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Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics
in magnetic Bloch bands
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(Received 16 October 1995

We have derived a set of semiclassical equations for electrons in magnetic Bloch bands. The velocity and
energy of magnetic Bloch electrons are found to be modified by the Berry phase and magnetization. This
semiclassical approach is used to study general electron transport in a dc or ac electric field. We also find a
close connection between the cyclotron orbits in magnetic Bloch bands and the energy subbands in the
Hofstadter spectrum. Based on this formalism, the pattern of band splitting, the distribution of Hall conduc-
tivities, and the positions of energy subbands in the Hofstadter spectrum can be understood in a simple and
unified picture.

. INTRODUCTION periodic function if the mean value & is not zero. How-
ever,H, can be made invariant under “magnetic” translation
The semiclassical method has played a very importangperators, which are the usual translation operators multi-
role in studying electron dynamics in periodic systenis. plied by a position-dependent phase faétor.
this approach, the effect of a periodic potential is treated by We first give a brief review of the magnetic translation
quantum-mechanical methods and yields usual band strugymmetry. In order to simplify the discussion, we assume the
ture for energy spectrum, while an extra electromagnetignotion of electrons is confined in a plafre=(x,y)] and the
field is treated as a classical perturbation. The velocity of amagnetic field is along the direction. A magnetic Bloch

electron in the one-band approximation is given by state is the state that satisfies
LY 1. HoW (1) = (k) Wai(r), (1.4
hik as well as

where #, is the energy spectrum for theh band. The dy- ~ R
namics of quasimomenturk is governed by the Lorentz- T1(R)Wi(r) =" 1MW (1),
force formula N _
. _ To(Ro) W (1) =€/ 2ew (1), 1.9
ik=—eE—erXxB, (1.2 ~ ~
where T, and T, are magnetic translation operators. Al-
whereE andB are the external electric and magnetic fields.though -T-l and ’rz commute with the Hamiltonian by con-
These equations may be regarded as the equations of motiggryction, they do not commute with each other unless there
for the center of mass of a wave packet in trendk spaces. s an integer number of flux quantunb, enclosed by
A tremendous amount of work has been done to justify thesgr, x R,|. Therefore, when the magnetic flux is a rational
simple looking formulas and their quantization. “multiple p/q of the flux quantume, per unit cell of the
These fOI’mu|aS, hOWeVer, become invalid if the magneﬂqattice (plaquette, we must choose a “magnetic” unit cell
field is so Strong that it is no |0nger appropriate to be t.reate(éontainingq p|aquettes in order that bot{l and k2 be good

2

+V(r), (1.3 (Wi | W i) = S B - (1.6

1 d
Hozﬁ( _|hE+er(r)
The domain ok is a magnetic Brillouin zonéVIBZ), which

whereAq(r) is the vector potential of a homogeneous mag-is g times smaller than a usual Brillouin zone. Furthermore,
netic field® andV(r) is a periodic potential. The eigenener- because of the magnetic translation symmetry, the MBZ has
gies of Eq.(1.3) will be called magnetic Bloch bands, and its exactly ag-fold degeneracy. We will call each repetition unit
energy eigenstates, magnetic Bloch states. A crucial differa “reduced” MBZ.
ence between a Bloch state and a magnetic Bloch state lies in One example of magnetic Bloch bands is the subbands
their translational properties. The Hamiltoniig is not in-  split from Bloch bands due to a magnetic field. The number
variant under lattice translation becausg(r) cannot be a of subbands into which a band splits depends on the mag-
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TABLE |. Comparison between properties of the usual and magnetic Bloch bands.

Bloch band Magnetic Bloch bar{dp/q) ¢, per plaquette
Unperturbed Hamiltonian 1/  9)\? 1 9 2
Ho—z—m(*lﬁa—r> +V(I’) HO_% *IﬁE+EAO(|’) +V(I’)
Translation operators T(R)=eR 7 -T—(R):eie/hffjdr'.Ao(m')eR.amr
Number of plaquettes 1 plaquette g plaquettes

per unit cell

Range ofk vector One Brillouin zone

Perturbing fields E.B

Velocity of electron r=0,(kK)/hok

Dynamics fork fik=—eE—el xB

Quantization condition
for cyclotron orbits

Area(C,,)=2m(m+ 3)eB/%

One magnetic Brillouin zone
(one Brillouin zone divided byj)

E,oB

P = 9E(K) /1 gk — kX Q,(K),
En(K) = £M4K) + (e/2m) 5B- L ,(K)

fik=—eE—erx B

I'(Cp)
1 m
m+3 o

AreaC.) =27 )eé‘B/ﬁ

netic flux per plaquette in an intricate wayf ¢=p/q (in
units of ¢y), a Bloch band will split intog magnetic sub-

C in k space is the Berry phase,(C).% E and 6B are
external fields added to the already presBptfield. These

bands. On the other hand, if the magnetic field is very strongequations will be derived and explained in detail in Sec. II.

it is more appropriate to treat the lattice potential as a per-

Despite the similarities between Ed4.1), (1.2) and Egs.

turbation, then a Landau level will be broadened and spli{1 7) (1.8), there are several essential differences. See Table

into p subbands.
For a usual solid with a lattice constamt5 A, the mag-
netic field has to be as large as*IDin order forp/q to be

| for a comparison between this semiclassical dynamics and
the conventional one. The last item in Table I, about the
guantization of orbits, will be explained in Sec. IV. We have

of order unity. This is the reason the splitting was once conyg emphasize that théB in Eq. (1.8 is the field applied to
sidered impossible to observe. However, the field strengtihe magnetic Bloch states; it is not the total magnetic field
can be greatly reduced to a few tesla if we use an artificiahpplied to the sample. This separation is particularly useful
lattice with a much Iarge(‘say, 500 A lattice constant. Evi- when B(X'y) is Composed of a |arge constant pBH and a
dence for such splitting has appeared in recent transpoEmall nonuniform parsB(x,y). In this case, we can calcu-

measure_menfs.lt is expected that more evidence Wwill |ate the effect 0B, exactly and treabB(x,y) as a classical
emerge in the future by using a very pure sample in a verperturpation.

