ¥ (y) the standard Hermite-Gaussian wave functions.
Inserting Eq(15) into Eq.(10), and using the orthonormality
of the ¥ (y)’s, yeilds a Hermitian matrix equation for the

eigenenergieg, and expansion coefficientsi(,,v )

(Em+ a'+)upm+ E Amnvpn: Epupm
n

17

2 A¥Uon— (Em+ @ )0 pm=Epvpm,

derived in Appendix A. Equations similar to E(L7) have
been used to describe the layered highcompounds’

Writing Eq. (17) explicitly for a quasi-one-dimensional wire

with only two subbands gives

Eita, Ay 0 A
AT, —(Eita)) 2 0
0 A21 E2+a+ A22
b 0 2 —(Exta_)
Up1 Up1
Up1 Up1
x| =g, Pl (18)
Upz Upz
Up2 Up2

Here A, is a matrix element of the ordering parameter

A(y) with the harmonic oscillator basis states as

Amn=f:\lf‘n*q(y—y+)A(y)\I’n(y+y_)dy. (19

The off-diagonal matrix element&,,, in Egs. (19 couple

the electron in subbanch and the time-reversed electron
moden, an “intersubband Andreev reflection” due to spatial

variation in the order parametér(y). The particle density
normalization condition requires

Jt:} fldxdy[|up(x,y)|2+ |vp(x,y)|2]

:1:; [|upn|2+|vpn|2]- (20)

We can express the ordering parametéy) from Eq. (5)
in terms of the expansion coefficients in Ef7) as

A(y)=—g<y>§ ;ﬂ Upr? s ¥ m(Y =Y +)

XWH(y+y ) (Ep)b(hwp—|Ep). (D)

Similarly, the electrical current densitiek,(y) and J,(y)
expressed in terms of the expansion coefficients in(Ed.
are

f(k+q)
m

2
Ju(Y)=e 2 Upn¥n(y=Y+) (22

and
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2

fi(k—q)
m ; vpn\Pn(y"—yf) .

3, (y)=e (23)

The electrical current is then obtained from E6). by inte-
grating Egs(22) and(23) over the cross section as

Lo =2 [y, 1o IF(E) =2 1, (24
p p

For B=0, the case we consider in this pap&the currents
Iup andlUp have the simple form

h(k+q)
up:e m 2 |upn|2 (29
and
fi(k—q)
lo,=e 2 lopnl?. (26)

Starting from an initial guess for the ordering parameter
A(y), and for a given value of the superfluid velocity, we
compute the eigenvalues and eigen vectors of(Ed. The
solution of Eq.(17) generates a new pairing potenti®(y)
according to Eq.(21), etc. We iterate this process until
A(y) from Eg. (21) converges to self-consistency with Eq.
(17). We then calculate the electrical currery for this
given value of the superfluid velocity from Egs. (24)—
(26). The critical current is found from by varying the super-
fluid velocity v until the maximuml g is reached at each
Fermi levelw, namely

lo( 1) =Mad (v, ). (27)

Ill. ENERGY GAPS AND CRITICAL TEMPERATURE

In this section we calculate the pairing potentidly), the
dispersion relatiorEg(k), the superconducting energy gap
A;(u) for the first subband, and the corresponding critical
temperatureT(«). The coupling constant is taken to be
g(y)=g,p=constant® We have assumed a Q1D wire hav-
ing three normal modes. As long as we limit the Fermi en-
ergy to u<E,, increasing the number of modes will not
qualitatively affect the result of the calculations.

The self-consistency condition for the superconducting
pairing potentialA (y), Eq. (21), forces it to vary along the
width of the wire. The self-consisten(y) at zero tempera-
ture and zero supercurrent flow= 0) is shown in Fig. 2 for
(@) one and(b) two occupied subbands. In Fig(a&® the
Fermi energy is halfway between the first and second sub-
bands, u,=(E;+E,)/2. Similarly, the Fermi energy is
mo=(E>+Ej3)/2 in Fig. 2b). The spatial variation oA(y)
in Fig. 2 follows the spatial variation of the electron density
| ,(y)|? in each lateral mode. For two occupied subbands in
Fig. 2(b), A(y) is wider and more spatially uniform than for
one occupied subband in Figia2 When many subbands are
occupied, so thap is large, A(y) will be approximately
constant and the subbands will almost completely decouple.

