
Critical current of a quasi-one-dimensional superconducting wire

Li-Fu Chang, Santanu Chaudhuri, and Philip F. Bagwell
School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907

~Received 29 November 1995!

We solve the Bogoliubov–de Gennes equations self-consistently to obtain the critical currentI c versus
Fermi energym for a ballistic quasi-one-dimensional superconducting wire. Instead of the ‘‘discretized’’
critical current I c(m)5NeDbulk /\ predicted for a superconducting point contact, we find
I c(m)5@4eDwire(m)/h#@n(m)/n1(m)# for the superconducting wire. The normalized electron density
n(m)/n1(m)5( i51

N (kFi /kF1)<N is a slowly increasing function ofm. The superconducting order parameter
Dwire(m) must be obtained self-consistently for each value of the Fermi energy. We findDwire(m) follows the
normal-metal quasi-one-dimensional density of statesN(m) of the wire, as does the critical currentI c(m) .

I. INTRODUCTION

Recently Beenakker and van Houten1 have predicted the
‘‘discretization’’ of the critical current in a superconducting
point contact in units ofeDbulk /\, where 2Dbulk is the energy
gap of the bulk superconductors. Reference 1 has stimulated
much additional work on the electrical characteristics of su-
perconducting weak links.2–20 Several of these recent
works14–20 have also emphasized the importance of satisfy-
ing the self-consistency requirement for the order parameter
D(r ,m) in superconductors subject either to a current flow or
spatial variations in geometry. Satisfying the self-consistency
condition forD(r ,m) is necessary both to predict the critical
current in any geometry and to ensure electrical current
conservation.15–18The multimoded superconducting wire we
consider in this paper illustrates several effects the self-
consistency condition forD(r ,m) has on electronic transport
in restricted geometries.

We compare the superconducting point contact and super-
conducting wire geometries in Fig. 1. Reference 1 argues
that, because the electrical current density is geometrically
diluted in a point contact, the order parameter for the bulk
superconductorDbulk cannot greatly change when connected
to another bulk superconductor through a point contact. For
the point contact, the self-consistency requirement then has
minimal effect on the critical current, as numerically con-
firmed in Ref. 14. We therefore choose to study a supercon-
ducting wire geometry, where several coherence lengthsj0
separate the bulk superconducting reservoirs terminating the
wire. The electrical current density is uniform along the
length of the wire, and is not geometrically diluted until
reaching the distant superconducting reservoirs. The super-
conducting order parameterDwire in the wire can then differ
greatly from the bulk order parameterDbulk , as determined
from the self-consistency condition. Determining the order
parameter Dwire requires solving a multiple mode
Bogoliubov–de Gennes~BdG! equation described in Sec. II.

The resulting critical currentI c(m) of the supercondunct-
ing point contact and superconducting wire are shown
schematically in Fig. 1. The critical current of the point con-
tact increases in ‘‘discretized’’ increments whenever the
Fermi energy crosses a confinment subband energy
E1 ,E2 ,E3 , . . . . In contrast, we find in Sec. III that the de-
pendence of critical current on Fermi energym in the super-

conducting wire resembles the electronic density of states of
the normal-metal wireN(m). That the superconducting order
parameter follows the density of states is well known from
the superconductivity of uniform thin films,21 small metallic
islands, and fullerines.22 The critical current of the quasi-
one-dimensional~Q1D! wire is proportional to the energy
gapD1 of the lowest subband, i.e.,Dwire[D1, as described in
Sec. IV.

Although one cannot directly vary the Fermi energym in
a metallic superconducting wire to observeI c(m), the same
qualitative variation ofI c(B) could be observed by depopu-
lating the subbands with an applied magnetic fieldB. The
resulting I c(B) will be an interplay of the Pauli depairing,
orbital depairing, and depopulating of the confinement sub-
bands. The variation of order parameter and critical current
can also be observed by varying the wire width as suggested
in Ref. 21. In clean, type-I superconducting wire, which is
wide enough such that phase slippage does not limit the criti-
cal current, it should be possible to observe quantum con-

FIG. 1. Model geometry of a superconducting point and a su-
perconducting quasi-one-dimensional wire. TheI c versusm relation
of the point contact~dashed! increases in steps wheneverm exceeds
a confinement subband minimaE1, E2, E3, etc. I c(m) for the su-
perconducting wire~solid! follows the density of modesN(m) of
the wire in its normal state.
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finement effects on the critical current and superconducting
density of states.

