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DE RHAM COHOMOLOGY GROUPS

The homology groups of topological spaces have been defined in chapter 3. If
a topological space M is a manifold, we may define the dual of the homology
groups out of differential forms defined on M . The dual groups are called the
de Rham cohomology groups. Besides physicists’ familiarity with differential
forms, cohomology groups have several advantages over homology groups.
We follow closely Nash and Sen (1983) and Flanders (1963). Bott and Tu

(1982) contains more advanced topics.

6.1 Stokes’ theorem

One of the main tools in the study of de Rham cohomology groups is Stokes’
theorem with which most physicists are familiar from electromagnetism. Gauss’
theorem and Stokes’ theorem are treated in a unified manner here.

6.1.1 Preliminary consideration

Let us define an integration of an r -form over an r -simplex in a Euclidean space.
To do this, we need first to define the standard n-simplex σ̄r = (p0 p1 . . . pr ) in
r where

p0 = (0, 0, . . . , 0)
p1 = (1, 0, . . . , 0)
. . .

pr = (0, 0, . . . , 1)

see figure 6.1. If {xµ} is a coordinate of r , σ̄r is given by

σ̄r =
C
(x1, . . . , xr ) ∈ r

;;;;x
µ ≥ 0,

r�

µ=1
xµ ≤ 1

D
. (6.1)

An r -form ω (the volume element) in r is written as

ω = a(x) dx1 ∧ dx2 ∧ . . . ∧ dxr .

 



Figure 6.1. The standard 2-simplex σ̄2 = (p0 p1 p2) and the standard 3-simplex
σ̄3 = (p0 p1 p2 p3).

We define the integration of ω over σ̄r by
!

σ̄r

ω ≡
!

σ̄r

a(x) dx1 dx2 . . . dxr (6.2)

where the RHS is the usual r -fold integration. For example, if r = 2 and
ω = dx ∧ dy, we have

!

σ̄2

ω =
!

σ̄2

dx dy =
! 1

0
dx
! 1−x

0
dy = 12 .

Next we define an r -chain, an r -cycle and an r -boundary in an m-
dimensional manifold M . Let σr be an r -simplex in r and let f : σr → M
be a smooth map. [To avoid the subtlety associated with the differentiability of
f at the boundary of σr , f may be defined over an open subset U of r , which
contains σr .] Here we assume f is not required to have an inverse. For example,
im f may be a point in M . We denote the image of σr in M by sr and call it a
(singular) r-simplex in M . These simplexes are called singular since they do not
provide a triangulation of M and, moreover, geometrical independence of points
makes no sense in a manifold (see section 3.2). If {sr,i } is the set of r -simplexes
in M , we define an r-chain in M by a formal sum of {sr,i } with -coefficients

c =
�

i

ai sr,i ai ∈ . (6.3)

In the following, we are concerned with -coefficients only and we omit the
explicit quotation of . The r -chains in M form the chain group Cr (M). Under
f : σr → M , the boundary ∂σr is also mapped to a subset of M . Clearly,
∂sr ≡ f (∂σr ) is a set of (r − 1)-simplexes in M and is called the boundary of

 



sr . ∂sr corresponds to the geometrical boundary of sr with an induced orientation
defined in section 3.3. We have a map

∂ : Cr (M)→ Cr−1(M). (6.4)

The result of section 3.3 tells us that ∂ is nilpotent; ∂2 = 0.
Cycles and boundaries are defined in exactly the same way as in section 3.3

(note, however, that is replaced by ). If cr is an r-cycle, ∂cr = 0 while if cr
is an r-boundary, there exists an (r + 1)-chain cr+1 such that cr = ∂cr+1. The
boundary group Br(M) is the set of r -boundaries and the cycle group Zr (M)
is the set of r -cycles. There are infinitely many singular simplexes which make
up Cr (M), Br (M) and Zr (M). It follows from ∂2 = 0 that Zr (M) ⊃ Br(M); cf
theorem 3.3. The singular homology group is defined by

Hr(M) ≡ Zr (M)/Br (M). (6.5)

With mild topological assumptions, the singular homology group is isomorphic to
the corresponding simplicial homology group with -coefficients and we employ
the same symbol to denote both of them.
Now we are ready to define an integration of an r -form ω over an r -chain in

M . We first define an integration of ω on an r -simplex sr of M by
!

sr
ω =

!

