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The Aubry-André or Harper (AAH) model has been the subject of extensive theoretical research in the

context of quantum localization. Recently, it was shown that one-dimensional quasicrystals described by

the incommensurate AAH model has a nontrivial topology. In this Letter, we show that the commensurate

off-diagonal AAH model is topologically nontrivial in the gapless regime and supports zero-energy edge

modes. Unlike the incommensurate case, the nontrivial topology in the off-diagonal AAH model is

attributed to the topological properties of the one-dimensional Majorana chain. We discuss the feasibility

of experimental observability of our predicted topological phase in the commensurate AAH model.
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Introduction.—Anderson localization is a quantum-
interference-induced disorder-tuned quantum phase transi-
tion on a tight binding lattice where the system wave
function changes from being extended (‘‘metal’’) to expo-
nentially localized (‘‘insulator’’) at a critical value of the
disorder strength [1]. In one-dimensional (1D) systems,
Anderson localization is trivial since the critical disorder
is zero, and all states for any finite disorder are localized.
The absence of a true quantum phase transition makes 1D
Anderson localization rather uninteresting from the per-
spective of the physics of disorder-tuned metal-insulator
transition. However, Aubry and André predicted the exis-
tence of a localization transition for certain 1D quasiperi-
odic systems akin to the Harper model [2,3], where the
transition arises from the existence of an incommensurate
potential of finite strength mimicking disorder in a 1D tight
binding model. The form of this quasiperiodic potential is
usually chosen to be a cosine function incommensurate
with the underlying periodic tight-binding 1D lattice. This
result has led to extensive theoretical studies of disorder
effects in the Aubry-André or Harper (AAH) model during
the last few decades [4–8]. Recent experiments [9,10] have
realized the quasiperiodic AAH model in optical lattices
and observed the signature of a localization transition [9] in
agreement with theory [2].

One very interesting aspect of the 1DAAHmodel is that
it can be exactly mapped to the 2D Hofstadter model
[3,11]. The Hosftadter model describes the topologically
nontrivial 2D quantum Hall (QH) system on a lattice
[12–15]. This mapping implies that the 1D AAH model
must have topologically protected edge states similar to the
gapless edge states of the QH effect. Recently, these edge
states have been observed experimentally [10] and this
mapping has been used to topologically classify 1D qua-
sicrystals described by the incommensurate AAH model
[10,16–18]. In this Letter, we study the commensurate off-
diagonalAAHmodel. We note in the passing that although

we use the AAH nomenclature to discuss our model
(mainly to establish connection with existing work in the
literature), our proposed commensurate off-diagonal sys-
tem is simply a ‘‘bichromatic’’ 1D system with two com-
peting underlying 1D commensurate periodic potentials
with arbitrary phases. The hopping amplitude of the off-
diagonal AAH model has a cosine modulation in the real
space commensurate with the lattice. This is in contrast to
the diagonal AAH model which has a cosine modulation
in the potential energy term. Both these versions can be
unified within a generalized AAH model (also known as
generalized Harper model [16,19]—we use the AAH ter-
minology throughout this Letter to emphasize that Aubry-
André and Harper are equivalent models for our purpose).
In particular, we focus on the parameter range where the
AAH model is gapless and thus cannot be mapped onto a
QH system, a situation which has so far been thought to be
trivial and not considered at all in the vast literature on the
AAH model. Surprisingly we find that edge states exist in
this seemingly topologically trivial model. These edge
states are topologically protected, but they belong to a
different topological class than the QH edge. The topologi-
cal origin of these edge states is analogous to that of
zero-energy edge states along the zigzag edge of graphene
[20–22] and is directly connected to the Z2 topological
index of the Kitaev model [23] and a particular case
can also be mapped to the Su-Schreiffer-Heeger (SSH)
model [24]. Thus our work shows a hitherto undiscovered
deep connection between the AAH model, graphene, the
Kitaev model and the SSH model. To make the nontrivial
topology transparent, we rewrite our model in the
Majorana basis. It must be emphasized that the commen-
surate off-diagonal AAH model studied in this work has
extended Bloch 1D band bulk states for all parameter
values (and no localization transition at all), and our estab-
lishing its topological edge behavior differs qualitatively
from all earlier recent work on topological properties of the
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incommensurate AAH model [10,16–18,25,26]. In addi-
tion, we provide specific experimental setups for the real-
ization of the off-diagonal AAH model using a 1D lattice
composed of coupled single mode waveguides with
varying lattice spacings or a double-well optical lattice.
To understand whether the topological edge states can be
observed in a real experimental setup, we examine the
robustness of these edge states against next order hopping
and fluctuations in lattice potentials, both of which arise in
a real experimental system. Although the topological index
cannot be clearly defined in the presence of these realistic
effects, explicit numerical calculations indicate that these
edge modes are robust and observable for a wide range of
parameter space. This robustness, arising from the topo-
logical nature of zero-energy modes, is of crucial impor-
tance for the experimental verification of our prediction.

