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The quantum spin Hall (QSH) phase is a time reversal invariant electronic state with a bulk electronic
band gap that supports the transport of charge and spin in gapless edge states. We show that this phase is
associated with a novel Z, topological invariant, which distinguishes it from an ordinary insulator. The Z,
classification, which is defined for time reversal invariant Hamiltonians, is analogous to the Chern number
classification of the quantum Hall effect. We establish the Z, order of the QSH phase in the two band
model of graphene and propose a generalization of the formalism applicable to multiband and interacting

systems.
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The classification of electronic states according to topo-
logical invariants is a powerful tool for understanding
many body phases which have bulk energy gaps. This
approach was pioneered by Thouless, Kohmoto,
Nightingale, and den Nijs [1] (TKNN), who identified
the topological invariant for the noninteracting integer
quantum Hall effect. The TKNN integer, n, which gives
the quantized Hall conductivity for each band o, =
ne?/h, is given by an integral of the Bloch wave functions
over the magnetic Brillouin zone, and corresponds to the
first Chern class of a U(1) principal fiber bundle on a torus
[2,3]. An equivalent formulation, generalizable to interact-
ing systems, is to consider the sensitivity of the many body
ground state to phase twisted periodic boundary conditions
[4,5]. This topological classification distinguishes a simple
insulator from a quantum Hall state, and explains the
insensitivity of the Hall conductivity to weak disorder
and interactions. Nonzero TKNN integers are also inti-
mately related to the presence of gapless edge states on
the sample boundaries [6].

Since the Hall conductivity violates time reversal (7")
symmetry, the TKNN integer must vanish in a 7 -invariant
system. Nonetheless, we have recently shown that the spin-
orbit interaction in a single plane of graphene leads to a
T -invariant quantum spin Hall (QSH) state which has a
bulk energy gap, and a pair of gapless spin filtered edge
states on the boundary [7]. In the simplest version of our
model (a r-electron tight-binding model with mirror-
symmetry about the plane) the perpendicular component
of the spin, §,, is conserved. Our model then reduces to
independent copies for each spin of a model introduced by
Haldane [8], which exhibits an integer quantum Hall effect
even though the average magnetic field is zero. When S, is
conserved the distinction between graphene and a simple
insulator is thus easily understood. Each spin has an inde-
pendent TKNN integer n4, n). T symmetry requires ny +
n; = 0, but the difference n; — n; is nonzero and defines a
quantized spin Hall conductivity.

This characterization breaks down when S, nonconserv-
ing terms are present. Such terms will inevitably arise due
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to coupling to other bands, mirror-symmetry breaking
terms, interactions, or disorder. Though these perturbations
destroy the quantization of the spin Hall conductance, we
argued that they do not destroy the topological order of
the QSH state because Kramers’ theorem prevents
T -invariant perturbations from opening a gap at the edge
[7]. Thus, even though the single defined TKNN number
(the total Hall conductance) is zero, the QSH ground state
is distinguishable from that of a simple insulator. This
suggests that there must be an additional topological clas-
sification for 7 -invariant systems.

In this Letter we clarify the topological order of the QSH
phase and introduce a Z, topological index that character-
izes T -invariant systems. This classification is similar to
the TKNN classification, and gives a simple test which can
be applied to Bloch energy bands to distinguish the insu-
lator from the QSH phase. It may also be formulated as a
sensitivity to phase twisted boundary conditions. We will
begin by describing our model of graphene and demon-
strate that the QSH phase is robust even when S, is not
conserved. We will then analyze the constraints of 7
invariance and derive the Z, index.

Consider the tight-binding Hamiltonian of graphene in-
troduced in Ref. [7], which generalizes Haldane’s model
[8] to include spin with T -invariant spin-orbit interactions.