σ̄r

f ∗ω (6.6)

where f : σ̄r → M is a smooth map such that sr = f (σ̄r ). Since f ∗ω is
an r -form in r , the RHS is the usual r -fold integral. For a general r -chain
c =
�
i ai sr,i ∈ Cr (M), we define

!

c
ω =

�

i

ai

!

sr,i
ω. (6.7)

6.1.2 Stokes’ theorem

Theorem 6.1. (Stokes’ theorem) Let ω ∈ +r−1(M) and c ∈ Cr (M). Then
!

c
dω =

!

∂c
ω. (6.8)

Proof. Since c is a linear combination of r -simplexes, it suffices to prove (6.8) for
an r -simplex sr in M . Let f : σ̄r → M be a map such that f (σ̄r ) = sr . Then

!

sr
dω =

!

σ̄r

f ∗(dω) =
!

σ̄r

d( f ∗ω)

where (5.75) has been used. We also have
!

∂sr
ω =

!

∂σ̄r

f ∗ω.

 



Note that f ∗ω is an (r − 1)-form in r . Thus, to prove Stokes’ theorem
!

sr
dω =

!

∂sr
ω (6.9a)

it suffices to prove an alternative formula
!

σ̄r

dψ =
!

∂σ̄r

ψ (6.9b)

for an (r − 1)-form ψ in r . The most general form of ψ is

ψ =
�
aµ(x) dx

1 ∧ . . . ∧ dxµ−1 ∧ dxµ+1 ∧ . . . ∧ dxr .

Since an integration is distributive, it suffices to prove (6.9b) for ψ = a(x)dx1 ∧
. . . ∧ dxr−1. We note that

dψ =
∂a

∂xr
dxr ∧ dx1 ∧ . . . ∧ dxr−1 = (−1)r−1

∂a

∂xr
dx1 ∧ . . . ∧ dxr−1 ∧ dxr .

By direct computation, we find, from (6.2), that
!

σ̄r

dψ = (−1)r−1
!

σ̄r

∂a

∂xr
dx1 . . . dxr−1 dxr

= (−1)r−1
!

xµ≥0,
�r−1
µ=1 x

µ≤1
dx1 . . . dxr−1

! 1−�r−1
µ=1 x

µ

0

∂a

∂xr
dxr

= (−1)r−1
!
dx1 . . . dxr−1

×
A
a

?
x1, . . . , xr−1, 1−

r−1�

µ=1
xµ
@
− a
=
x1, . . . , xr−1, 0

> B
.

For the boundary of σ̄r , we have

∂σ̄r = (p1, p2, . . . , pr )− (p0, p2, . . . , pr)
+ · · · + (−1)r (p0, p1, . . . , pr−1).

Note that ψ = a(x)dx1 ∧ . . . ∧ dxr−1 vanishes when one of x1, . . . , xr−1 is
constant. Then it follows that

!

(p0,p2,...,pr )
ψ = 0

since x1 ≡ 0 on (p0, p2, . . . , pr ). In fact, most of the faces of ∂σ̄r do not
contribute to the RHS of (6.9b) and we are left with

!

∂σ̄r

ψ =
!

(p1,p2,...,pr )
ψ + (−1)r

!

(p0,p1,...,pr−1)
ψ.

 



Since (p0, p1, . . . , pr−1) is the standard (r − 1)-simplex (xµ ≥ 0,
�r−1
µ=1 x

µ ≤
1), on which xr = 0, the second term is

(−1)r
!

(p0,p1,...,pr−1)
ψ = (−1)r

!

σ̄r−1
a(x1, . . . , xr−1, 0) dx1 . . . dxr−1.

The first term is

!

(p1,p2,...,pr )
ψ =

!

(p1,...,pr−1,p0)
a

?
x1, . . . , xr−1, 1−

r−1�

µ=1
xµ
@
dx1 . . . dxr−1

= (−1)r−1
!

σ̄r−1
a

?
x1, . . . , xr−1, 1 −

r−1�

µ=1
xµ
@
dx1 . . . dxr−1

where the integral domain (p1, . . . , pr ) has been projected along xr to the
(p1, . . . , pr−1, p0)-plane, preserving the orientation. Collecting these results, we
have proved (6.9b). [The reader is advised to verify this proof for m = 3 using
figure 6.1.]

Exercise 6.1. Let M = 3 andω = a dx+b dy+c dz. Show that Stokes’ theorem
is written as

!