Model.—We consider the generalized 1D AAH model,
which is described by the following Hamiltonian

H ¼ XN�1

n¼1

t½1þ � cosð2�bnþ ’�Þ�cynþ1cn þ H:c:

þ XN

n¼1

v cosð2�bnþ ’vÞcyncn: (1)

This 1D chain hasN sites (n ¼ 1; 2; . . . ; N). We adopt open
boundary conditions with n ¼ 1 and n ¼ N being the two
edge sites. To be consistent with previous literature on
topological edge modes [23], we consider fermionic parti-
cles which are created and annihilated by fermionic opera-

tors cyn and cn. We emphasize, however, that our work and
all conclusions are equally valid for the corresponding
bosonic case since we are considering a noninteracting
1D quantum system. The first term in the Hamiltonian is
the kinetic energy from the nearest-neighbor hopping,
and the last term describes the on-site potential energy.
The inhomogeneity in the hopping strength and potential
energy terms is described via cosine modulations of the
strength� andv, respectively. The cosinemodulations have
periodicity 1=b and phase factor ’� and ’v. The special
case with � ¼ 0 (v ¼ 0) corresponds to the diagonal (off-
diagonal) AAHmodel. The generalized AAHmodel can be
derived starting from an ancestor 2D Hofstadter model
with next-nearest-neighbor (diagonal) hopping terms
[16,19,27]. Starting from a 2D ancestor, the phase terms
’� and ’v are related by ’� ¼ ’v þ �b. Experimentally,
one can design setups where both ’� and ’v can be tuned
independently, so we keep our notations general with ’�

and ’v as independent variables.
For irrational b, the diagonal AAHmodel (� ¼ 0, v�0)

shows a localization transition as v is increased beyond
the critical value (v ¼ 2t) with all states being extended
(localized) for v < 2tðv > 2tÞ [2,27,28]. For rational b, it
is known that by treating the phase ’v as the momentum of
another spatial dimension, the diagonal AAHmodel can be
mapped onto a 2D Hofstadter lattice with 2�b magnetic

flux per plaquette [3,11]. For b � 1=2, the Hofstadter
lattice has gapped energy bands with nontrivial topology,
described by nonzero Chern numbers. Therefore, localized
edge modes are expected for a finite-sized system with a
boundary. It is worthwhile to mention here that although
the mapping to the Hofstadter lattice is well-defined for
rational values of b, the topologically protected edge states
remain stable even if b takes irrational values. Here, we
start from the special case b ¼ 1=2 and in later part, we
will show that all the conclusions can be generalized as
long as 1=b is an even integer. For b ¼ 1=2, the off-
diagonal AAH model can be mapped onto a 2D
Hofstadter model with � flux per plaquette. Under time-
reversal transformation, a � flux simply turns into a ��
flux. Since the magnetic flux terms are only well-defined
modulo 2� for a lattice, the system is then invariant under
the time-reversal transformation. Therefore, the system
shows no QH effect and thus has no QH edge modes. In
fact, this Hofstadter lattice model has no band gap but
contains two Dirac points with a linear dispersion in anal-
ogy to graphene. This gapless �-flux state has been exten-
sively studied in the context of algebraic spin liquids
(see for example Refs. [29,30] and references therein).
We have calculated the energy spectrum for diagonal and
off-diagonal AAH models at different values of ’v and ’�

(Fig. 1). For periodic boundary conditions (not shown
here), both models show two energy bands with two
Dirac points. If we perform the same calculations on a
1D lattice with open edges, the energy spectrum (as a
function of ’�;v) for the diagonal AAH model remains

the same as in the case of periodic boundary conditions.
But for the off-diagonal AAH model, zero-energy states
are observed for ��=2<’� < �=2 as shown in Fig. 1.
By examining the wave functions associated with these
zero-energy states, we find that they are actually boundary
states localized around the two edges of the system, as
shown in the inset of Fig. 1. These are the topological zero-
energy (edge) modes alluded to in the title of our Letter.
Degenerate Majorana modes.—The edge states we find

here have a topological origin, which can be understood
analytically by rewriting the off-diagonal AAH model
(for b ¼ 1=2) in the Majorana basis. We define c2n ¼
�2n þ i�2n, c2nþ1 ¼ �2nþ1 þ i�2nþ1, where � and � are
two species of Majorana fermions. In this new basis, the
off-diagonal AAH model becomes,

H ¼ X

n

½��ð�2n�2n�1Þ þ�þð�2n�2nþ1Þ�

�X

n

½��ð�2n�2n�1Þ þ �þð�2n�2nþ1Þ�; (2)

where �� ¼ 2itð1� � cos’�Þ. Here, the system contains
two identical 1D Majorana chains which are decoupled
from each other. In the study of 1D topological super-
conductors, it is known that a Majorana fermion chain
supports a Z2 topological index [23]. For j�þj> j��j,
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the Majorana chain is topologically nontrivial and has one
zero-energy Majorana mode localized at each edge. For the
opposite regime j�þj< j��j, the system is topologically
trivial with no edge modes. For our model, this implies that
two Majorana modes, which are equivalent to a Dirac edge
mode, are expected at each of the two edges for cos’� > 0,
which agrees perfectly with the numerical results shown
in Fig. 1. This Z2 index is in fact the parity (even or odd)
of the integer topological index (Z) for a 1D system with
chiral symmetry [31,32]. Since we only allow for short-
range (nearest-neighbor) hopping terms in our model, the
integer Z index can only take values 0 or 1 (i.e., Z2). If the
kinetic energy is dominated by the longer-range hopping
terms, a higher topological index can be achieved, which is
beyond the scope of this Letter. For an odd number of sites,
there exists a single Majorana mode localized on one of the
edge sites except for the Dirac points as shown in Fig. 2.
This is an even-odd effect due to the chiral symmetry in the
off-diagonal AAH model.

Robustness.—The generalized AAH model breaks time
reversal symmetry [33]. We use this feature to test the
robustness of these zero-energy states against time reversal
breaking terms. As long as the particle-hole symmetry

[cn ! ð�1Þncyn and cyn ! ð�1Þncn] is preserved [20], the
mapping to two decoupled Majorana chains remains valid
and thus the edge modes are stable with their energy pinned
to zero. However, it is worthwhile to point out that such a
symmetry can be broken explicitly by the next-nearest-
neighbor hopping and amodulating potential energy, which
will couple the two Majorana fermion chains together.
This coupling will result in the topological index being
ill-defined. To test the fate of the edge modes under such
relevant perturbations, we introduce next-nearest-neighbor
hopping and a modulating potential energy to the

off-diagonal AAH model. For simplicity, we assume that
the strength of the next-nearest-neighbor hopping is site

independent (HNNN ¼ t0
P

nc
y
ncnþ2 þ H:c:). The modulat-

ing potential energy is introduced using the on-site termv in
Eq. (1) and without any loss of generality we assume ’v ¼
’� ¼ ’ from hereupon. As shown in Fig. 3, the edgemodes
are found to bevery robust, although the energies are shifted
away from zero. This robustness is a direct result of the
topological nature of their origin which ensures that turning

FIG. 2 (color online). Energy spectrum with odd number of
sites (N ¼ 101) with parameters t ¼ 1, b ¼ 1=2, v ¼ 0, and
� ¼ 0:4. A single zero energy mode is always localized on either
one of the edges except for the Dirac points as shown by the
wave function plots.