low temperature environment. Under such circumstances, This paper is organized as follows. Section Il is devoted
what is the dynamics for electrons in such magnetic Blochg the derivation of Eqs(1.7) and(1.8). Their use in calcu-
bands? , lating transport properties in a dc or ac electric field is dem-
Using the magnetic Bloch states as an unperturbed basignsirated in Sec. IIl. The presenceaB will lead to forma-
we found the following semiclassical dynamics in magnetiction of cyclotron orbits in magnetic Bloch bands, similar to
Bloch bands' the formation of cyclotron orbits in usual Bloch bands. This
is explained in Sec. IV. In Sec. V, we explore the connection

[= FEn(K) _ kX (k) (1.77  between these cyclotron orbits and the Hofstadter spectrum.
f 9k In Sec. VI, we estimate the energy levels in the Hofstadter
and spectrum by calculating the cyclotron energies in magnetic
Bloch bands. Finally, this paper is summarized in Sec. VII.
fik=—eE—ef X 5B, (1.9

. ) Il. DERIVATION OF THE SEMICLASSICAL DYNAMICS
whereE, (k) consists of a band energ,(k) and a correc-

tion from the magnetic moment of the wave packets
correction did not appear in Ref).7Q,(k) is the “Berry

The method we use is to construct a wave packet out of
V.« (hence it has already included the effect Bf), and

curvature,” whose integral over an area bounded by a pattudy its motion governed by the following Hamiltonian:
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1 2 2

H= > —|ﬁ +er(r)+e5A(r t)| +V(r), (2.3 IW(D)l

where —d5A/dt=E, and VX §A=6B. For simplicity we

assume bottE and 6B are uniform; the derivation is still
valid if they are slowly varying in space and/or time.

A. Wave packet in a magnetic Bloch band x l‘q

Our derivation will be confined to one energy band by
neglecting interband transitions; therefore, the band index
is henceforth dropped. Consider the following wave packek
centered atr. which is formed from the superposition of
magnetic Bloch states,

FIG. 1. Schematic plots for the motion of wave packets and
space.

and

|w0>=f d2k w(k)|¥(k)), (2.2
e (Wolr|Wo)=r. (2.4
wherew(k) is a function localized arounkl. (see Fig. 1 for
an illustration. It has to be chosen such that _
By defining u,(r)=e~ 'k "W ,(r), the mean position ofV,
f d?k k|w(k)[*=Kk, (2.3 can be written as

(—i%e”‘") u(k)>

0
fd K’ fdzkw (k' )w(k)[(—|—> S(k—k' )+6(k—k’)<u(k)

<wo|r|w0>:f dzk’f d2k w*(k’)w(k)<

ak

u(k) > Celj

U(k)> } (2.9
cell

—jdzk*k'a K)+ |w(k)|? k'a
= | d2k|w* (i (k) -+ [w(k)[2{ (k) i =

where we have used the idenfity o
L(re, ke reko)= W|h—W —(WIH|W), (2.9

< ei(k—k/)~riiu(k)> - -
ok whereW is a wave packet centeredratandk, in the pres-
9 ence of external electromagnetic fields. (is treated as a
=5(k— k,)< u(k)‘ P — u(k)> . (2.6)  9generalized coordinate hgr&Ve can always choose a gauge
ok cell such that the vector potentidA is locally gauged away at a

chosen pointr=r.. At this particular point, the moving
The subscript means that the spatial integration is restricteglave packetW is the same as the/, in Eq. (2.2.1° The

to a magnetic unit cell. By defining value of W nearr, can be approximated as
./Z(k)=i<u( u(k)> , 2.7 W(r) =g e/ oAle-U T\ (). (2.10
cell
_ First, we evaluate the energy of this wave packet, which is
Eq. (2.4) can be written as (W|H|W)=(Wo|H' W), with
A2K| W (K)i —-w(k)+ [w(K)|2#(K) | =T.. (2.8 1 ?
Ik i ~ e ' H’=2m —|ﬁ—+er(r)+e[5A(r t)— SA(r¢,1)]

B. Effective Lagrangian for a moving wave packet +Vv(r)
The dynamics of a moving wave packet is governed by

e
the following effective Lagrangian =Hot Zp{lA( D =dA(re O]-PrHC} (21D
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au, dup| du, ’19

Ky kol oky /)" (219
This is the familiar Berry curvature in the study of the quan-
tum Hall effect!!