S
curlω · dS =

�

C
ω · dS (Stokes’ theorem) (6.10)

where ω = (a, b, c) and C is the boundary of a surface S. Similarly, for
ψ = 12ψµν dx

µ ∧ dxν , show that
!

V
divψ dV =

�

S
ψ · dS (Gauss’ theorem)

where ψλ = ελµνψµν and S is the boundary of a volume V .

6.2 de Rham cohomology groups

6.2.1 Definitions

Definition 6.1. Let M be an m-dimensional differentiable manifold. The set of
closed r -forms is called the r th cocycle group, denoted Zr (M). The set of exact
r -forms is called the r th coboundary group, denoted Br(M). These are vector
spaces with -coefficients. It follows from d2 = 0 that Zr (M) ⊃ Br(M).

Exercise 6.2. Show that

(a) if ω ∈ Zr (M) and ψ ∈ Zs(M), then ω ∧ ψ ∈ Zr+s(M);
(b) if ω ∈ Zr (M) and ψ ∈ Bs(M), then ω ∧ ψ ∈ Br+s(M); and

 



(c) if ω ∈ Br (M) and ψ ∈ Bs(M), then ω ∧ ψ ∈ Br+s(M).

Definition 6.2. The r th de Rham cohomology group is defined by

Hr(M; ) ≡ Zr (M)/Br (M). (6.11)

If r ≤ −1 or r ≥ m+ 1, Hr(M; ) may be defined to be trivial. In the following,
we omit the explicit quotation of -coefficients.

Let ω ∈ Zr (M). Then [ω] ∈ Hr(M) is the equivalence class {ω� ∈
Zr (M)|ω� = ω + dψ,ψ ∈ +r−1(M)}. Two forms which differ by an exact
form are called cohomologous. We will see later that Hr(M) is isomorphic to
Hr(M). The following examples will clarify the idea of de Rham cohomology
groups.

Example 6.1. When r = 0, B0(M) has no meaning since there is no (−1)-form.
We define +−1(M) to be empty, hence B0(M) = 0. Then H 0(M) = Z0(M) =
{ f ∈ +0(M) = (M)|d f = 0}. If M is connected, the condition d f = 0 is
satisfied if and only if f is constant over M . Hence, H 0(M) is isomorphic to the
vector space ,

H 0(M) ∼= . (6.12)

If M has n connected components, d f = 0 is satisfied if and only if f is constant
on each connected component, hence it is specified by n real numbers,

H 0(M) ∼= ⊕ ⊕ · · · ⊕3 21 4
n

. (6.13)

Example 6.2. Let M = . From example 6.1, we have H 0( ) = . Let us
find H 1( ) next. Let x be a coordinate of . Since dim = 1, any one-form
ω ∈ +1( ) is closed, dω = 0. Let ω = f dx , where f ∈ ( ). Define a function
F(x) by

F(x) =
! x

0
f (s) ds ∈ ( ) = +0( ).

Since dF(x)/dx = f (x), ω is an exact form,

ω = f dx =
dF(x)

dx
dx = dF.

Thus, any one-form is closed as well as exact. We have established

H 1( ) = {0}. (6.14)

Example 6.3. Let S1 = {eiθ |0 ≤ θ < 2π}. Since S1 is connected, we have
H 0(S1) = . We compute H 1(S1) next. Let ω = f (θ) dθ ∈ +1(S1). Is it

 



possible to write ω = dF for some F ∈ (S1)? Let us repeat the analysis of the
previous example. If ω = dF , then F ∈ (S1) must be given by

F(θ) =
! θ

0
f (θ �) dθ �.

For F to be defined uniquely on S1, F must satisfy the periodicity F(2π) =
F(0) (=0). Namely F must satisfy

F(2π) =
! 2π

0
f (θ �) dθ � = 0.

If we define a map λ : +1(S1)→ by

λ : ω = f dθ �→
! 2π

0
f (θ �) dθ � (6.15)

then B1(S1) is identified with ker λ. Now we have (theorem 3.1)

H 1(S1) = +1(S1)/ ker λ = im λ = . (6.16)

This is also obtained from the following consideration. Let ω and ω� be closed
forms that are not exact. Although ω − ω� is not exact in general, we can show
that there exists a number a ∈ such that ω� − aω is exact. In fact, if we put

a =
! 2π

0
ω�
G! 2π

0
ω

we have ! 2π

0
(ω� − aω) = 0.