FIG. 1 (color online). Upper panel shows the two zero-energy eigenstates plotted as a function of position for three different values of’.
The lower panel is the energy spectrum plotted as a function of ’ for 100 sites. (a) Spectrum and eigenstates with parameters t ¼ 1,
� ¼ 0:4, v ¼ 0 and b ¼ 1=2. (b) Spectrum and eigenstates with parameters t ¼ 1, v ¼ 0:4, � ¼ 0 and b ¼ 1=2.
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on a small NNN hopping or some other such perturbation
cannot immediately destroy the zero energy modes.

Generic off-diagonal AAH models.—The above analysis
can be generalized for the case of b ¼ 1=ð2qÞ, where q is a
positive integer. For example, the off-diagonal AAHmodel
with b ¼ 1=4 has four energy bands. The top and bottom
bands are fully gapped but the two bands in the middle
have four band crossing (Dirac) points located at’ ¼ �=4,
3�=4, 5�=4 and 7�=4, as shown in Fig. 4. Inside the band
gap between the top two bands (or between the bottom two
bands), the quantum Hall edges states can be observed.
Between the two central bands, zero-energy edge states

are observed. For �=t <
ffiffiffi
2

p
, the zero-energy edge modes

are found for �=4<’< 3�=4 and 5�=4<’< 7�=4.

When �=t >
ffiffiffi
2

p
, the zero modes are found for ��=4<

’<�=4 and 3�=4<’< 5�=4. The marginal case with

�=t ¼ ffiffiffi
2

p
shows no gap at any value of ’ and thus has no

edge states between these two bands. These zero-energy
states are of the same origin as the zero-energy edge states
discussed above for b ¼ 1=2. Writing b ¼ 1=4 case in the
Majorana basis we obtain

H ¼ X

n

½�2n�1ð�2n�2n�1Þ þ �2nð�2n�2nþ1Þ�

�X

n

½�2n�1ð�2n�2n�1Þ þ�2nð�2n�2nþ1Þ�; (3)

where �n ¼ 2it½1þ � cosð’þ n�=2Þ�. The zero-energy
modes exist for the parameter range satisfying
j1� � cos’j> j1� � sin’j which is in prefect agreement
with the numerical results. For q > 1 the next-nearest-
neighbor hopping term (t0) or diagonal cosine modulation
(v) opens a gap between the two central bands, and the

zero-energy edge modes adiabatically turn into mid-gap
edge modes. [Fig. 4(d)].
Experimental realization.—Topological properties of

the half flux state can be realized in photonic crystals using
setups demonstrated in Refs. [9,10] and cold atomic gases
using double-well potentials [34–37]. The details of the
experimental realization are shown in the Supplemental
Material [38]. In addition, it should also be possible to
experimentally study our proposal by using suitably
designed cold atom optical lattices [39,40] or semiconduc-
tor structures [41,42] where 1D AAH-type quantum
systems were realized earlier in the laboratory.
Conclusion.—In this work we have unearthed a novel

topological aspect of the commensurate off-diagonal AAH
model (i.e., 1D bichromatic lattice model). It is shown both
analytically and numerically that the b ¼ 1=ð2qÞ flux state
of the off-diagonal AAH model supports topologically
nontrivial zero-energy edge modes with respect to the
higher dimensional phase parameter ’�. The topological
nature of the commensurate bichromatic 1DAubry-André-
Harper model uncovered by us shows some deep and
surprising connections between simple 1D hopping models
and spin liquids, graphene, 1D topological superconductiv-
ity. In addition, at b ¼ 1=2, off-diagonal AAH model can
be mapped to the topologically nontrivial polyacetylene
(SSH) model [24]. However, such a mapping cannot be
generalized to other values of b, where we also establish
the AAHmodel to be topological, thus providing a general-
ization of the SSH model to a new class of topological
models deeply connected to the AAH model.
The authors would like to thank Jay D. Sau for insightful

comments. This work was supported by JQI-NSF-PFC,
ARO-MURI, and AFOSR-MURI.
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FIG. 3 (color online). (a) Energy spectrum with next-nearest-
neighbor hopping for N ¼ 100 sites (t ¼ 1, t0 ¼ 0:2, � ¼ 0:4,
and v ¼ 0). (b) Degeneracy of the zero modes is lifted with
weak on-site modulation (t ¼ 1, v ¼ 0:2, and � ¼ 0:4).