P is the mechanical momentum operator corresponding to [ [adu,
Ho. For simplicity, we choose the circular gauge 6B, Qk)=i (9_k1
which givesSA(r,t)=—Et+36BXr, and leads to

e
H’2H0+—2mﬁB-L, (2.12
Ill. TRANSPORT IN MAGNETIC BLOCH BANDS

whereL =(r—r;) X P is the mechanical angular momentum o
of the wave packet about its center of mass. Therefore, A. Transport by an electric field

The next step is to combine the semiclassical equations
(W|H|W)= £(k,) 55 (WolL|Wp). (2.13  With the Boltzmann equation to study the transport properties
of magnetic Bloch electrons. The Boltzmann equation is

The second term represents the energy correction due to
. . : cof o of of
magnetic moment of the wave packet. Notice that while a r—a4k —={—| (3.2
wave packet in an ordinary Bloch band does not rotate, a ar ok \at]
wave packet in a magnetic Bloch band usually does.
For the first term on the right hand side of £8.9), we
have

v

wheref=1f(r,k) is a distribution function. The effect of im-
purities is included in the collision ternv{/dt) .. We use
the relaxation time approximation to replace it by
9 ] —(f—fg)/7(k). For a random distribution of impurities
iﬁﬁ W0> =(Wp|esA(rc,t)-r|Wp) voZ;8(r—r;), the impurity scattering rate is

+fd2k W*(k)iﬁ%w(k) (ZF)~ l——p(/p)n vy, 3.2

J wheren; is the area density of impurities. This rate is pro-
=e5A(rC,t)-rC+f d2k|w(k)|%% — y(k,t) portional to the density of states(#g) at Fermi energy,
at which varies wildly with: because the energy spectrum is
_ P discrete. However, since the following calculation is con-
=eSA(rc 1) ro+ i —y(ke,t), (2.14  fined to only one band; will be approximated by a constant.
at The equations of motion of an electron subject to a uni-
wherew(k)=|w(k)|e 7Y Up to terms of total time de- form electric field are
rivative, which have no effect on the dynamics, the last line a2(k) e

can be written as = 2 4 (= —
=K + 7 ExXQ(k), k=-—eE, (3.3
—edsA- fc_ﬁkc. ic?’(kc,t)- (2.15  whereZ(k) is the reduced form oE(k) in the absence of
gk SB. Substituting the expressions foandk in Eq. (3.3 into
Using the condition in Eq(2.8) and neglecting another term Ed- (3.1, and setting = f, on the left hand side of E¢3.1),

of total time derivative, we can write E¢R.15 as we obtain
—@OA T+ Tike-Fot ke A(Ky). (2.16 [0 9o & fo_e_ dfg
CoEe e =t ml ok ar TR BN 5 7 E )
Combining Eqgs(2.13 and(2.16), we have a final form (3.9

for the effective Lagrangiatomitting subscript) wheref is the distribution function in equilibrium. Electric

L(rK.F k)= —eBA(r 1) - +Ak-F+h ZK)-k—E(K), current is given by
whereE (k)= #(k) + (e/2m) 8B- L (k). Under a gauge trans- f a2t 3.9

formation for Ay(r), the Berry potential. Z(k) will be

changed by a term lik@,x(k), and this will only change It can be decomposed into three pad$;+ 37+ J#, with the
L by a total time derivative. This is also true if a different following definitions:

gauge is chosen fa¥B. Therefore, the dynamics is invariant

2 2
under gauge transformation. o _ e & d°k
. : ) J E 5 foQ2(k),
The dynamical equations in Eq€l.7) and (1.8) can be fi) (2m)
obtained straightforwardly from this Lagrangian by using the
Euler-Lagrange equation. The relation betwe®(k) and .o d?k afg E
(k) is =7 | Gz Tz Velve B,

Q) =V x.#Kk), (2.18 42K ( o »
Jr- — | -— C—
which can also be written ag{component J eTf (2m)* (95’) V(V ar ) (39
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In these expressions, is the velocitydZ/x dk due to energy ) _[(eEya
dispersion, and is the total velocity in Eq(3.3). The mean- hx=2a sin —~ sin(wt) —koxa

ing of these currents is explained below.
First, J? is the Hall current. This is most evident consid- e

ering a filled band withfy=1. In this case, botd” and J* fy=—2a sin(ko,a) — —EOQ(k(t))cos(wt), (3.12

vanish, and only? is nonzero. The integral o (k) over h

one magnetic Brillouin zone divided by#2is always an

integer, which is the topological Chern number discovere

by Thoulesset al!! Therefore we have

here Kox,Koy) is the initial value ofk. It is not difficult to

ee that after many cycles of oscillation, there is a net drift
along thex direction with average velocity
2

e
J=—-C—-EX2z (Ce2). (3.7 , 2a
h (%)== —=sin(kox@)Jo(2), (3.13
This formula represents the quantization of Hall current for a
magnetic Bloch band. where J, is the zeroth order Bessel function, and
Second,)” is the diffusion current due to disorder scatter- z=eE,a/fiw is a ratio between two energy scafést can be
ings. It can be put in the following form: seen that the original band transport velocity

) —2alh sinkga) is modified by Jo(z) because of the ac
Jro ezf dk [ % det V(OVe(0)-E, (3.9 field. The electron is immobile along thedirection when
(2m)? A& Jo S ' ' zis a zero of the Bessel function. This resembles the collapse

_y ) ) of the usual Bloch band in the ac Wannier-Stark ladder
wherev,(t)=e™""vy(0) is the current relaxed by scatterings problem?®

after timet. At very low temperature, it can be simplified to
J'=e?g(#¢)D-E, (3.9 C. How to divide B into By and 6B

where g(#+) is the density of states at Fermi energy. . Fin.ally, we comment that the use o_f sem_ic;lassical equa-

D=7 dt(vy(t)v,(0)) is the diffusion tensor, and the angu- tions is based on the assumption that impurities qlo not alter

lar bracket() means averaging over the Fermi surfite. the_band structure. Therefore, Fhe electron dynamics between
Third, J* is the current due to density gradient. It can beCOI.IISlonS can be_nlcely descrlbe.d by qu"?) and (1.8

put in a form similar toJ” in Eq. (3.9) at low temperature, This as;umptlon IS no Ipnger valid whepis large. In that

but with two changes(1) The velocityv, in D is replaced by case, disorder _broadenlng ten_ds to merge the subbands and

the total velocityv that includes the curvature terif2) The vv_ash O.Ut the f|_ne stru_ctureé'.l’hls will be clearer after the .