This shows that, given a closed form ω which is not exact, any closed form ω� is
cohomologous to aω for some a ∈ . Thus, each cohomology class is specified
by a real number a, hence H 1(S1) = .

Exercise 6.3. Let M = 2 − {0}. Define a one-form ω by

ω =
−y
x2 + y2

dx +
x

x2 + y2
dy. (6.17)

(a) Show that ω is closed.
(b) Define a ‘function’ F(x, y) = tan−1(y/x). Show that ω = dF . Is ω
exact?

 



6.2.2 Duality of Hr(M) and Hr(M); de Rham’s theorem

As the name itself suggests, the cohomology group is a dual space of the
homology group. The duality is provided by Stokes’ theorem. We first define
the inner product of an r -form and an r -chain in M . Let M be an m-dimensional
manifold and let Cr (M) be the chain group of M . Take c ∈ Cr (M) and ω ∈
+r (M) where 1 ≤ r ≤ m. Define an inner product ( , ) : Cr (M)×+r (M)→
by

c, ω �→ (c, ω) ≡
!

c
ω. (6.18)

Clearly, (c, ω) is linear in both c and ω and ( , ω) may be regarded as a linear
map acting on c and vice versa,

(c1 + c2, ω) =
!

c1+c2
ω =

!

c1
ω +
!

c2
ω (6.19a)

(c, ω1 + ω2) =
!

c
(ω1 + ω2) =

!

c
ω1 +

!

c
ω2. (6.19b)

Now Stokes’ theorem takes a compact form:

(c, dω) = (∂c, ω). (6.20)

In this sense, the exterior derivative operator d is the adjoint of the boundary
operator ∂ and vice versa.

Exercise 6.4. Let (i) c ∈ Br (M), ω ∈ Zr(M) or (ii) c ∈ Zr (M), ω ∈ Br (M).
Show, in both cases, that (c, ω) = 0.

The inner product ( , ) naturally induces an inner product λ between
the elements of Hr(M) and Hr(M). We now show that Hr(M) is the dual
of Hr(M). Let [c] ∈ Hr(M) and [ω] ∈ Hr(M) and define an inner product

 : Hr(M) × Hr(M)→ by


([c], [ω]) ≡ (c, ω) =
!

c
ω. (6.21)

This is well defined since (6.21) is independent of the choice of the
representatives. In fact, if we take c + ∂c�, c� ∈ Cr+1(M), we have, from Stokes’
theorem,

(c + ∂c�, ω) = (c, ω)+ (c�, dω) = (c, ω)

where dω = 0 has been used. Similarly, for ω + dψ , ψ ∈ +r−1(M),

(c, ω + dψ) = (c, ω)+ (∂c, ψ) = (c, ω)

since ∂c = 0. Note that
( , [ω]) is a linear map Hr(M)→ , and
([c], ) is
a linear map Hr(M)→ . To prove the duality of Hr(M) and Hr(M), we have

 



to show that
( , [ω]) has the maximal rank, that is, dim Hr(M) = dim Hr (M).
We accept the following theorem due to de Rham without the proof which is
highly non-trivial.

Theorem 6.2. (de Rham’s theorem) If M is a compact manifold, Hr(M) and
Hr(M) are finite dimensional. Moreover the map


 : Hr(M)× Hr(M)→

is bilinear and non-degenerate. Thus, Hr(M) is the dual vector space of Hr (M).

A period of a closed r -form ω over a cycle c is defined by (c, ω) =
�
c ω.

Exercise 6.4 shows that the period vanishes if ω is exact or if c is a boundary. The
following corollary is easily derived from de Rham’s theorem.

Corollary 6.1. Let M be a compact manifold and let k be the r th Betti number
(see section 3.4). Let c1, c2, . . . , ck be properly chosen elements of Zr(M) such
that [ci ] �= [c j ].

(a) A closed r -form ψ is exact if and only if
!

ci
ψ = 0 (1 ≤ i ≤ k). (6.22)

(b) For any set of real numbers b1, b2, . . . , bk there exists a closed r -form ω
such that !

ci
ω = bi (1 ≤ i ≤ k). (6.23)

Proof. (a) de Rham’s theorem states that the bilinear form 
([c], [ω]) is non-
degenerate. Hence, if 
([ci ], ) is regarded as a linear map acting on Hr (M),
the kernel consists of the trivial element, the cohomology class of exact forms.
Accordingly,ψ is an exact form.
(b) de Rham’s theorem ensures that corresponding to the homology basis

{[ci ]}, we may choose the dual basis {[ωi ]} of Hr(M) such that


([ci ], [ω j ]) =
!

ci
ω j = δi j . (6.24)

If we define ω ≡
�k
i=1 biωi , the closed r -form ω satisfies

!

ci
ω = bi

as claimed.