FIG. 4 (color online). Tight binding energy spectrumwith open
boundary conditions for 100 sites with b ¼ 1=4 and t ¼ 1.
(a) Energy spectrum as a function of the parameter ’ with
� ¼ 1:0 and v ¼ 0. (b) The central gap closes for � ¼ ffiffiffi

2
p

.
(c) Energy spectrum with � ¼ 3:0. The position of degenerate
zero modes shifts by �=2. (d) t0 ¼ 0:2 opens up a gap in the bulk
with gapless edge modes of QH type connecting the bulk bands.
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[2] S. Aubry and G. André, Ann. Isr. Phys. Soc. 3, 133 (1980).
[3] P. G. Harper, Proc. Phys. Soc. London Sect. A 68, 874

(1955).
[4] S. Das Sarma, S. He, and X. C. Xie, Phys. Rev. Lett. 61,

2144 (1988).
[5] D. J. Thouless, Phys. Rev. Lett. 61, 2141 (1988).
[6] S. Das Sarma, S. He, and X. C. Xie, Phys. Rev. B 41, 5544

(1990).
[7] J. Biddle, B. Wang, D. J. Priour, and S. Das Sarma, Phys.

Rev. A 80, 021603 (2009).
[8] J. Biddle and S. Das Sarma, Phys. Rev. Lett. 104, 070601

(2010).
[9] Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti,

N. Davidson, and Y. Silberberg, Phys. Rev. Lett. 103,
013901 (2009).

[10] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O.
Zilberberg, Phys. Rev. Lett. 109, 106402 (2012).

[11] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[12] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).
[13] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M.

den Nijs, Phys. Rev. Lett. 49, 405 (1982).
[14] Y. Avron, R. Seiler, and B. Shapiro, Nucl. Phys. B265, 364

(1986).
[15] Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).
[16] Y. E. Kraus and O. Zilberberg, Phys. Rev. Lett. 109,

116404 (2012).
[17] L.-J. Lang, X. Cai, and S. Chen, Phys. Rev. Lett. 108,

220401 (2012).
[18] L.-J. Lang and S. Chen, Phys. Rev. B 86, 205135 (2012).
[19] J. H. Han, D. J. Thouless, H. Hiramoto, and M. Kohmoto,

Phys. Rev. B 50, 11 365 (1994).
[20] S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002).
[21] K. Esaki, M. Sato, M. Kohmoto, and B. I. Halperin, Phys.

Rev. B 80, 125405 (2009).
[22] P. Delplace and G. Montambaux, Phys. Rev. B 82, 035438

(2010).
[23] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[24] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett.

42, 1698 (1979).

[25] I. I. Satija and G.G. Naumis, arXiv:1210.5159.
[26] W. DeGottardi, D. Sen, and S. Vishveshwara,

arXiv:1208.0015.
[27] H. Hiramoto and M. Kohmoto, Phys. Rev. B 40, 8225

(1989).
[28] M. Kohmoto, Phys. Rev. Lett. 51, 1198 (1983).
[29] X.-G. Wen,Quantum Field Theory of Many-Body Systems:

From the Origin of Sound to an Origin of Light and
Electrons (Oxford University Press, New York, 2004).

[30] E. Fradkin, Field Theories of Condensed Matter Physics,
Field Theories of Condensed Matter Systems (Cambridge
University Press, Cambridge, England, 2013).

[31] A. Y. Kitaev, AIP Conf. Proc. 1134, 22 (2009).
[32] A. P. Schnyder, S. Ryu, A. Furusaki, and A.W.W. Ludwig,

AIP Conf. Proc. 1134, 10 (2009).
[33] Y. Hatsugai and M. Kohmoto, Phys. Rev. B 42, 8282

(1990).
[34] J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V.

Porto, Phys. Rev. A 73, 033605 (2006).
[35] P. J. Lee, M. Anderlini, B. L. Brown, J. Sebby-Strabley,

W.D. Phillips, and J. V. Porto, Phys. Rev. Lett. 99, 020402
(2007).
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