driving forceeE is replaced by u/ar. To evaluate this cur- discussion of h|er_arch|cal structure of t_he energy bands in

rent, we need to know the explicit form d&i(k). This in Sec. V) H_owev_er, it was found that despite the energy spec-

general requires numerical calculatitsee Sec. Vi trum having singularB dependence, the density of states

We remark that, even though the derivation of B818) is _ell_ﬁpeafrs as a cdqn_tcljnu?utslfunctlontloff.thl mf‘grl‘;t'c ﬁ;eld.
based on a uniform electric field, its validity goes beyond5Berehore’BV\“_a I\Inted to atlh mbagnde 'f I(ta e in Od Q{ an db
that. It is actually a kinetic formulation, first proposed by ©. WNEres, IS related o the band structureé undestroyed by

Chambers, that is also valid in the presence of a magneti iso_rder, ?‘”d5B is a sm_aII perturbatio_n. In this case, the
field (for magnetic Bloch bands, the magnetic field is Semiclassical dynamics in the magnetic Bloch bandgf
5B) .13 driven by E and 6B, will be employed in the Boltzmann

equation.

B. Perturbation by an ac electric field

. . : . IV. MAGNETIC PERTURBATION AND HYPERORBITS
The semiclassical method is much simpler to use than full

guantum-mechanical approaches. This is most evident when The usual Bloch electron will circulate around the Fermi
the perturbation is changing in time. We illustrate this bysurface along a constant energy contour in the presence of a
considering a magnetic Bloch electron in an ac electric fieldmagnetic field. It is well known that the quantization of cy-
To simplify the discussion, we will neglect the effect of dis- clotron orbits leads to the famous de Haas—van Alphen ef-

order and focus on the dynamics itself. fect. In this section, we study a similar type of cyclotron
Assuming that a uniform electric field along tkedirec-  motion in magnetic Bloch bands. It will be seen that this
tion oscillates with a low frequency, we then have investigation yields very fruitful results. In particular, it of-
‘ fers a very simple explanation for the complex Hofstadter
. ds(k)y e . : R i i i . . VL.
_ ( ~ SR EU(K)y, hk=— B UK. (3.10 spectrum, which will be shown in Sec. V and Sec. VI
hok  h
Considering a square lattice with the following energy spec- A. General properties of hyperorbits
trum: Combining the two equations i(8.3), we can eliminate
r to obtain
£(k)=2[cogk;a)+cogk,a)], (3.1)
and substituting the solutiok(t) into the r equation in fik=—eZsp(k) ( )xﬁB, 4.1)

(3.10, we have hok
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where Z 5(K)=[1+Q(k)5Be/#] ! is a curvature correc- The quantization of hyperorbits is given by
tion factor. This equation determines the trajectories of magé - dk=(m+ y)h, wherem is a non-negative integer and
netic Bloch electrons itk space. It is not difficult to see that y will be taken to be 1/2. It leads to area quantizatiorkin

k moves along a constant energy contouile¢k) [which is  space,

slightly different from#(k)]. In a classical picture, it is the

drifting-center trajectory of the tighter cyclotron orbit formed 1 5 E _ F(Cm)) @

from B,. However, we have to emphasize that the existence 2 i;m(kXdk)'Z_ZTr( m+ 2 2 h’ 4.5
of hyperorbits is of quantum origin and cannot be explained

classically. To differentiate them from the usual orbits ofwhere

Bloch electrons, we will call them “hyperorbitst The hy-

perorbit in real space is derived from=kXZz(%/edB), rc, = fﬁ A-dk (4.6
which is thek orbit rotated byw/2 and scaled by the factor Cm

filedB. It is also possible to define an effective cyclotronis the Berry phase for orbi€,,. The orientation ofC,, is
mass according to its frequency. However, this frequencyhosen such that the sign of the area on the left hand side of
will be very sensitive to its energy if the magnetic Bloch Eq. (4.5) equals the sign ofB.
band is narrow, which is usually the case. The total number of hyperorbits in a MBZ is determined
There are several ways to verify the existence of hyperorby requiring the area of the outermost orbit be smaller than
bits. One way is through the measurement of magnetoresishe area of a MBZ. Assume the flux before perturbation is
tance oscillation that originates from the quantization of hy-Bja?=p/q, then the number of hyperorbits in a MBZ is
perorbits. This oscillation has a much shorter period than thequal to|1/(qé¢) + o,” where 5¢= 6Bae/h, ando is the
usual de Haas—van Alphen oscillation because the effectivgall conductivity of the parent band. These hyperorbits are
magnetic fieldsB is much smaller. The other way of verify- the lowest order approximation to the split energy subbands.
ing it is by using an electron focusing device to detect itsThey will be broadened by tunnelings between degenerate
real-space orbi® This method has been used to map out theprbits. Since the MBZ igj-fold degenerate, the above num-

shape of a Fermi surface by measuring the shape of cyclotrafer has to be divided by to get the actual number of daugh-
orbits!® Another possible approach is to observe the ultrater bands,

sonic absorption spectrum of the sample. The energy of an

ultrasonic wave will be absorbed when it is in resonance _|qs¢)+ 0]

with the hyperorbits. Similar method has been used to detect D= q : 4.7

the existence of composite fermions in half-filled quantum__ . ) i "