II. MULTIPLE MODE BdG EQUATION

The BdG equations23,24 describe the electron motion in a
superconducting structure according to

SH~x,y!2m D~x,y!

D* ~x,y! 2@H* ~x,y!2m#
D S up~x,y!

vp~x,y!
D

5EpS up~x,y!

vp~x,y!
D . ~1!

We take the coordinatex to vary along the length of the wire,
andy to describe spatial variation along the wire width. The
one-electron Hamiltonian functionH(x,y) in Eq. ~1!

H~x,y!5H0~x,y!1Vc~y!, ~2!

describes free electron motion withH0(x,y) and the lateral
confinement potential withVc(y). HereH0(x,y) is

H0~x,y!5
1

2m S 2 i\
d

dx
2eAxD 21 1

2m S 2 i\
d

dy
2eAyD 2.

~3!

For a uniform superconducting wire, the ordering param-
eterD(x,y) will have the form

D~x,y!5D~y!e2iqx. ~4!

The magnitudeD(y) of the ordering parameter varies only
along y because the wire is uniform in thex direction. We
can further takeD(y) to be a real number, since no super-
current will flow alongy. The phase gradient of the ordering
parameter 2q determines the superfluid flow velocity
vs5\q/m,15 allowing the wire to carry a supercurrent along
thex direction. The order parameterD(x,y) in Eq. ~1! must
be calculated self-consistently from23

D~y!e2iqx52g~x,y!(
p
vp* ~x,y!up~x,y! f ~Ep!

3u~\vD2uEpu!. ~5!

Here f (Ep)51/@11exp(Ep /kBT)# is the Fermi occupation
factor. Any coupling constantg(x,y)5g(y).0 favors su-
perconductivity. We cut off the summations in Eq.~5! for
uEpu.\vD , wherevD is the Debye frequency.

The electrical currentI Q we find by first evaluating the
electrical current density operator15

JQ~y!5(
p

@Jup1Jvp# f ~Ep!2(
p
Jvp. ~6!

The Ju andJv are the Schro¨dinger currents associated with
the waves up and vp , namely
Jup5e(\/m)Im@up* (x,y)¹xup(x,y)# and

Jvp5e(\/m)Im@vp* (x,y)¹xvp(x,y)#. The total currentI Q
flowing in the x direction is obtained by summingJQ(y)
along the width of the wire

I Q5E JQ~y!dy. ~7!

Note that the summations in Eq.~5! and Eq.~6! are carried
out over allEp , includingEp,0.

We choose a harmonic oscillator confinement potential

Vc~x!5
1

2
mv0

2y2 ~8!

to represent the quasi-one-dimensional wire. If the wire
width is much smaller than the London penetration depth, so
that an applied magnetic field penetrates the wire uniformly,
we can also adopt a vector potentialAx52By andAy50.
The magnetic field is perpendicular to the wire asBW 5Bẑ.
The confining potentialVc(x) and the vector potentialAW re-
strict the electrons to propagate via magnetoelectric
subbands.25 In the normal state the subband energies are
En5\v(n2 1

2 ), wherev25v0
21vc

2 andvc5eB/m is the
cyclotron frequency. Heren51,2,3, . . . , denote the first,
second, etc., subbands.

Assuming the wire is uniform along thex direction, the
eigenstate in Eq.~1! has the solution form

S up~x,y!

vp~x,y!
D 5S Cp~y!eiqx

Dp~y!e2 iqxD eikx. ~9!

In this problem we can take the quantum number
p5(k,b), wherek is the wave number andb the band in-
dex. Inserting Eq.~9! into Eq. ~1! yields

SH1~y! D~y!

D* ~y! 2H2~y!
D S Cp~y!