For example. we observe the duality of the following groups.

 



(a) H 0(M) ∼= H0(M) ∼= ⊕ · · · ⊕3 21 4
n

if M has n connected components.

(b) H 1(S1) ∼= H1(S1) ∼= .

Since Hr(M) is isomorphic to Hr(M), we find that

br(M) ≡ dim Hr(M) = dim Hr(M) = br(M) (6.25)

where br (M) is the Betti number of M . The Euler characteristic is now written as

χ(M) =
m�

r=1
(−1)rbr(M). (6.26)

This is quite an interesting formula; the LHS is purely topologicalwhile the RHS
is given by an analytic condition (note that dω = 0 is a set of partial differential
equations). We will frequently encounter this interplay between topology and
analysis.
In summary, we have the chain complex C(M) and the de Rham complex

+∗(M),

←− Cr−1(M)
∂r←− Cr (M)

∂r+1←− Cr+1(M)←−

−→ +r−1(M) dr−→ +r(M) dr+1−→ +r+1(M)←−
(6.27)

for which the r th homology group is defined by

Hr (M) = Zr (M)/Br (M) = ker ∂r/ im ∂r+1

and the r th de Rham cohomology group is defined by

Hr(M) = Zr (M)/Br (M) = ker dr+1/ im dr .

6.3 Poincaré’s lemma

An exact form is always closed but the converse is not necessarily true. However,
the following theorem provides the situation in which the converse is also true.

Theorem 6.3. (Poincaré’s lemma) If a coordinate neighbourhood U of a
manifold M is contractible to a point p0 ∈ M , any closed r -form on U is also
exact.

Proof. We assume U is smoothly contractible to p0, that is, there exists a smooth
map F : U × I → U such that

F(x , 0) = x , F(x, 1) = p0 for x ∈ U.

 



Let us consider an r -form η ∈ +r (U × I ),

η = ai1 ...ir (x, t) dxi1 ∧ . . .∧ dxir

+ b j1... jr−1(x , t) dt ∧ dx j1 ∧ . . . ∧ dx jr−1 (6.28)

where x is the coordinate of U and t of I . Define a map P : +r (U × I ) →
+r−1(U) by

Pη ≡
?! 1

0
ds b j1... jr−1 (x, s)

@
dx j1 ∧ . . . ∧ dx jr−1 . (6.29)

Next, define a map ft : U → U × I by ft (x) = (x, t). The pullback of the first
term of (6.28) by f ∗t is an element of +

r (U),

f ∗t η = ai1...ir (x, t) dxi1 ∧ . . . ∧ dxir ∈ +r(U). (6.30)

We now prove the following identity,

d(Pη)+ P(dη) = f1∗η − f0∗η. (6.31)

Each term of the LHS is calculated to be

dPη = d
?! 1

0
ds b j1... jr−1

@
dx j1 ∧ . . .∧ dx jr−1

=
! 1

0
ds

?
∂b j1... jr−1
∂x jr

@
dx jr ∧ dx j1 ∧ . . . ∧ dx jr−1

P dη = P
A?
∂ai1...ir
∂xir+1

@
dxir+1 ∧ dx i1 ∧ . . .∧ dxir

+
?
∂ai1...ir
∂t

@
dt ∧ dx i1 ∧ . . . ∧ dxir

+
?
∂b j1... jr−1
∂x jr

@
dx jr ∧ dt ∧ dx j1 ∧ . . . ∧ dx jr−1

B

=
A ! 1

0
ds

?
∂ai1...ir
∂s

@B
dxi1 ∧ . . . ∧ dx ir

−
A ! 1

0
ds

?
∂b j1... jr−1
∂x jr

@B
dx jr ∧ dx j1 ∧ . . .∧ dx jr−1.

Collecting these results, we have

d(Pη)+ P(dη) =
A ! 1

0
ds

?
∂ai1...ir
∂s

@B
dxi1 ∧ . . . ∧ dx ir

= [ai1...ir (x, 1)− ai1...ir (x, 0)] dxi1 ∧ . . . ∧ dx ir

= f1∗η − f0∗η.