Hall systems® This formula is essential for understanding the splitting pat-

tern of the Hofstadter spectrum.
o _ The Hall conductivity for a subband can be calculated in
B. Quantization of hyperorbits the following way: In the presence of bofh and 5B, the
In a previous paper, we have derived the quantization corvelocity of a magnetic Bloch electron consists of two parts,
dition using Lagrangian formulation combined with the path- A
integral method. Here, it will be rederived using a slightly : hooos 4.8
different approach. Substituting=kx z(%/esB) into the esB oB -’ '
Lagrangian in Eq.2.17), we will obtain an effective La-

. - The first term is the velocity of revolution, and the second
grangian for the quasimomentuky

term is the velocity of drifting alonde X B direction. The

, current density for a filled subband is

. h . . .
L(k,K)= 5g 55 (Kako—koky) + 1 £-k—E(K). (4.2 @k ho. . [ dk Ex3
=" Zm2 s f(ZTr)Z oB

kxz—e
The first integral is zero for a closed orbit. Therefore, the
Hall conductivity is obtained from the drifting term, which
leads too,( or simplyo) = pe/ 5B, wherep is the electron
Il #2 R density per unit area. This will be used in the next section to
T T 2esB kXZz+h. #(K). (4.3 determine the Hall conductivities for subbands in the Hofs-
tadter spectrum.

4.9

It can be easily shown that E¢4.1) does follow from this
L. The generalized momentum for coordinétés equal to

(This leads to the following effective Hamiltonian: V. THE HOFSTADTER SPECTRUM

H(k, )= 7 k— L(k,k) —E(k). (4.4) A. Hierarchical structure of the spectrum

The discussion in the preceding section presumes that we
Notice that becausk does not depend om, the coordinate  know JB. But this is not apparent if the magnetic fieddis
k will be a constant of motion and the dynamics is trivial. A homogeneous. In this case, we can still divide it into two
Hamiltonian that gives correct dynamics will be given in parts, but where is the dividing point betweBgand 5B? A
Appendix A. Since it is not central to our derivation, we will natural way of dividingB (or ¢) is to write it as a continued
not discuss it herg. fraction,
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g 1 tice generated from a tight-binding model
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A spectrum is symmetric with respect o= 1/2.
015
04
005 | /
0
-4 3 2 1 0 1 2 3 4
Energy
1 etc., we expect there will be a hierarchical structure of hy-
p=—, (5.)  perorbits due to different orders of approximation. This
1 - . . : )
fi+r— structure finds its correspondence in the hierarchical struc-
fr 1 ture of the Hofstadter spectrdfi(Fig. 2).
20 fat- .-
order approximation of will be written asp, /q, .?* For of energy bands
example, if ¢=1/(2+ \/5), we will have p;/q;=1/3, A magnetic Bloch band carries quantized Hall current,
p>/0,=2/7,p3/03=5/17,. .., etc., which are truncations of and this current will redistribute among daughter bands in
such a way that the total Hall current for subbands equals the
1 1 g, Original current* We will call this the “sum rule.” The cur-
24 \/5_ 1 ' (5.2 rent distribution among subbands, which is also quantized in
3t ——7— each subband, was obtained by Thoulesal!! In their fa-
2+ mous paper, they found that the subband Hall conductivities
2+ are the integer-valued solutions of the Diophantine equation.
; ; ; . — Here we show that semiclassical dynamics offers an alterna-
Theq,'s satisfy the following recursion relation: tive and very heuristic solution to this problem. The Hall
Ors1=Fre10,+0r_1, (5.3  conductivities calculated will be used in E@t.7) to calcu-

. ) ] late the number of magnetic subbands after splitting.
which relates the number of subbands at neighboring orders. The general expression for the Hall conductivity of a

There is also a relation betwe@’s andg's, “closed” subband isc=pe/ 5B [see Eq.(4.9 and below.
_ r Therefore,o can be determined ip and 6B are known.
PreaGr =Pl 1= (= 1)% (54 Consider a subband at theh order of splitting. Since all
It follows that the extra magnetic flux between ttth order ~ subbands at this level share the same number of states, each
and the ¢+ 1)th order truncation is subband will havep,=py/q,, where p, is the density of
states for the original Bloch band. The perturbation field for

_Pre1 P (2D a subband at this level i6B,=hé¢,_,/(ea?). Therefore,

S, (5.9

T Or+1 O Gl we have
Since the sign ob¢, alternates from one order to the next, | ep, _ _
the direction ofsB also alternate® op Ose=§=(—1)r_lqr—1 (in units of e?/h).
Notice that for a chosen fractiop,/q,, the size of a ' (5.6
MBZ is fixed. Without perturbation from the part that is trun- '

cated away, a wave packet will move on a straight line. Th€Sinceo,=1 for a closed subband at the first leve}, will
trajectory is curved because 6, . The higher the order of be set to 1. We have to emphasize that E§.6) is valid for
approximation we use, the smaller the gets and the larger every closed subbands therth order. Combining Eq4.7)

the radius of the hyperorbit becomes. In the ideal case, withwith (5.6), we can determine the number of daughter bands
out any complications due to disorder, thermal broadeningbeing split from arrth order parent band, which is
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FIG. 3. Schematic plots of the constant energy contours in the ‘-
reduced MBZ of a square lattice and a triangular lattice. Dashed
lines are the open orbits. FIG. 4. Pattern of energy splitting fap in Eq. (5.2). Different

orders of approximation give 3, 7, and 17 subbands, respectively.