Dp~y!
D 5EpS Cp~y!

Dp~y!
D , ~10!

where

H1~y!52
\2

2m

d2

dy2
1
m

2
v2~y2y1!21a1 , ~11!

H2~y!52
\2

2m

d2

dy2
1
m

2
v2~y1y2!21a2 , ~12!

y652
\vc~k6q!

mv2 , ~13!

and

a65
\2

2m
~k6q!2

v0
2

v2 2m. ~14!

We expand the wave functionsCp(y) andDp(y) of the
superconducting wire in Eq.~10! as a linear combination of
harmonic oscillator basis statesCn(y) of the normal wire as

S Cp~y!

Dp~y!
D 5(

n
S upnCn~y2y1!

vpnCn~y1y2!
D . ~15!

TheCn(y)’s diagonalize the harmonic confinement potential
as26

F2
\2

2m

d2

dy2
1
m

2
v2y2GCn~y!5EnCn~y!, ~16!
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with Cn(y) the standard Hermite-Gaussian wave functions.
Inserting Eq.~15! into Eq.~10!, and using the orthonormality
of the Cn(y)’s, yeilds a Hermitian matrix equation for the
eigenenergiesEp and expansion coefficients (upn ,vpn)

~Em1a1!upm1(
n

Dmnvpn5Epupm

(
n

Dnm* upn2~Em1a2!vpm5Epvpm , ~17!

derived in Appendix A. Equations similar to Eq.~17! have
been used to describe the layered high-Tc compounds.27

Writing Eq. ~17! explicitly for a quasi-one-dimensional wire
with only two subbands gives

S E11a1 D11 0 D12

D11* 2~E11a2! D21* 0

0 D21 E21a1 D22

D12* 0 D22* 2~E21a2!

D
3S up1vp1

up2

vp2

D 5EpS up1vp1
up2

vp2

D . ~18!

Here Dmn is a matrix element of the ordering parameter
D(y) with the harmonic oscillator basis states as

Dmn5E
2`

`

Cm* ~y2y1!D~y!Cn~y1y2!dy. ~19!

The off-diagonal matrix elementsDmn in Eqs. ~19! couple
the electron in subbandm and the time-reversed electron
moden, an ‘‘intersubband Andreev reflection’’ due to spatial
variation in the order parameterD(y). The particle density
normalization condition requires

E
2`

` E
2`

`

dxdy@ uup~x,y!u21uvp~x,y!u2#

515(
n

@ uupnu21uvpnu2#. ~20!

We can express the ordering parameterD(y) from Eq.~5!
in terms of the expansion coefficients in Eq.~17! as

D~y!52g~y!(
p

(
mn

upmvpn* Cm~y2y1!

3Cn* ~y1y2! f ~Ep!u~\vD2uEpu!. ~21!

Similarly, the electrical current densitiesJu(y) and Jv(y)
expressed in terms of the expansion coefficients in Eq.~17!
are

Jup~y!5e
\~k1q!

m U(
n

upnCn~y2y1!U2 ~22!

and

Jvp~y!5e
\~k2q!

m U(
n
vpnCn~y1y2!U2. ~23!

The electrical current is then obtained from Eq.~6! by inte-
grating Eqs.~22! and ~23! over the cross section as

I Q~y!5(
p

@ I up1I vp# f ~Ep!2(
p
I vp. ~24!

For B50, the case we consider in this paper,28 the currents
I up and I vp have the simple form

I up5e
\~k1q!

m (
n

uupnu2 ~25!

and

I vp5e
\~k2q!

m (
n

uvpnu2. ~26!

Starting from an initial guess for the ordering parameter
D(y), and for a given value of the superfluid velocityvs , we
compute the eigenvalues and eigen vectors of Eq.~17!. The
solution of Eq.~17! generates a new pairing potentialD(y)
according to Eq.~21!, etc. We iterate this process until
D(y) from Eq. ~21! converges to self-consistency with Eq.
~17!. We then calculate the electrical currentI Q for this
given value of the superfluid velocityvs from Eqs. ~24!–
~26!. The critical current is found from by varying the super-
fluid velocity vs until the maximumI Q is reached at each
Fermi levelm, namely

I c~m!5maxI Q~vs ,m!. ~27!