 



Poincaré’s lemma readily follows from (6.31). Let ω be a closed r -form on a
contractible chart U . We will show that ω is written as an exact form,

ω = d(−PF∗ω), (6.32)

F being the smooth contraction map. In fact, if η in (6.31) is replaced by
F∗ω ∈ +r(U × I ) we have

dPF∗ω + P dF∗ω = f1∗ ◦ F∗ω − f0∗ ◦ F∗ω
= (F ◦ f1)∗ω − (F ◦ f0)∗ω (6.33)

where use has been made of the relation ( f ◦g)∗ = g∗◦ f ∗. Clearly F ◦ f1 : U →
U is a constant map x �→ p0, hence (F ◦ f1)∗ = 0. However, F ◦ f0 = idU ,
hence (F ◦ f0)∗ : +r (U) → +r (U ) is the identity map. Thus, the RHS of
(6.33) is simply −ω. The second term of the LHS vanishes since ω is closed;
dF∗ω = F∗ dω = 0, where use has been made of (5.75). Finally, (6.33) becomes
ω = −dP F∗ω, which proves the theorem.

Any closed form is exact at least locally. The de Rham cohomology group is
regarded as an obstruction to the global exactness of closed forms.

Example 6.4. Since n is contractible, we have

Hr( n ) = 0 1 ≤ r ≤ n. (6.34)

Note, however, that H 0( n ) = .

6.4 Structure of de Rham cohomology groups

de Rham cohomology groups exhibit quite an interesting structure that is very
difficult or even impossible to appreciate with homology groups.

6.4.1 Poincaré duality

Let M be a compact m-dimensional manifold and let ω ∈ Hr(M) and η ∈
Hm−r(M). Noting that ω ∧ η is a volume element, we define an inner product
" , # : Hr(M) × Hm−r (M)→ by

"ω,η# ≡
!

M
ω ∧ η. (6.35)

The inner product is bilinear. Moreover, it is non-singular, that is, if ω �= 0
or η �= 0, "ω,η# cannot vanish identically. Thus, (6.35) defines the duality of
Hr(M) and Hm−r(M),

Hr(M) ∼= Hm−r (M) (6.36)

 



called the Poincaré duality. Accordingly, the Betti numbers have a symmetry

br = bm−r . (6.37)

It follows from (6.37) that the Euler characteristic of an odd-dimensional space
vanishes,

χ(M) =
�
(−1)rbr = 12

C�
(−1)rbr +

�
(−1)m−rbm−r

D

= 12

C�
(−1)rbr −

�
(−1)−rbr

D
= 0. (6.38)

6.4.2 Cohomology rings

Let [ω] ∈ Hq(M) and [η] ∈ Hr(M). Define a product of [ω] and [η] by

[ω] ∧ [η] ≡ [ω ∧ η]. (6.39)

It follows from exercise 6.2 that ω ∧ η is closed, hence [ω ∧ η] is an element of
Hq+r(M). Moreover, [ω ∧ η] is independent of the choice of the representatives
of [ω] and [η]. For example, if we take ω� = ω + dψ instead of ω, we have

[ω�] ∧ [η] ≡ [(ω + dψ) ∧ η] = [ω ∧ η + d(ψ ∧ η)] = [ω ∧ η].

Thus, the product ∧ : Hq(M)× Hr(M)→ Hq+r(M) is a well-defined map.
The cohomology ring H ∗(M) is defined by the direct sum,

H ∗(M) ≡
m�

r=1
Hr(M). (6.40)

The product is provided by the exterior product defined earlier,

∧ : H ∗(M)× H ∗(M)→ H ∗(M). (6.41)

The addition is the formal sum of two elements of H ∗(M). One of the
superiorities of cohomology groups over homology groups resides here. Products
of chains are not well defined and homology groups cannot have a ring structure.