close_ [(=1)'q 1+ 0% iy 5.7 These three bands will be split into seven subbands due to
r ar r+1- : the extra fluxé¢,=p,/0,— p1/q,=2/7—1/3. Sincef,=2,

the pattern of splitting will be, according to Eq&.7) and

The Hall conductivity for an open subband is more diffi- (5.10,
cult to obtain. It requires the knowledge of the exkdra- 7,=(2,32 (5.12
jectory to figure out the first integral in E¢4.9). However, T1Teme '
for a square or a triangular lattice, there is an easier way ofurthermore, sincer$°=—3 and ¢9"®'=4 according to
calculating it. This is so because there is only one open orbikgs. (5.6) and (5.9), the Hall conductivity distribution S
in every MBZ for either latticesee Fig. 3. Therefore, there

is only one open daughter band for every parent band. Its 0,=(—3,4,—-3,4,-3,4-3). (5.13
m?elzlmconductivity can be figured out by using the “sum Consequently, we have
2,=(2,3,2,3,2,3,2 (5.19
O'parent:E O daughter (5.9 The Hall conductivities we just obtained are the same as

those derived from the Diophantine equation. Actual pattern
of splitting is shown in Fig. 4 for comparison. The distribu-
tion in Fig. 4 for the left(or right) five subbands in Eq5.14)
appears to be (2,1,2), instead of (2[8) (3,2)]. However,
closer examination reveals that the lgfght) three subbands
actually come from the same parent. In fact, slight asymme-
try in the distribution is inevitable because wheh is

For example, at the first order, we have
o= oo — (f1—1)05°%%= — (f,— 1), wheres=0 since it
is a Bloch band at the very beginning. Foe2, the Hall

conductivity of an open daughter band at thik order is

| I
orP= op o= (= 1)o7 changed by a small amount, an electron state cannot sud-
-2 Cf 1V _ayr—1 denly jump out of the band edge to the middle of a gap.
(D72~ (= D(=1)" 7 Equations(5.6)—(5.10 also apply to a triangular lattice.
=(-1)"1q,_;+(—1)'q,, (5.9  The only difference is thatr,pe, NO longer locates at the

center of a parent band. Given the sagve 1/(2+ \/E), we
where we have assumed that its parent is a “closed” bandaow have

Using Eq.(4.7), we see that this open baaow as a parent

will split into o,=(1,1,-2),
St +1 (5.10 71=(2.23,

subbands under perturbation. It can be shown that the same 0,=(4-3-344-3-3),

result as Eq(5.9) is obtained if its parent is an “open” band —_—
(with f,+1 daughters This checks the consistency of this 7,=(3,2,2,33,2,2 (5.19
calculation. It is clear that the extra splitting of one subbandTlhis again conforms with the actual spectrum and the solu-
from each open parent bar(there areq,_; of them ac- tions of the Diophantine equation with subsidiary constraints
counts for the extra, _, in the recursion relation Ed5.3 suitable for a triangular lattic®.

We give one example to demonstrate the use of these

rules. Consider a square lattice with=1/(2+ \/5). Because VI. CALCULATIONS OF ENERGY SPECTRUM,
08°%%=1, andoP*"= — 2, the distribution ofr’s for the three CURVATURE, MAGNETIC MOMENT,
subbands at the first order is AND CYCLOTRON ENERGY

In this section, we give detailed calculations ©f(k),
Q,(k), andL,(k). They are used in calculating the cyclo-
tron energies using the quantization formula E45). The
cyclotron energies will be used to estimate the subband en-
g gies in the Hofstadter spectrum. In doing so, we not only
presume the one-band approximatin which Fig. 2 is

o,=(1,-2,0), (5.11)
where we have put*®"in the middle since for a square
lattice the open subband is located at the center of a pare
band(Fig. 3.
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based, but also neglect the interorbit transitions that broaderapproach. For more details, we request readers to refer to
(and may slightly shiftthe energy levels. The latter approxi- Ref. 29. In the tight-binding approximation, a Bloch state is
mation leads to negligible error if the bandwidths under conexpanded asfor ¢=p/q)

sideration are very small. Similar calculations have been q

done by Wilkinson, and his results have been very _

successfuf/ However, we believe that the approach pro- Y (k) .21 (k) (k) ©.D

posed here is conceptually simpler, and is easier to general- Wherek is restricted to a reduced MBZ. The basigk) is

ize to other types of latticeS. defined to bay(k, + 27l k,), wherey(K) is a Bloch state
before the magnetic perturbation. A tight-binding Hamil-
tonian in the absence afB, when being expressed on the

The following calculation is based on the tight-binding basis ofy;, is aqXx g matrix (the lattice constard is set to
model. We will only give a very brief explanation of this 1),

A. Calculation of energy spectrum for parent bands

cog k;+27/q) elk2 0o - 0 e k2
e'k cogk,+4mlq) ek - 0
0 e'k2 :
. . . ik
Hiy=— ' g S e’z o . 6.2
. . ik 2m ik
0 . . €72 co k1+(q—1)F e
e k2 0 : 0 e'kz cogk;)
|
Z.(k) andaj'(k) are nothing but the eigenvalues and eigen- a|:|
vectors of this matrix. For example, /q=1/3, then a 9 Un'| 21| Y
straightforward calculation shows that thg(k)'s are solu- <un, Y > = ﬁ, (6.5
Cn'— Cn

tions of the following characteristic equation:

whereH=e " * "He'k'" [this and the followingH’s are the
unperturbed Hamiltonian in Eql1.3); the subscript 0 is

—BreL=
£+ 62=2[cod 3k, ) +cos3ky)]. 6.3 dropped for brevity, we can rewrite Eq(6.4) in the form

There are three roots for eakh and variation ok over the oH oH

MBZ leads to the three energy bands &b+ 1/3 (see Fig. 2 , Un oK, Un' /| Un 9K, Un

It is not difficult to see that the band edges are located at  Q,(k)=i>, =AY -
//n/ /)n