III. ENERGY GAPS AND CRITICAL TEMPERATURE

In this section we calculate the pairing potentialD(y), the
dispersion relationEb(k), the superconducting energy gap
D1(m) for the first subband, and the corresponding critical
temperatureTc(m). The coupling constant is taken to be
g(y)5g2D5constant.29 We have assumed a Q1D wire hav-
ing three normal modes. As long as we limit the Fermi en-
ergy to m,E4, increasing the number of modes will not
qualitatively affect the result of the calculations.

The self-consistency condition for the superconducting
pairing potentialD(y), Eq. ~21!, forces it to vary along the
width of the wire. The self-consistentD(y) at zero tempera-
ture and zero supercurrent flow (q50) is shown in Fig. 2 for
~a! one and~b! two occupied subbands. In Fig. 2~a! the
Fermi energy is halfway between the first and second sub-
bands, m15(E11E2)/2. Similarly, the Fermi energy is
m25(E21E3)/2 in Fig. 2~b!. The spatial variation ofD(y)
in Fig. 2 follows the spatial variation of the electron density
uCn(y)u2 in each lateral mode. For two occupied subbands in
Fig. 2~b!, D(y) is wider and more spatially uniform than for
one occupied subband in Fig. 2~a!. When many subbands are
occupied, so thatm is large,D(y) will be approximately
constant and the subbands will almost completely decouple.

The dispersion diagram for two occupied subbands in a
superconducting wire subject to a superfluid flow is shown in
Fig. 3. The first subband (b561) is shown as a solid line in
Fig. 3, while the second subband (b562) is the dotted line.
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Energy gaps are opened in Fig. 3 where each subband
crosses the Fermi level. The energy gap nearE50 and wave
vectorkF1 we define asD1, the energy gap for the first sub-
band. Here the Fermi wave vector is

pFm5\kFm5A2m~m2Em!. ~28!

Similarly,D2 is the energy gap of the second subband, which
opens nearE50 and wavevectorkF2. We choose a large
D1 /m ratio in Fig. 3 so the energy gaps are visible.30

There are small ‘‘intersubband’’ energy gaps away from
the Fermi level in Fig. 3, where the energy bands cross each
other, not visible in the figure. Again due to the slow spatial
variation ofD(y), the intersubband matrix elementsDmn for
mÞn are small. IfD(y) were actually constant across the
wire, we would then haveDmn50 for mÞn, and the modes
would completely decouple. Because the mode coupling is
small, and henceD12.0, D21.0, etc., we have from Eq.
~18! that D1(m).D11, D2(m).D22, etc. References 1–20
either explicitly restrict the electron transport to be one di-
mensional, or assume the electronic subbands decouple in
the narrowest portion of the wire or weak link, so that elec-
trons in the different electronic confinement subbands super-
conduct independently. For thes-wave superconducting wire
we consider in this paper, we find this mode coupling is not
significant, so that the subbands do in fact superconduct es-

sentially independently. If a magnetic field is applied, or the
narrow superconductor has ad-wave or other unconventional
order parameter, the mode coupling can become significant.

We also find generally that the energy gaps of each sub-
band at the Fermi level are approximately the same, namely
D1(m).D2(m)5•••. The spatial variations inD(y), gener-
ated from Eq.~21!, turn out again not to be rapid enough to
make the energy gaps very different. Reference 21 reaches
the same conclusion for a thins-wave superconducting film.
For the current carrying superconductor in Fig. 3~b!, the en-
ergy gaps opening at each subband for a fixedk remain
approximately constant. However, the band structure in Fig.
3~b! is now ‘‘tilted’’ due to the superfluid flow.15 This ‘‘tilt-
ing’’ corresponds to a shift of the Fermi surface by an
amountq in k space~momentum space!.