H = IZC;I—CJ' + i)\soz VijC;I-SZCj + i)\RZClT(S X &U ch
(ij) (i (ij)

+ A, Eicle;. (1)

The first term is a nearest neighbor hopping term on the
honeycomb lattice, where we have suppressed the spin
index on the electron operators. The second term is the
mirror symmetric spin-orbit interaction which involves
spin dependent second neighbor hopping. Here v;; =
(2/\/§)(fll X (Alz)Z = *+1, where &1 and &2 are unit vectors
along the two bonds the electron traverses going from site j
to i. s¢ is a Pauli matrix describing the electron’s spin. The
third term is a nearest neighbor Rashba term, which ex-
plicitly violates the z — —z mirror symmetry, and will
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arise due to a perpendicular electric field or interaction
with a substrate. The fourth term is a staggered sublattice
potential (£; = £1), which we include to describe the
transition between the QSH phase and the simple insulator.
This term violates the symmetry under twofold rotations in
the plane.

H is diagonalized by writing ¢,(R + ad) =
u,,(k)e™ R Here s is spin and R is a bravais lattice vector
built from primitive vectors a,, = (a/2)(+/3§ £ %). @ =
0, 1 is the sublattice index with d = a§/~/3. For each k the
Bloch wave function is a four component eigenvector
|u(k)) of the Bloch Hamiltonian matrix (k). The 16
components of J{ (k) may be written in terms of the
identity matrix, 5 Dirac matrices I'* and their 10 commu-
tators ['* = [T'%, T'?]/(2i) [9]. We choose the following
representation of the Dirac matrices: [(12345 =
(c*®1,0°®1, 07 ® s 0" ®sY, 0" ®s°), where the
Pauli matrices o* and s* represent the sublattice and spin
indices. This choice organizes the matrices according to
T . The T operator is given by O|u) = i(I ® s¥)|u)*. The
five Dirac matrices are even under T, @I“@~ ! =T¢
while the 10 commutators are odd, @T'**@ ! = T,
The Hamiltonian is thus

5
Z dab (k)]“ab’ (2)

a<b=1

H (k)= i d, (k) +
a=1

where the d(k)’s are given in Table 1. Note that HH (k +
G) = H (k) for reciprocal lattice vectors G, so FH (k) is
defined on a torus. The 7 invariance of JH is reflected in
the symmetry (antisymmetry) of d, (d,,) under k — —K.

Equation (2) gives four energy bands, of which two are
occupied. For A = 0 there is an energy gap with magni-
tude |6+/3Aso — 2A,|. For A, > 3/3A40 the gap is domi-
nated by A, and the system is an insulator. 3+/3Agq > A,
describes the QSH phase. Though the Rashba term violates
S, conservation, for A < 2+/3 g there is a finite region of
the phase diagram in Fig. 1 that is adiabatically connected
to the QSH phase at A = 0. Figure 1 shows the energy
bands obtained by solving the lattice model in a zigzag
strip geometry [7] for representative points in the insulat-
ing and QSH phases. Both phases have a bulk energy gap
and edge states, but in the QSH phase the edge states
traverse the energy gap in pairs. At the transition between
the two phases, the energy gap closes, allowing the edge
states to “‘switch partners.”

The behavior of the edge states signals a clear difference
between the two phases. In the QSH phase for each energy

TABLE I. The nonzero coefficients in Eq. (2) with x = k,a/2
and y = 3k,a/2.

d; t(1 + 2 cosx cosy) dp

—2¢cosx siny

d, A, dis Ago(2sin2x — 4 sinx cosy)
d, Ag(1 = cosxcosy) dys — Ag cOsx siny
dy —/3 ) sinx siny dyy 3 Ag sinx cosy

in the bulk gap there is a single time reversed pair of
eigenstates on each edge. Since 7 symmetry prevents
the mixing of Kramers’ doublets these edge states are
robust against small perturbations. The gapless states
thus persist even if the spatial symmetry is further reduced
[for instance, by removing the C; rotational symmetry in
(1)]. Moreover, weak disorder will not lead to localization
of the edge states because single particle elastic backscat-
tering is forbidden [7].

In the insulating state the edge states do not traverse the
gap. It is possible that for certain edge potentials the edge
states in Fig. 1(b) could dip below the band edge, reduc-
ing—or even eliminating—the edge gap. However, this is
still distinct from the QSH phase because there will nec-
essarily be an even number of Kramers’ pairs at each
energy. This allows elastic backscattering, so that these
edge states will in general be localized by weak disorder.
The QSH phase is thus distinguished from the simple
insulator by the number of edge state pairs modulo 2.
Recently two-dimensional versions [10] of the spin Hall
insulator models [11] have been introduced, which under
conditions of high spatial symmetry exhibit gapless edge
states. These models, however, have an even number of
edge state pairs. We shall see below that they are topologi-
cally equivalent to simple insulators.