The dispersion diagram for two occupied subbands in a
superconducting wire subject to a superfluid flow is shown in
Fig. 3. The first subbandd= =+ 1) is shown as a solid line in
Fig. 3, while the second subband+< *+ 2) is the dotted line.
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FIG. 2. Self-consistent order parametefy) when (a) one or FIG. 3. Dispersion relation for a Q1D superconductor having
(b) two subbands are occupiefi(y) follows the electron density two occupied subbands. An energy gap for the fissilid) and
n(y) of each populated confinement subband. second (dashed electronic subbands opens when each subband

crosses the Fermi level. The superfluid velocity is zeréani.e.,
Energy gaps are opened in Fig. 3 where each subbarfti-0. The presence of a superfluid flow “tilts” the energy bands in
crosses the Fermi level. The energy gap real0 and wave (b).
vectorkg,; we define as\ 4, the energy gap for the first sub-

band. Here the Fermi wave vector is sentially independently. If a magnetic field is applied, or the
narrow superconductor haslavave or other unconventional
Pem=7Kem=V2M(p—Ep). (28)  order parameter, the mode coupling can become significant.

Similarly, A, is the energy gap of the second subband, whicrbawe also find generally that the energy gaps of each sub-

opens neaE=0 and wavevectokq,. We choose a large nd at the Fermi level are approximqtely t.he same, namely
A,/ ratio in Fig. 3 so the energy gaps are visiffle. Ay(u)=Az(n)=---. The spatial variations ia(y), gener-
There are small “intersubband” energy gaps away fromated from Eq(21), turn out again not to be rapid enough to
the Fermi level in Fig. 3, where the energy bands cross eachake the energy gaps very different. Reference 21 reaches
other, not visible in the figure. Again due to the slow spatialthe same conclusion for a thsswave superconducting film.
variation ofA(y), the intersubband matrix elements,, for ~ For the current carrying superconductor in Figo)3the en-
m#n are small. IfA(y) were actually constant across the €rgy gaps opening at each subband for a fikedemain
wire, we would then hava ,,=0 for m#n, and the modes approximately constant. However, the band structure in Fig.
would completely decouple. Because the mode coupling i8(b) is now “tilted” due to the superfluid flow® This “tilt-
small, and hence\,,~0, A,;=0, etc., we have from Eq. ing” corresponds to a shift of the Fermi surface by an
(18) that Ay (u)=A11, As(u)=A,,, etc. References 1-20 amountq in k space(momentum spage
either explicitly restrict the electron transport to be one di- Figure 4 shows the self-consisteh{(x) when the super-
mensional, or assume the electronic subbands decouple fluid velocity is zero =0). A;(u) in Fig. 4 follows the
the narrowest portion of the wire or weak link, so that elec-quasiparticle density of staté¥ «) of a normal-metal Q1D
trons in the different electronic confinement subbands supemwire, incrasing sharply just above each subband minima at
conduct independently. For tisevave superconducting wire u=E, and decaying agw approaches the next subband
we consider in this paper, we find this mode coupling is notminima. We can understand this result from the self-
significant, so that the subbands do in fact superconduct esonsistency condition for the ordering parametéy) in Eq.
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FIG. 4. Energy gaf\;(u«) of the lowest confinement subband. o EVH .
A,(u) follows the normal-metal density of statii§u) of the wire. FIG. 6. RatioR=24,(u)/kgTc(u) versusu from Fig. 3 and 4.

R remains close to the BCS value B~=3.5, having a maximum

(21). Because we take the Debye energy range in(Eb).to value slightly less than four above each subband opening.
be narrow compared to the subband spaci@{<# ), A — N 30
Eq. (21) simply counts the number of states in the energy 1(p)=hwpgN(p), (30)

range fiwop near u with a weighting factor which is directly proportional to the density of states. Of
Upmt pn ¥ m(Y—Y+) VR (y+y-). Although this weighting course, even in the weak-coupling lingiN(u) <1, where
factor will vary somewhat with Fermi energg,(y,u) basi-

cally follows the normal-metal density of statd§uw) of the Ay(u)=2hwp/exd 1/gN(u)], (31)
narrow wire.A;(u) then also follows the density of states