Figure 4 shows the self-consistentD1(m) when the super-
fluid velocity is zero (q50). D1(m) in Fig. 4 follows the
quasiparticle density of statesN(m) of a normal-metal Q1D
wire, incrasing sharply just above each subband minima at
m5En and decaying asm approaches the next subband
minima. We can understand this result from the self-
consistency condition for the ordering parameterD(y) in Eq.

FIG. 2. Self-consistent order parameterD(y) when ~a! one or
~b! two subbands are occupied.D(y) follows the electron density
n(y) of each populated confinement subband.

FIG. 3. Dispersion relation for a Q1D superconductor having
two occupied subbands. An energy gap for the first~solid! and
second~dashed! electronic subbands opens when each subband
crosses the Fermi level. The superfluid velocity is zero in~a!, i.e.,
q50. The presence of a superfluid flow ‘‘tilts’’ the energy bands in
~b!.
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~21!. Because we take the Debye energy range in Eq.~21! to
be narrow compared to the subband spacing (\vD!\v0),
Eq. ~21! simply counts the number of states in the energy
range \vD near m with a weighting factor
upmvpn* Cm(y2y1)Cn* (y1y2). Although this weighting
factor will vary somewhat with Fermi energy,D(y,m) basi-
cally follows the normal-metal density of statesN(m) of the
narrow wire.D1(m) then also follows the density of states
N(m), sinceD1 averagesD(y) along the width of the wire.
Although the normal-metal density of states has a singularity
at each subband opening,D1(m) does not become infinite
near a subband minima. We give a more quantitative analy-
sis for D1(m) when only a single subband is occupied in
Appendix B.

That the energy gapD1(m) follows the normal-metal den-
sity of statesN(m) can be also reasoned from the BCS
theory.31 The BCS result for the energy gap of a one-
dimensional superconductor is

D1~m!5
\vD

sinh@1/gN~m!#
. ~29!

In the strong coupling limitgN(m)@1, Eq. ~29! becomes

D1~m!.\vDgN~m!, ~30!

which is directly proportional to the density of states. Of
course, even in the weak-coupling limitgN(m)!1, where

D1~m!.2\vD /exp@1/gN~m!#, ~31!

the energy gap still increases if the density of states in-
creases.

The critical temperatureTc for the Q1D wire is obtained
when the temperatureT>Tc forces the ordering parameter
D(y) to be zero, depairing the wire. We plot the numerical
result forTc as a function of Fermi energym at zero super-
fluid flow (q50) in Fig. 5. The dependence ofTc(m) in Fig.
5 is similar toD1(m) from Fig. 4. BothTc(m) andD1(m)
follow the density of statesN(m). We can compareTc(m)
andD1(m) by forming the ratioR52D1(m)/kBTc , shown in
Fig. 6. For a weak-coupling BCS superconductorR.3.5.
However, we see from Fig. 6 thatR remains near 3.5, even
whenm is near the singular density of states at each subband
opening. Reference 32 introduces a singular density of states
in the BCS theory, findingR<4. We findR has a maximum
value slightly less than 4 at each subband opening, so that
Fig. 6 agrees with Ref. 32.

IV. CRITICAL CURRENT

We show the electrical currentI Q versus superfluid veloc-
ity vs5\q/m in Fig. 7. As in the one-dimensional case,15 the
electrical current increases linearly withvs . Because all sub-
bands are essentially independent current carrying channels
driven by the same pairing potentialD(x,y), we can write

I Q.evsn5evs(
i51

N

ni , ~32!

whereni is the electron density in subbandi . Again, as for
the one-dimensional case,15 the order parameter
D1(m,q).D1(m,q50)u(qc2uqu) remains approximately
constant withq until the critical velocityqc .

Figure 7 also shows that the critical superfluid velocity
vc1 for m15(E11E2)/2 ~one occupied subband! andvc2 for

FIG. 4. Energy gapD1(m) of the lowest confinement subband.
D1(m) follows the normal-metal density of statesN(m) of the wire.

FIG. 5. Critical temperatureTc(m). Tc(m) also follows the
normal-metal density of statesN(m) of the wire.