The QSH phase is not generally characterized by a
quantized spin Hall conductivity. Consider the rate of
spin accumulation at the opposite edges of a cylinder of
circumference L, which can be computed using Laughlin’s
argument [12]. A weak circumferential electric field E can
be induced by adiabatically threading magnetic flux
through the cylinder. When the flux increases by h/e
each momentum eigenstate shifts by one unit: k — k +
24r/L. In the insulating state [Fig. 1(b)] this has no effect,
since the valence band is completely full. However, in the
QSH state a particle-hole excitation is produced at the
Fermi energy E. Since the particle and hole states do
not have the same spin, spin accumulates at the edge.
The rate of spin accumulation defines a spin Hall conduc-
tance d(S,)/dt = G},E, where

© Et -

FIG. 1 (color online).

Energy bands for a one-dimensional
“zigzag” strip in the (a) QSH phase A, = 0.1¢ and (b) the
insulating phase A, = 0.4¢. In both cases Agg = .06f and Ap =
.05¢. The edge states on a given edge cross at ka = 7. The inset
shows the phase diagram as a function of A, and AR for 0 <
Aso K 1.
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Here the expectation value of S, is evaluated for the left
and right moving states at Er. Since the edge states are not
necessarily S, eigenstates this spin Hall conductance is not
quantized. GY, is zero in the insulating phase, though,
provided Ef is in the gap at the edge. If in the insulator
the edge states cross Er, then in a clean system there could
be spin accumulation at the edge (resulting from the ac-
celeration of the edge electrons in response to E). However,
if the edge states are localized then there will be no spin
accumulation. Thus the nonzero spin accumulation persists
only for the QSH phase, justifying the term quantum (but
not quantized) spin Hall effect.

In the quantum Hall effect, the states with zero and one
flux quantum threading the cylinder are distinguished by
the charge polarization. The two states cannot be con-
nected by any operator that locally conserves charge. In
the QSH effect there is no simple conserved quantity
distinguishing the two states. However, the states are dis-
tinguishable, because the state with an edge particle-hole
excitation at Er cannot be connected to the ground state
with a local 7~ symmetric operator. Note, however, that if a
second flux is added, then there will be T invariant inter-
actions which do connect the state with the zero flux state.
This suggests that the state with one flux added is distin-
guished by a Z, “7 polarization.”

The classification of quantum Hall states on the cylinder
according to Laughlin’s argument is intimately related to
the TKNN classification of the Bloch wave functions [4].
To establish the corresponding topological classification
for T -invariant systems we consider 7 constraints on the
Bloch wave functions for the two occupied bands
lu;—15(K)). |u;(k)) form a rank 2 vector bundle over
Brillouin zone torus. 7 introduces an involution on the
torus which identifies pairs of points k and —k. Wave
functions at the identified points are related by |u;(—k)) =
O|u;(k)), implying that the bundle is “real.” Since ®> =
—1, O has period 4, so that the real bundle is “twisted.”
These bundles are classified within the mathematical
framework of twisted Real K theory [13]. It is found that
such bundles have a Z X Z, classification on a torus [14].
The first integer gives the rank of the bundle (i.e., the
number of occupied bands). The Z, index is related to
the mod 2 index of the real Dirac operator [15]. In the
following we will explicitly construct this Z, index from
the Bloch wave functions and show that it distinguishes the
QSH phase from the simple insulator.

T symmetry identifies two important subspaces of the
space of Bloch Hamiltonians #H (k) and the corresponding
occupied band wave functions |u;(k)). The “even” sub-
space, for which @H(k)® ™! = H(k), have the property
that ®|u;(Kk)) is equivalent to |u;(k)) up to a U(2) rotation.
From Eq. (2) it is clear that in this subspace d,;,(k) = 0. T
symmetry requires that H(K) belong to the even subspace
at the I" point k = 0 as well as the three M points shown in

Figs. 2(a) and 2(b). The odd subspace has wave functions
with the property that the space spanned by O|u;(k)) is
orthogonal to the space spanned by |u;(k)). We will estab-
lish the Z, classification by studying the set of k which
belong to the odd subspace.