(from high to low #1(9),#1(0),#2(0),25(9),#5(9), and n

#,(0), whereg= (/3,m/3). 6.6

B. Calculation of Berry curvature

Expanding U, by ¢,(r), which is defined to be
KT (r), we have
(?H n'x ~

know the eigenvectors ¢, . Before doing that, we will try ak 2 Y lﬂw lﬂl
to rewrite Eq.(2.19 in a form suitable for the tight-binding
calculation. First, we insert a complete stag |u, ){Un| A
inside the dot products that appear in E2.19. Since we :Z Qq %(¢|'|H|l/ﬂ>
are using the one-band approximatior,only runs through il
subbands in the same parent band, and

o

To calculate the Berry curvature in E®.19, we need to <
ak

'/f|> 6.7

(6.4) For a Bloch state in the absence of a magnetic field, we can
’ choose the phase such that the inner product 94, | k) is
zero. Therefore,

+(en—€nr) E a|' al<¢|’

auy,
Ky

Qn(k):iEq:' H

n'=1

.

where we have dropped a term withh’=n since oF / JHu
(uy|al9k|uy) is purely imaginary and does not contribute to <un, s Un> => al *a{‘J. (6.9
the curvature. With the help of the identity ok I ok
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FIG. 5. Distributions of Berry curvatur® (k) (in units ofe?/h). Q,(k) is equal toQ4(k) shifted by @r/3,7/3).

Beyond this stage, the calculation is straightforward since wehanged the most from the original Bloch states that have
only need to calculata] from Eq. (6.2 and combine Eqgs. zero Berry curvature. The curvatures from the three bands
(6.6) and (6.8) to obtainQ (k). cancel locally, that is,

Again we choose a simple fractigig= 1/3 and calculate
the Berry curvature distributions for the three magnetic sub-
bands. The result is shown in Fig. 5, in which the range of
k vector is one reduced MBZhe basic unit of repetition
Note that the curvature tends to concentrate on four inneThis is in general true for ang and can be easily proved
band edges because the electron states near inner gaps fioen Eqg.(6.6). This is a stronger condition than tliglobal)

3
Zl Q,(k)=0, Vk. (6.9
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TABLE Il. Hofstadter spectrunifor ¢=22/67) and the cyclotron energies calculated from(&dp). Only
the top ten subbands for the middle parent band are shown. The last column is the subband closest to the
parent band edgé&,(0)=0.7321.

Enotst 0.0618 0.1067 0.1566 0.2124 0.2747 0.3443 0.4221 0.5098 0.6098 0.7266
0.0678 0.1085 0.1570 0.2125
Ecyoo 0.0632  0.1063 0.1558 0.2115 0.2738 0.3435 0.4212 0.5086 0.6082 0.7240

sum ruleX ,o,,=0. Finally, integration of),,(k) overaMBz I, we compare the exact spectrum with the quantized cyclo-
divided by 2r gives us integers (%,2,1). These are indeed tron energies. Only part of the subbands from the parent
the Chern numbers we expecteste Eq(5.11)]. band in the middle is shown. We show two numbéos two
band edgesin the first row when the bandwidth f@&,,y is
C. Calculation of magnetic moment larger than 104. The Ecycios in the second row are obtained

by fine-tuning the patiC,, in Eq. (4.5), with uncertainty on

%he order of 10%. It can be seen that the match between
Ecyclo @Nd E o1t IS quite satisfying. We have done calcula-
tions for subbands from other parent bands, and they also
show similar accuracy.

The self-rotating angular momentum of the wave packe
(L)nk in EQ. (2.13 can be written in a from that is more
tractable for calculation:

m[ [ au,| ~ auy, Notice that the energy levels from fractions like= 1/f
L.(k)=i 7 <W H—-%, W> — c.c.|. (6.10 are broadened cyclotron levels in an ordinary Bloch band.
1 2 They do not split from a magnetic parent band. In this case

Derivation of this formula is given in Appendix B. Equation (k) andL,(k) are zero, and Eq4.5 reduces to the usual

(6.10 can also be rewritten as Onsager quantization formula. Numerical result based on
this simplified formula for the cyclotron energies also agrees
very well with the positions of subbands in Fig. 2 as ex-

IH IH pected.
ma, U 7k Upr )\ Uy 7k U
La(k)=i gz F
n/ //nl /n
(6.11 VIl. SUMMARY

Derivation of Eq.(6.11) is very similar to the derivation of Electron states in a lattice subject to a homogeneous mag-
Eq. (6.6. The only change is that the extra factor of Netic field satisfy magnetic translation symmetry and have
|:|—?5n in the numerator cancels &, — %, in the denomi- bandlike energy spectrum similar to t_he us_ual Bloch pand.
nator. However, to our knowledge, the semiclassical dynamics of

L.(k) can be readily calculated by combining H6-8) magnetic Bloch electrons has never been studied explicitly.
withnEq. (6.10. The result is shown in Fig. Gagain -for One reason is that the observation of band-splitting remains

$=1/3). Similar to the distribution of,(k), L (k) also has an experimental challenge to date; the other reason might be

peaks near inner band edges. The total magnetizations fro edto the Lact :]hat mdagne'glic E’IOCh pands, un:ike ||3|°Ch
all three bands cancel each other. However, unlike the cur2aNds, can be changed easlly Dy varying an external mag-
vature, they do not cancel locally at eaclpoint. netic field. However, our study has shown that the inquiry of

We remark that this magnetization energy first appeared i e:jgnetlc; Btlﬁ.Ch bands can be very re(\j/vsrclimg. in itself. Major
a paper by KohA.His objective was to study the effective InTIEgSE;n IS papcir are ?ummarlt;e b e(;)w. | ial
Hamiltonian for Bloch electrons in a weak electromagnetic € berry curvalure of magnetic bands plays a crucia

field. This term is in general zero for Bloch bands, but can bJOIe in the dynamics. It gives electrons an extra velocity in

nonzero in the presence of spin-orbit interaction. In the Iattefhe d|_rec§|on ofEXB, and th'$ term_ d|rect!y relgtes to the
case, it contributes an extegfactor to Bloch electron& An quantization of Hall conductivity. This semiclassical dynam-

expression that is the same as the right hand side of E'cs, combined with the Boltzmann equation, is used to study

(6.10 has also been obtained by Rammal and Bellis3rd. lectron transport in a dc or ac electric field.