FIG. 6. RatioR52D1(m)/kBTc(m) versusm from Fig. 3 and 4.
R remains close to the BCS value ofR.3.5, having a maximum
value slightly less than four above each subband opening.
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m25(E21E3)/2 ~two occupied subbands!. That the critical
superfluid velocityvc is smaller when the Fermi energy is in
the second subband,vc2,vc1, can be understood qualita-
tively from Fig. 3~b!. When only one subband is occupied,
we have the Landau depairing velocity~Ref. 33!
vc5D1 /pF1 as in Ref. 15. For several occupied subbands,
the energy gap (DE) i of each subband will close as

~DE! i5D i~q50!2vspFi . ~33!

Since the energy gapsD i(q50) for all the subbands are
approximately the same, and sincepF1 is the largest Fermi
momentum, the energy gap of the first subband will close for
the smallest value ofq.

When the energy gap of the first subband closes, super-
conductivity in the wire is completely destroyed. This de-
pairing condition (DE)150 occurs at a superfluid velocity

vc5
D1~m!

pF1~m!
~34!

for all values of the Fermi energym. The depairing condition
is shown graphically in Fig. 3~b!, where the band edge of the
first subband touches the Fermi level whenvs5vc . The en-
ergy gap for the lowest subband (DE)150 has closed in Fig.
3~b!, while the energy gap of the second subband remains
open (DE)2.0. Using Eq.~34!, the larger Fermi momentum
when two subbands are occupied,pF1(m2).pF1(m1),
explains why vc25@D1(m2)/pF1(m2)#,vc15@D1(m1)/
pF1(m1)# in Fig. 7. Further, since theD1(m) is the relevant
energy gap which determines the critical current in Eq.~34!,
we can defineDwire(m)5D1(m). @For a nonequilibrium
superconductor18,19 the depairing condition might not be
given by Eq.~34!, though we know of no specific example
where this is the case.#

The critical currentI c for N propagating modes can now
be written as

I c5evc(
i51

N

ni5evcn1(
i51

N

~ni /n1!5S 4eD1~m!

h D S (
i51

N
kFi
kF1

D .
~35!

Here ni52kFi /p is the quasiparticle density for thei th
mode. Since the summation( i51

N (ni /n1)<N is a slowly in-
creasing function ofm, we conclude that the more rapid
variation of the self-consistent energy gapD1(m) in Fig. 4
controls the dependence of the critical currentI c(m) in Eq.
~35!. Therefore, I c(m) should also follow the one-
dimensional normal-metal density of statesN(m). We plot
the self-consistentI c(m) from Eq. ~7! in Fig. 8. The data in
Fig. 8 agree with in Eq.~35!, using the self-consistent energy
gapD1(m) from Fig. 4 to evaluate Eq.~35!.

V. CONCLUSIONS

By solving the BdG equations, we have shown that the
dependence of the energy gapD1(m)5Dwire(m) , the critical
temperatureTc(m), and the critical currentI c(m) on the

FIG. 7. Electrical currentI Q versus superfluid flow velocityvs
for one ~dashed! and two ~solid! occupied subbands. The critical
superfluid velocityvc is smaller when two subbands are occupied,
vc2,vc1. This is becausevc is limited by the energy gap and Fermi
momentum of the lowest subband asvc5D1(m)/pF1(m).

FIG. 8. Critical currentI c(m) versus Fermi energym relation.
The data points obtained from Eq.~22! match the analytical results
of Eq. ~33!. I c(m) also follows the normal-metal density of states
N(m) of the wire.

FIG. 9. Energy gapD1(m) for a single occupied subband com-
puted from the approximate Eq.~B10! ~solid! and from Fig. 4. The
small difference arises from the different method of imposing the
Debye energy cutoff in Eq.~B10!.
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Fermi energym in a Q1D superconducting wire follow the
variation of the normal-metal density of statesN(m) with
Fermi level. For example, the critical currentI c(m) increases
sharply just after the Fermi level crosses a Q1D subband
energy atm5En . I c(m) then decreases with Fermi energy
until crossing the next subband Q1D subband energy at
m5En11. This behavior ofI c(m), D1(m), andTc(m) is con-
sistent with the BCS theory for the superconducting energy
gapD1(m) of a narrow superconductor. All physical quanti-
ties like D1(m), Tc(m), I c(m), should follow the normal-
metal density of statesN(m) in a Q1D superconducting wire.