N(), sinceA, averagesi(y) along the width of the wire. ;t:r;zatseggrgy gap still increases if the density of states in-
Although the normal-metal density of states has a singularity The critical temperaturd, for the Q1D wire is obtained

at each subband (_)penlng,l(ﬂ)_ does not beco”.‘e .|nf|n|te when the temperatur€=T, forces the ordering parameter
near a subband minima. We give a more quantitative analy; . X ;

. ; . . - 2A(y) to be zero, depairing the wire. We plot the numerical
sis for A;(x) when only a single subband is occupied in

Appendix B. re§ult forT, as a.funlction of Fermi energy at Zero super-
That the energy gapr; () follows the normal-metal den- ;I)u_ld fI_OV\_II(qt—OA) n F'Qf]' > TFhe dfpgn?he_ltlce 62("%'; Fig.

sity of statesN(z) can be also reasoned from the BCS > IS Similar t0A,(u) from Fig. 4. BothTe(u) and Ay(u)

theory®! The BCS result for the energy gap of a one- follow the density of statedl(). We can compard ¢(u)

dimensional superconductor is andAl(,u) by forming the r_at|d?=2A1(,u)/kBTc, shown in

Fig. 6. For a weak-coupling BCS superconduck3.5.

However, we see from Fig. 6 th& remains near 3.5, even

Ay(p)=— _ (29) whenu is near the singular density of states at each subband
sinf{ 1/gN(w)] opening. Reference 32 introduces a singular density of states
in the BCS theory, findindqr=4. We findR has a maximum

In the strong coupling limigN(«)>1, Eq.(29) becomes  value slightly less than 4 at each subband opening, so that

Fig. 6 agrees with Ref. 32.

ﬁ(A)D

60.0
IV. CRITICAL CURRENT
L J
We show the electrical curreng versus superfluid veloc-
. ¢ ity vs=7%q/min Fig. 7. As in the one-dimensional caSehe
40.0 electrical current increases linearly with. Because all sub-
= bands are essentially independent current carrying channels
N . . . L . )
:g driven by the same pairing potentialx,y), we can write
200 y * N
. ‘. . lo=evn=evD, n;, (32
i=1
0.. .~ ° . 1
LY wheren; is the electron density in subbandAgain, as for
0.0 . . . the one-dimensional cas®, the order parameter
E, E, E, A(w,9)=A1(x,g=0)6(g.—|q|) remains approximately
Fermi Energy p constant withg until the critical velocityq .
FIG. 5. Critical temperaturélo(u). Tc(x) also follows the Figure 7 also shows that the critical superfluid velocity

normal-metal density of statéé(u) of the wire. vep for uy=(E;+E,)/2 (one occupied subbapdnduv ., for
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FIG. 7. Electrical currentq versus superfluid flow velocity
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FIG. 9. Energy gap\ 1(w) for a single occupied subband com-

for one (dashedl and two (solid) occupied subbands. The critical puted from the approximate E¢B10) (solid) and from Fig. 4. The
superfluid velocityv . is smaller when two subbands are occupied, small difference arises from the different method of imposing the

veo<v¢1. This is because, is limited by the energy gap and Fermi
momentum of the lowest subband@s=A(u)/pe1(u)-

mo=(E,+E3)/2 (two occupied subbangisThat the critical
superfluid velocity . is smaller when the Fermi energy is in
the second subband,.,<v.;, can be understood qualita-
tively from Fig. 3b). When only one subband is occupied
we have the Landau depairing velocityRef. 33

v.=A./pg; as in Ref. 15. For several occupied subbands

the energy gapAE),; of each subband will close as

(AB)i=4i(q=0)—vspF;. (33

Since the energy gap4;(q=0) for all the subbands are
approximately the same, and singg, is the largest Fermi

Debye energy cutoff in EqB10).

for all values of the Fermi energy. The depairing condition
is shown graphically in Fig.(®), where the band edge of the
first subband touches the Fermi level wheyv.. The en-
ergy gap for the lowest subband E),=0 has closed in Fig.
3(b), while the energy gap of the second subband remains
open AE),>0. Using Eq.(34), the larger Fermi momentum

when two subbands are occupieggq(ws)>pe1(m1),
explains  why ve=[A1(u2)/Pr1(p2)<vca=[A1(p1)/
Pe1(w1)] in Fig. 7. Further, since tha,(w) is the relevant
energy gap which determines the critical current in &4),
we can defineA () =A1(w). [For a nonequilibrium
superconductd?!® the depairing condition might not be

momentum, the energy gap of the first subband will close fobiven by Eq.(34), though we know of no specific example

the smallest value aof.

where this is the casg.