Without them/# factor (and apart from a factor of)it is _In the presence obB, the energy dispersio&(k) is
called the Rammal-Wilkinson form. shifted from the usual band energy because of the nonzero

magnetic moment. Similar to usual Bloch electrons, mag-
netic Bloch electrons execute cyclotron motion on the con-
stant energy surface &f(k). However, the quantization con-
After obtaining#,(k), Q,(k), andL,(k), we can deter- dition for cyclotron orbits has to be modified from the usual
mine the cyclotron energies according to the quantizatiorDnsager condition because of the Berry phase. Based on this
formula Eqg. (4.5. In the following example, we add modified formula, we obtain a simple rule that calculates the
S¢p=-1/201 to ¢=1/3. This gives ¢'=22/67 number of daughter bands for every parent band in the Hof-
=1/(3+1/22). According to the simple rules derived in the stadter spectrum. Furthermore, a fairly heuristic explanation
preceding section, the original magnetic bands are expectddr the distribution of Hall conductivities is given using the
to split into 22, 23, and 22 subbands, respectively. In Tablgicture of cyclotron orbit drifting.

D. Calculation of cyclotron energy
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These quantized orbits are closely related to the energglotron energy spectrum in magnetic Bloch bands.
bands in the Hofstadter spectrum. We give detailed numeri-
cal calculations forQ),(k) and L,(k) based on the tight- ACKNOWLEDGMENTS
binding model for the case ap=1/3. They are used in the  The authors wish to thank A. Barr, J. Bellissard, F. Claro,
calculation of cyclotron energies using the quantization cong, Demircan, G. Georgakis, M. Kohmoto, W. Kohn, M.
dition, and the result is in very good agreement with theMarder, G. Sundaram, and M. Wilkinson for many helpful
actual spectrum. This shows that the complex pattern of thdiscussions. This work is supported by the R. A. Welch
Hofstadter spectrum is nothing more than the broadened cy~oundation.
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APPENDIX A . 9H*
. k= =\,
Note that there is n& dependence inr [because there is Jom
no kinetic energy ternk? in L(k,k)]. In this case, it is more
rtinent to treat Eq(4.3) as a constraint on the variablesnd _ IH* &E 52 0.7
™ TTT KT K 2e 6thz+ﬁz )" ok
h? . (A3)
oK, 7)=m+ kxz—h. #(k)=0. (A1)

2808 where we have discarded a tedN/dk- 8=0. According to
Strictly speaking, this constraint cannot be used before obeq. (4.3), we should also have
taining the equations of motion, therefore we usdo dis-
tinguish it from a real identity A general Hamiltonian for a 2

system with constraints is given by kXZJrhz k

(A4)

 2ed 'ak

H*(k,m)=H(Kk, @) +X- 0=E(K)+\-0,  (A2)

whereN=(\1,\,) are arbitrary functions ok and . The  Equating(A3) to (A4), and replacing\ by k, we will get Eq.
dynamical equations for this Hamiltonian are 4.1).

APPENDIX B

We will rewrite the angular momentum of a wave packet in €413 in terms of magnetic Bloch functions. By defining
w(k)=e*Tew(k), we have

L (kc):j dzk’f d?k w* (K" )YW(K)( P (k") [(r =rc) X P (k)

=f dzk'f A2k 7 (KK (U (k)] €K1 r — 1) x B(K) | un(K)), (BY)

whereP is the momentum operator on the,) basis. Since

PK)[Uun(K)y= 2 [ (K) YU (K)|P(K) | un(k)), (B2)
n!
and
) , Jd Jup
<un(k,)|el(k7k ).(rirc)(r_rc”un’(k» I5n n’ak/ (k k' )_|< oK’ I(k KD-r=re) un’>
J
|5””'(9k’ o(k—k")—id(k—k") ak’ Up ), (B3)
we have
i 2 9 e & i It 2[ 9Un
La(ke)=—1i | d?k L (k) [W(k)x(Py,—i | d°k|w(k)| K Uy ). (B4)
Becausdz’(k):(m/ﬁ)alzi/ak, the integrand of the second term can be written as
m/ au,| JH M9 ounf m/ gl = [oua)
7\ iy gy U — (ke 2)_%a_k2 7k T~ 7\ o P ok, —(kyeka)
_m/duydu,\ - m/fdup, d&, mjadug| ~|du,
%<W%>”%<W>W z<a—kl“ ﬂ
m/ du, o'?un Uy
_(kl‘—’kz):ﬁ X(f‘/ H) K |Un X(P)n- (BY)
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Therefore we have

AU,

_.m
La(ke) =i+ 52

~ Jdup
X(H—én) W

Ju
—iJ d2k|\7v(k)|2<—n
- ok

7023

J . N
un>><P(Pn)—if d?k %w*(k) W(k)XP(P),. (B6)

The last two terms cancel because of E48), and this leads to Eq6.10 Notice that this result is independent of the way
a wave packet is constructed since there isuf&) dependence in the new expression.
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