Analogous to the well-known result of Beenakker and
van Houten1 for the critical current of a superconduct-
ing point contact, I c(m)5NeDbulk /\, we have found
for the Q1D superconducting wire thatI c(m)5
@4eDwire(m)/h#@n(m)/n1(m)#. Our result is different from
Ref. 1 due to the different model geometries, a point contact
in Ref. 1 versus a superconducting wire in this paper. The
discretizedI c(m) for a superconducting point contact should
evolve into theI c(m) predicted in this paper for a Q1D su-
perconducting wire as the length of the point contact in-
creases. Even though the normal-state conductanceG(m) of
the superconducting point contact and superconducting wire
are identical, their critical currentsI c(m) are quite different.

Differences in the two critical current formulas can be
understood from the difference in point contact versus wire
geometries. For the point contact, the order parameter of the
bulk electrodesDbulk is essentially fixed as a function of
Fermi energy. For the superconducting wire the bulk elec-
trodes are far removed from the main body of the wire, so
that Dwire(m) must be calculated self-consistently for each
Fermi energym. Furthermore, due to the nonzero superfluid
momentum in the wire, the effective channel number is re-
duced fromN for the point contact to the density ratio
n(m)/n1(m)<N in the Q1D wire. This is because the
Landau depairing velocity of the first subband,
vc5D1(m)/pF1(m), limits the critical current of the wire.
Even though all subbands conduct essentially independently,
higher Q1D subbands will carry less supercurrent than lower
ones due to their smaller electron density, reducing the ef-
fective channel number.
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APPENDIX A: MULTIMODE BdG EQUATION

In this appendix we obtain the multimode BdG equation,
Eq. ~17!. Substituting Eq.~15! into Eq. ~10!, we obtain

E
2`

`

dy(
n

S Cm* ~y2y1! 0

0 Cm* ~y1y2!
D

3SH1~y! D~y!

D* ~y! 2H2~y!
D S upnCn~y2y1!

vpnCn~y1y2!
D

5E
2`

`

dyEp(
n

S Cm* ~y2y1! 0

0 Cm* ~y1y2!
D

3S upnCn~y2y1!

vpnCn~y1y2!
D . ~A1!

Using the eigenvalue equations

H1~y!Cn~y2y1!5~En1a1!Cn~y2y1!,

H2~y!Cn~y1y2!5~En1a2!Cn~y1y2!, ~A2!

and the orthonormality of theCn’s

E
2`

`

dyCm~y!Cn~y!5dmn , ~A3!

we obtain from Eq.~A1!

~Em1a1!upm1(
n

Dmnvpn5Epupm ,

(
n

D̃mn* upn2~Em1a2!vpm5Epvpm . ~A4!

In Eq. ~A4! theDmn and D̃mn* are

Dmn5^Cm~y2y1!uD~y!uCn~y1y2!&

D̃mn* 5^Cm~y1y2!uD* ~y!uCn~y2y1!&. ~A5!

Taking the complex conjugate ofDmn in Eq. ~40!, we see
that

~Dmn!*5D̃nm* . ~A6!

Substituting Eq.~A6! into Eq.~A4! yields Eq.~17! of Sec. II.

APPENDIX B: D„y… FOR A SINGLE MODE

In this appendix we obtain a simplified self-consistent
equation forD1(m) when only one subband is occupied.
WhenE1,m,E2 the wave function for the lowest subband
C1(y) is the dominant term in Eq.~9!, so that

S up~x,y!

vp~x,y!
D .S up1C1~y!

vp1C1~y!
D eikx, ~B1!

where we have assumedq50 andB50. The dispersion law
for the superconductor is thenEp5bEk , with

Ek5AE821D1
2~m!, ~B2!

and the quantum numberb561. The normal-state energy is
E81m5\2k2/2m. The factorsu1 andv1 in Eq. ~B1! are the
BCS coherence factors for a one-dimensional
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superconductor15 having the self-consistent energy gap
D1(m). Analysis of the wave functions themselves gives

up1vp15
D1~m!