When the energy gap of the first subband closes, super- The critical current . for N propagating modes can now

conductivity in the wire is completely destroyed. This de-

pairing condition AE);=0 occurs at a superfluid velocity

Aq(p)
= 34
ve Pra(p) (34
2.0 "
— L)
S 10} . .
* ® ®
d ° 'y
.. 0~
o.~
0.0 . . .
El E2 E3
Fermi Energy |

FIG. 8. Critical currentl .(x) versus Fermi energy relation.
The data points obtained from E@2) match the analytical results

of Eq. (33). I () also follows the normal-metal density of states
N(w) of the wire.

be written as

N N N
4eA Kei
lc=ev.>, Ni=even; >, (ni/nl):(% | k_':')
=1 i=1 i=1 K1
(35

Here n,=2kg; /7 is the quasiparticle density for thih
mode. Since the summati(ﬁ?{\'zl(ni /ny)=<N is a slowly in-
creasing function ofu, we conclude that the more rapid
variation of the self-consistent energy gAp(w) in Fig. 4
controls the dependence of the critical currégiw) in Eq.
(35. Therefore, 1.(x) should also follow the one-
dimensional normal-metal density of statdéw). We plot
the self-consistenit.(ux) from Eq.(7) in Fig. 8. The data in
Fig. 8 agree with in Eq(35), using the self-consistent energy
gapA;(w) from Fig. 4 to evaluate E(35).

V. CONCLUSIONS

By solving the BdG equations, we have shown that the
dependence of the energy gap(u) = Aie(u) , the critical
temperatureT (), and the critical current (x) on the
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Fermi energyu in a Q1D superconducting wire follow the o PE(y—y,) 0

variation of the normal-metal density of stathigu) with f dy>, ( *

Fermi level. For example, the critical currdpw) increases een 0 Yinly+y-)
sharply just after the Fermi level crosses a Q1D subband
energy atu=E,. I () then decreases with Fermi energy
until crossing the next subband Q1D subband energy at

5 H+(y) A(y) )(upnq}n(y_er)
A*(y) —H_(y) Upn\pn(y"'yf)

pn=E, 1. This behavior of .(u), A1(), andT (u) is con- " VE(y—y.) 0

sistent with the BCS theory for the superconducting energy :f dyEpE ( .

gapA;(u) of a narrow superconductor. All physical quanti- - n 0 Vn(y+y-)

ties like Aj(u), Te(m), 1o(w), should follow the normal- U W (Y=Y

metal density of state(u) in a Q1D superconducting wire. ( pnon gl (A1)
Analogous to the well-known result of Beenakker and vpnWn(y+y-)

van Houteh for the critical current of a superconduct- Using the eigenvalue equations

ing point contact, | .(u) =NeAy, /%, we have found

for the Q1D superconducting wire thatl (u)= HiWMV(y=y)=(Epta ) Va(y—y,),

[4eA ie()/N][n(w)/ny()]. Our result is different from

Ref. 1 due to the different model geometries, a point contact Ho(Y)Wa(y+y-)=(Eqta_)¥u(y+y-), (A2)

in Ref. 1 versus a superconducting wire in this paper. Theaind the orthonormality of th&,’'s

discretized ;(u) for a superconducting point contact should

evolve into thel () predicted in this paper for a Q1D su- * _

perconducting wire as the length of the point contact in- f_mdy‘l’m(y)‘l’n(y)—%n: (A3)

creases. Even th(_)ugh the normal-state conduct@:q;ae_of we obtain from Eq(A1)
the superconducting point contact and superconducting wire
are identical, their critical currentg(w) are quite different.
Differences in the two critical current formulas can be (Emt @) Upmt X A pn=EpUpm,
understood from the difference in point contact versus wire "
geometries. For the point contact, the order parameter of the _
bulk electrodesAy, is essentially fixed as a function of 2 Afbpn— (Emt a_)vpm=Epvpm. (A4)
Fermi energy. For the superconducting wire the bulk elec- .
trodes are far removed from the main body of the wire, san Eq. (A4) the A, andK;n are
that A, () must be calculated self-consistently for each