The special subspaces can be identified by considering
the matrix of overlaps, (u;(k)|®|u;(k)). From the proper-
ties of @ it is clear that this matrix is antisymmetric, and
may be expressed in terms of a single complex number as
€;;P(k). P(k) is in fact equal to the Pfaffian

P(k) = Pf [(u;(k)|O]u;(k))], 4

which for a 2 X 2 antisymmetric matrix A;; simply picks
out A,. We shall see below that the Pfaffian is the natural
generalization when there are more than two occupied
bands. P(K) is not gauge invariant. Under a U(2) trans-
formation |u}) = U;;|u;), P' = PdetU. Thus P is un-
changed by a SU(2) rotation, but under a U(1)
transformation U = e, P’ = Pe?%. In the even subspace
Olu;) is equivalent to |u;) up to a U(2) rotation, and we
have |P(k)| = 1. In the odd subspace P(k) = 0.

If no spatial symmetries constrain its form, the zeros of
P(k) are found by tuning two parameters, and generically
occur at points in the Brillouin zone. First order zeros occur
at time reversed pairs of points *k* with opposite *“‘vor-
ticity,” where the phase of P(k) advances in opposite
directions around *=Kk*. For A, # 0 the QSH phase is
distinguished from the simple insulator by the presence
of a single pair of first order zeros of P(k). The C; rota-
tional symmetry of our model constrains k* to be at the
corner of the Brillouin zone as shown in Fig. 2(a). If the C;
symmetry is relaxed, k* can occur anywhere except the

FIG. 2 (color online). The zeros of P(k) in the QSH phase
occur at points *k* for (a) A, # 0 and on the oval for
(b) A, = 0. (¢) |P(0, a)| in the QSH (solid line) and insulating
(dashed line) phases for a 2 X 2 supercell using parameters in
Fig. 1. (d) Point (A,, # 0) and line (A, = 0) zeros of P(&) for the
2 X2 supercell. In (a), (b), and (d) the solid dots are
T -symmetric points, which cannot be zeros of P, and C is the
contour of integration for Eq. (5).
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four symmetric points where |P(k)| = 1. The number of
pairs of zeros is a Z, topological invariant. This can be seen
by noting that two pairs *Kkj, can come together to
annihilate each other when ki = —k;. However a single
pair of zeros at =k* cannot annihilate because they would
have to meet at either I or M, where |P(k)| = 1. If T
symmetry is broken then the zeros are no longer prevented
from annihilating, and the topological distinction of the
QSH phase is lost.

The Z, index can thus be determined by counting the
number of pairs of complex zeros of P. This can be
accomplished by evaluating the winding of the phase of
P(k) around a loop enclosing half the Brillouin zone
(defined so that k and —k are never both included).

1

=
27

dk - Vy log[P(K) + i8], (5)
C

where C is the path shown in Figs. 2(a) and 2(b).

When A, = 0 (as it is in graphene) H has a C, rotational
symmetry, which when combined with T~ constrains the
form of 7 (k), and allows P(Kk) to be chosen to be real.
The zeros of P(k) then occur along lines, rather than at
points. We find that the zeros are absent in the insulating
phase, but enclose the M point in the QSH phase as shown
in Fig. 2(b). In this case we find that Eq. (4) also determines
the Z, index (given by 1/2 the number of sign changes
along the path C), provided we include the convergence
factor 6. Note that though the sign of / depends on the sign
of &, I mod 2 does not. We thus conclude that the QSH
phase and the insulator are distinguished by the Z, index 1.

The spin Hall insulator models studied in Refs. [10,11]
are simple insulators with / = 0. Their Hamiltonian, when
expressed in the form of Eq. (2), has d,,(k) = 0, so that
|u;(k)) is in the even subspace and |P(k)| = 1 for all k.
Reference [16] introduces a model which does appear to
exhibit a QSH effect.