2Ep
5b

D1~m!

2Ek
. ~B3!

Inserting Eqs.~B1!–~B3! into Eq. ~21! gives

D~y!52g2DC1
2~y!(

k,b
b

D1~m!

2Ek
f ~bEk!u~\vD2Ek!.

~B4!

Using

D1~m!.E
2`

`

D~y!C1
2~y!dy, ~B5!

we obtain the self-consistency condition

152g1D (
b561

(
k

b
1

2Ek
f ~bEk!u~\vD2Ek!, ~B6!

where the effective one-dimensional BCS coupling constant
g1D is

g1D5g2DE
2`

`

C1
4~y!dy. ~B7!

Eq. ~B7! is approximatelyg1D.g2D /W whereW is the wire
width. Evaluating the(b with

f ~Ek!2 f ~2Ek!52tanhS Ek

2kBT
D ~B8!

leaves

15g1D(
k
tanhS Ek

2kBT
D 1

2Ek
u~\vD2Ek!. ~B9!

The normal-metal density of statesN(E8) is defined by

(
k
→LxE

2`

` dk

2p
→E

2`

`

N~E8!dE8. ~B10!

modifying Eq.~B9! to

15g1DE
2`

`

N~E8!dE8tanhS Ek

2kBT
D 1

2Ek
u~\vD2Ek!.

~B11!

Provided\vD@D1(m), we can place the energy cutoff on
E8 directly to obtain

15
g1D
2 E

2\vD

\vD
N~E8!dE8tanhSAE821D1

2~m!

2kBT
D

3
1

AE821D1
2~m!

. ~B12!

We plot the solutionD1(m) of Eq. ~B12! as the solid line in
Fig. 9. In Fig. 9 theD1(m) values from solving Eq.~B12!
agree well with the exactD1(m) from Eq. ~21!. The small
difference arises from how one applies the energy cutoff
\vD . Eq. ~B12! uses uE8u<\vD , while the numerical
simulation in Fig. 9 usesuEpu<\vD . If we had instead used
the energy cutoffuE8u<A(\vD)

22D1
2 in Eq. ~B12!, we

would obtain much better agreement with the numerical
simulation.
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20J. Sánchez Canĩzares and F. Sols, J. Phys. Condens. Matter7,

L317 ~1995!.
21J.M. Blatt and C.J. Thompson, Phys. Rev. Lett.10, 332 ~1963!.
22J. Friedel, J. Phys.~France! II 2, 959 ~1992!.
23P.G. deGennes,Superconductivity of Metals and Alloys~Addison-

Wesley, New York, 1989!.
24S. Datta, P.F. Bagwell, and M.P. Anantram, Phys. Low Dimen-

sional Struct.3, 1 ~1996!.
25S. Datta,Electronic Transport in Mesoscopic Systems~Cam-

bridge University Press, Cambridge, 1995!.
26L.I. Schiff, Quantum Mechanics~McGraw-Hill, New York,

1971!, Chap. 4.
27W.A. Atkinson and J.P. Carbotte, Phys. Rev. B52, 6894~1995!.
28N. Dupuis and G. Montambaux, Phys. Rev. B49, 8993~1994!.

9406 54CHANG, CHAUDHURI, AND BAGWELL



29As our initial guess for the ordering parameter we take
D(y)5D05const.5 1 meV. The confining potential strength is
\v0 5 200 meV, making the effective widthW of the wire no
larger than 30 Å. The massm is the free electron mass, yielding
E15100 meV, E25300 meV, andE35500 meV. We use
g2D52.0310238 J2m2 and\vD510 meV. In Fig. 2 and Fig.
7, the Fermi level is~a! m5200 meV and~b! m5400 meV.

30We choose a set of parameters in Fig. 3 that are different from the

other figures, so one can clearly see the detail of the energy gaps
and dispersion law.

31J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev.104,
1189 ~1957!.

32D.C. Mattis and M. Molina, Phys. Rev. B44, 12 565~1991!; S.
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