6.4.3 The Künneth formula

Let M be a product of two manifolds M = M1 × M2. Let {ωpi } (1 ≤ i ≤
bp(M1)) be a basis of H p(M1) and {ηpi } (1 ≤ i ≤ bp(M2)) be that of H p(M2).
Clearly ωpi ∧ η

r−p
j (1 ≤ p ≤ r) is a closed r -form in M . We show that it is not

exact. If it were exact, it would be written as

ω
p
i ∧ η

r−p
j = d(α p−1 ∧ βr−p + γ p ∧ δr−p−1) (6.42)

 



for some αp−1 ∈ +p−1(M1), βr−p ∈ +r−p(M2), γ p ∈ +p(M1) and δr−p−1 ∈
+r−p−1(M2). [If p = 0, we put αp−1 = 0.] By executing the exterior derivative
in (6.42), we have

ω
p
i ∧ η

r−p
j = dα p−1 ∧ βr−p + (−1)p−1αp−1 ∧ dβr−p

+ dγ p ∧ δr−p−1 + (−1)pγ p ∧ dδr−p−1. (6.43)

By comparing the LHS with the RHS, we find αp−1 = δr−p−1 = 0, hence
ω
p
i ∧ η

r−p
j = 0 in contradiction to our assumption. Thus, ωpi ∧ η

r−p
j is a non-

trivial element of Hr(M). Conversely, any element of Hr(M) can be decomposed
into a sum of a product of the elements of H p(M1) and Hr−p(M2) for 0 ≤ p ≤ r .
Now we have obtained the Künneth formula

Hr(M) =
�

p+q=r
[H p(M1)⊗ Hq(M2)]. (6.44)

This is rewritten in terms of the Betti numbers as

br (M) =
�

p+q=r
bp(M1)b

q(M2). (6.45)

The Künneth formula also gives a relation between the cohomology rings of the
respective manifolds,

H ∗(M) =
m�

r=1
Hr(M) =

m�

r=1

�

p+q=r
H p(M1)⊗ Hq(M2)

=
�

p

H p(M1)⊗
�

q

Hq(M2) = H ∗(M1)⊗ H ∗(M2). (6.46)

Exercise 6.5. Let M = M1 × M2. Show that

χ(M) = χ(M1) · χ(M2). (6.47)

Example 6.5. Let T 2 = S1 × S1 be the torus. Since H 0(S1) = and H 1(S1) =
, we have

H 0(T 2) = ⊗ = (6.48a)

H 1(T 2) = ( ⊗ ) ⊕ ( ⊗ ) = ⊕ (6.48b)

H 2(T 2) = ⊗ = . (6.48c)

Observe the Poincaré duality H 0(T 2) = H 2(T 2). [Remark: ⊗ is the tensor
product and should not be confused with the direct product. Clearly the product
of two real numbers is a real number.] Let us parametrize the coordinate of T 2

 



as (θ1, θ2) where θi is the coordinate of S1. The groups Hr(T 2) are generated by
the following forms:

r = 0 : ω0 = c0 c0 ∈
r = 1 : ω1 = c1 dθ1 + c�1 dθ2 c1, c

�
1 ∈ (6.49a)

r = 2 : ω2 = c2 dθ1 ∧ dθ2 c2 ∈ .

Although the one-form dθi looks like an exact form, there is no function θi which
is defined uniquely on S1. Since χ(S1) = 0, we have χ(T 2) = 0.
The de Rham cohomology groups of

T n = S1 × · · · × S13 21 4
n

are obtained similarly. Hr(T n) is generated by r -forms of the form

dθ i1 ∧ dθ i2 ∧ . . .∧ dθ ir (6.50)

where i1 < i2 < · · · < ir are chosen from 1, . . . ,n. Clearly

br = dim Hr(T n) =
?
n

r

@
. (6.51)

The Euler characteristic is directly obtained from (6.51) as

χ(T n) =
�
(−1)r

?
n

r

@
= (1− 1)n = 0. (6.52)

6.4.4 Pullback of de Rham cohomology groups

Let f : M → N be a smooth map. Equation (5.75) shows that the pullback f ∗

maps closed forms to closed forms and exact forms to exact forms. Accordingly,
we may define a pullback of the cohomology groups f ∗ : Hr(N)→ Hr(M) by

f ∗[ω] = [ f ∗ω] [ω] ∈ Hr(N). (6.53)

The pullback f ∗ preserves the ring structure of H ∗(N). In fact, if [ω] ∈ H p(N)
and [η] ∈ Hq(N), we find

f ∗([ω] ∧ [η]) = f ∗[ω ∧ η] = [ f ∗(ω ∧ η)]
= [ f ∗ω ∧ f ∗η] = [ f ∗ω] ∧ [ f ∗η]. (6.54)

6.4.5 Homotopy and H1(M)

Let f, g : M → N be smooth maps. We assume f and g are homotopic to each
other, that is, there exists a smooth map F : M × I → N such that F(p, 0) =

 



f (p) and F(p, 1) = g(p). We now prove that f ∗ : Hr(N) → Hr (M) is equal
to g∗ : Hr(N)→ Hr(M).