Having established the topological classification of the
Bloch wave functions we now ask whether, in analogy with
Ref. [4], the classification can be formulated in terms of the
sensitivity of the ground state wave function to phase
twisted periodic boundary conditions. Such a formulation
will address the topological stability of the many body
ground state with respect to weak disorder and electron
interactions. It also provides the appropriate generalization
of (4) and (5) for multiband Hamiltonians. Consider a
L, X L, sample with boundary condition W(...,r; +
L, ...) = e %W¥(..., 1, ...). For concreteness we consider
a rectangular geometry, with L, = N (a; + a,) and L, =
N,(a; — a,). For noninteracting electrons, we may view
the entire sample as a large unit cell with N, = 4NN,
atoms imbedded in an even larger crystal. Then & plays the
role of k, and the occupied single particle eigenstates
¢i(a) play the role of u;(k). ¢;(@) form a rank N, bundle
on the torus defined by « ;. The Z, classification can be
obtained by studying the zeros of

P(@) = Pf[(¢;(a)[O]¢;(a))] (6)

Figure 2(c) compares |P(a)| in the QSH and insulating
phases. For a 16-site sample with Ny = N, = 2. In the
insulating phase there are no zeros. In the QSH phase the
structure of the zeros in Fig. 2(d) is similar to Figs. 2(a) and
2(b). For A, # 0 the first order zeros are at points, while
for A, = 0 they are on a loop. The zeros cannot be at the
four 7 symmetric points. This structure persists in the
QSH phase for any cell size. The Z, index I can be
computed by performing the integral analogous to (5)
along the contour C in Fig. 2(d).

A many body formulation requires the index to be ex-
pressed in terms of the many particle ground state |®(a)).
It is interesting to note that for noninteracting electrons
(D(a@)|0]|D(a)) = detl[{$;(@)|O|¢;(@))] = P(a)*. This
suggests a many body generalization

P(a) = /(®(a)|0]|D(a)). (7
We suspect that with this definition the topological struc-
ture P(&) in Figs. 2(c) and 2(d) will remain in the presence
of weak electron interactions.

To conclude, we have introduced a Z, topological clas-
sification of T invariant systems, analogous to the TKNN
classification of quantum Hall states. This shows that the
QSH phase of graphene has a topological stability that is
insensitive to weak disorder and interactions.

We thank Tony Pantev for many helpful discussions.
This work was supported by the NSF under MRSEC
Grant No. DMR-00-79909 and the DOE under Grant
No. DE-FG02-ER-0145118.

[1] D.J. Thouless, M. Kohmoto, M. P. Nightingale, and M.
den Nijs, Phys. Rev. Lett. 49, 405 (1982).

[2] J.E. Avron, R. Seiler, and B. Simon, Phys. Rev. Lett. 51,
51 (1983).

[3] M. Kohmoto, Ann. Phys. (Berlin) 160, 343 (1985).

[4] Q. Niu, D.J. Thouless, and Y.S. Wu, Phys. Rev. B 31,
3372 (1985).

[5] D.P. Arovas et al., Phys. Rev. Lett. 60, 619 (1988).

[6] Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).

[7]1 C.L. Kane and E.J. Mele, cond-mat/0411737.

[8] F.D.M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

[9] S. Murakami, N. Nagaosa, and S. C. Zhang, Science 301,
1348 (2003); Phys. Rev. B 69, 235206 (2004).

[10] X.L. Qi, Y.S. Wu, and S.C. Zhang, cond-mat/0505308;
M. Onoda and N. Nagaosa, Phys. Rev. Lett. 95, 106601
(2005).

[11] S. Murakami, N. Nagaosa, and S.C. Zhang, Phys. Rev.
Lett. 93, 156804 (2004).

[12] R.B. Laughlin, Phys. Rev. B 23, R5632 (1981).

[13] M. Atiyah, Quart. J. Math. Oxford 17, 367 (1966); M.
Atiyah and G. Segal, in Michael Atiyah Collected Works
(Clarendon, Oxford, 2004), Vol. 6, p. 983.

[14] We are indebted to Tony Pantev for explaining these
connections to us.

[15] M. Atiyah and I. Singer, Ann. Math. 93, 139 (1971).

[16] B.A. Bernevig and S.C. Zhang, cond-mat/0504147.

146802-4