Fermi energyu. Furthermore, due to the nonzero superfluid A= (P r(y—y)|AY)|Pr(y+y-))
momentum in the wire, the effective channel number is re- ~
duced fromN for the point contact to the density ratio AL = (VU n(y+y )[A*(N[Wa(y—y1)).  (A5)

n(w)/ny(u)<N 'in the Q1D wire. This is because the Taking the complex conjugate af, in Eq. (40), we see
Landau depairing velocity of the first subband, that

ve=A1(w)/pe1(w), limits the critical current of the wire. _

Even though all subbands conduct essentially independently, (Amn)* =A% . (AB)
higher Q1D subbands will carry less supercurrent than lower
ones due to their smaller electron density, reducing the ef‘-S
fective channel number.

ubstituting Eq(A6) into Eq.(A4) yields Eq.(17) of Sec. II.

APPENDIX B: A(y) FOR A SINGLE MODE

In this appendix we obtain a simplified self-consistent
equation forA;(u) when only one subband is occupied.
We thank Supriyo Datta, Al Overhauser, and RichardWhenE;<u<E, the wave function for the lowest subband
Riedel for useful discussions. We acknowledge the super¥1(y) is the dominant term in Eq9), so that
computing support from the National Center for Supercom-
puting Applications at University of lllinois at Urbana- (UP(X’y)):(upqul(y))eikx (B1)
Champagn, lllinois. We gratefully acknowledge financial vp(X,Y) vp1V(y) '

support from the David and Lucile Packard Foundation. where we have assumeg=0 andB=0. The dispersion law
for the superconductor is thef,= SE,, with

E=VE"?+AL(w), (B2)

and the quantum numb@= * 1. The normal-state energy is
In this appendix we obtain the multimode BdG equation,E’ + u=7%2k?/2m. The factorsu; andv; in Eq. (B1) are the
Eq. (17). Substituting Eq(15) into Eqg. (10), we obtain BCS coherence factors for a one-dimensional
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superconductd? having the self-consistent energy gap
A;(w). Analysis of the wave functions themselves gives

M) Ag(p)

upll)p]_: 2Ep = 2Ek . (83)
Inserting Eqs(B1)—(B3) into Eq. (21) gives
Aqy(p)
A(y)==020¥i(y) 2 B Zl(E“ f(BEW O(hwp—Ey).
kB k
(B4)
Using
aw= [ Apwimay, ©5)

we obtain the self-consistency condition

1
1=—gip > 2 B5 f(BEYO(hwp—Ey), (B)
B=*1 k k

where the effective one-dimensional BCS coupling constant

Jip is
gm=gzoﬁx‘lf‘1‘(y)dy- (B7)

Eq. (B7) is approximatelyg,p=0,p/W whereW is the wire
width. Evaluating the ; with

f(Ek)_f(_Ek)—_tan’(m> (BS)

leaves

I, AND BAGWELL

1=g,p t B | L phwp—E B9
_ngk an mz_Ek(wD_ K- (B9)

The normal-metal density of staté§E’) is defined by

> wadk waE'dE' B10
k*ximzﬁiw() : (B10)
modifying Eq.(B9) to
j— * /d ! Ek h
1—glof_xN(E) E'tan 2KeT Z_EKH( wp—Ey).
(B11)

Providedh wp>A (1), we can place the energy cutoff on
E’ directly to obtain

_@JM, N(E")dE't VE'2+ A% ()
B e T
X ! (B12)

We plot the solutiom\;(u) of Eq. (B12) as the solid line in
Fig. 9. In Fig. 9 theA;(u) values from solving Eq(B12)
agree well with the exach;(x) from Eg. (21). The small
difference arises from how one applies the energy cutoff
fiwp. Eq. (B12) uses|E'|<%iwp, while the numerical
simulation in Fig. 9 usefE |<%wp . If we had instead used
the energy cutoff|E'|<(fwp)>—AZ in Eq. (B12), we
would obtain much better agreement with the numerical
simulation.
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