Lemma 6.1. Let f ∗ and g∗ be defined as before. If ω ∈ +r(N) is a closed form,
the difference of the pullback images is exact,

f ∗ω − g∗ω = dψ ψ ∈ +r−1(M). (6.55)

Proof. We first note that

f = F ◦ f0, g = F ◦ f1

where ft : M → M × I (p �→ (p, t)) has been defined in theorem 6.3. The
LHS of (6.55) is

(F ◦ f0)∗ω − (F ◦ f1)∗ω = f ∗0 ◦ F
∗ω − f ∗1 ◦ F

∗ω

= − [dP(F∗ω)+ P d(F∗ω)] = −dP F∗ω

where (6.33) has been used. This shows that f ∗ω − g∗ω = d(−PF∗ω).

Now it is easy to see that f ∗ = g∗ as the pullback maps Hr (N)→ Hr (M).
In fact, from the previous lemma,

[ f ∗ω − g∗ω] = [ f ∗ω] − [g∗ω] = [dψ] = 0.

We have established the following theorem.

Theorem 6.4. Let f, g : M → N be maps which are homotopic to each
other. Then the pullback maps f ∗ and g∗ of the de Rham cohomology groups
Hr(N)→ Hr(M) are identical.

Let M be a simply connected manifold, namely π1(M) ∼= {0}. Since
H1(M) = π1(M) modulo the commutator subgroup (theorem 4.9), it follows
that H1(M) is also trivial. In terms of the de Rham cohomology group this can be
expressed as follows.

Theorem 6.5. Let M be a simply connected manifold. Then its first de Rham
cohomology group is trivial.

Proof. Let ω be a closed one-form on M . It is clear that ifω = d f , then a function
f must be of the form

f (p) =
! p

p0
ω (6.56)

p0 ∈ M being a fixed point.
We first prove that an integral of a closed form along a loop vanishes. Let

α : I → M be a loop at p ∈ M and let cp : I → M (t �→ p) be a constant

 



loop. Since M is simply connected, there exists a homotopy F(s, t) such that
F(s, 0) = α(s) and F(s, 1) = cp(s). We assume F : I × I → M is smooth.
Define the integral of a one-form ω over α(I ) by

!

α(I )
ω =

!

S1
α∗ω (6.57)

where we have taken the integral domain in the RHS to be S1 since I = [0, 1] in
the LHS is compactified to S1. From lemma 6.1, we have, for a closed one-form
ω,

α∗ω − c∗pω = dg (6.58)

where g = −PF∗ω. The pullback cpω vanishes since cp is a constant map. Then
(6.57) vanishes since ∂S1 is empty,

!

S1
α∗ω =

!

S1
dg =

!

∂S1
g = 0. (6.59)

Let β and γ be two paths connecting p0 and p. According to (6.59), integrals
of ω along β and along γ are identical,

!

β(I )
ω =

!

γ (I )
ω.

This shows that (6.56) is indeed well defined, hence ω is exact.

Example 6.6. The n-sphere Sn (n ≥ 2) is simply connected, hence

H 1(Sn) = 0 n ≥ 2. (6.60)

From the Poincaré duality, we find

H 0(Sn) ∼= Hn(Sn) = . (6.61)

It can be shown that

Hr(Sn) = 0 1 ≤ r ≤ n − 1. (6.62)

Hn(Sn) is generated by the volume element +. Since there are no (n + 1)-forms
on Sn , every n-form is closed. + cannot be exact since if + = dψ , we would
have !

Sn
+ =

!

Sn
dψ =

!

∂Sn
ψ = 0.

The Euler characteristic is

χ(Sn) = 1+ (−1)n =
�
0 n is odd,

2 n is even.
(6.63)

 



Example 6.7. Take S2 embedded in 3 and define

+ = sin θ dθ ∧ dφ (6.64)

where (θ, φ) is the usual polar coordinate. Verify that + is closed. We may
formally write+ as

+ = −d(cos θ)∧ dφ = −d(cos θ dφ).

Note, however, that + is not exact.

 


