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Preface

Two of the most exciting developments of 20th century physics were
general relativity and quantum theory, the latter culminating in the
‘standard model’ of particle interactions, General relativity treats grav-
ity, while the standard model treats the rest of the forces of nature.
Unfortunately, the two theories have not yet been assembled into a
single coherent picture of the world. In particular, we do not have
a working theory of gravity that takes quantum theory into account.
Attempting to ‘quantize gravity’ has led to many fascinating develop-
ments in mathematics and physics, but it remains a challenge for the
21st century.

The early 1980s were a time of tremendous optimism concerning
string theory. This theory was very ambitious, taking as its guiding
philosophy the idea that gravity could be quantized only by unifying it
with all the other forces. As the theory became immersed in ever more
complicated technical issues without any sign of an immediate payoff in
testable experimental predictions, some of this enthusiasm diminished
among physicists, Ironically, at the same time, mathematicians found
string theory an ever more fertile source of new ideas. A particularly
appealing development to mathematicians was the discovery by Ed-
ward Witten in the late 1980s that Chern-Simons theory — a quantum
field theory in 3 dimensions that arose as a spin-off of string theory
— was intimately related to the invariants of knots and links that had
recently been discovered by Vaughan Jones and others. Quantum field
theory and 3-dimensional topology have become firmly bound together
ever since, although there is much that remains mysterious about the
relationship.

While less popular than string theory, a seemingly very different ap-
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proach to quantum gravity also made dramatic progress in the 1950s,
Abhay Ashtekar, Carlo Rovelli, Lee Smolin and others discovered how
to rewrite general relativity in terms of ‘new variables’ so that it more
closely resembled the other forces of nature, allowing them to apply
a new set of techniques to the problem of quantizing gravity, ‘The
philosophy of these researchers was far more conservative than that
of the string theorists. Instead of attempting a ‘theory of everything’
describing all forces and all particles, they attempted to understand
quantum gravity on its own, following as closely as possible the tradi-
tional guiding principles of both general relativity and quantum theory.
Interestingly, they too were led to the study of knots and links. Indeed,
their approach is often known as the ‘loop representation’ of quantum
gravity. Furthermore, quantum gravity in 4 dimensions turned out to
be closely related to Chern-Simons theory in 3 dimensions. Again,
there is much that remains mysterious about this. For example, one
wonders why Chern-Simons theory shows up so prominently both in
string theory and the loop representation of quantum gravity. Perhaps
these two approaches are not as different as they seem!

It is the goal of this text to provide an elementary introduction to
some of these developments. We hope that both physicists who wish
to learn more differential geometry and topology, and mathematicians
who wish to learn more gauge theory and general relativity, will find this
book a useful place to begin. The main prerequisites are some familiar-
ity with electromagnetism, special relativity, linear algebra, and vector
calculus, together with some of that undefinable commodity known as
‘mathematical sophistication’.

The book is divided into three parts that treat electromagnetism,
gauge theory, and general relativity, respectively. Part I of this book
introduces the language of modern differential geometry, and shows
how Maxwell’s equations can be drastically simplified using this lan-
guage. We stress the coordinate-free approach and the relevance of
global topological considerations in understanding such things as the
Bohm-Aharonov effect, wormholes, and magnetic monopoles. Part II
introduces the mathematics of gauge theory — fiber bundles, connec-
tions and curvature — and then introduces the Yang-Mills equation,
Chern classes, and Chern-Simons classes. It also includes a brief intro-
duction to knot theory and its relation to Chern-Simons theory. Part
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IIT introduces the basic concepts of Riemannian and semi-Riemannian
geometry and then concentrates on topics in general relativity of spe-
cial importance to quantum gravity: the Einstein-Hilbert and Palatini
formulations of the action principle for gravity, the ADM formalism,
and canonical quantization. Here we emphasize tensor computations
written in the notation used in general relativity. We conclude this part
with a sketch of Ashtekar’s ‘new variables’ and the way Chern-Simons
theory provides a solution to the Wheeler-DeWitt equation (the basic
equation of canonical quantum gravity).

While we attempt to explain everything ‘from scratch’ in a self-
contained manner, we really hope to lure the reader into further study
of differential geometry, topology, gauge theory, general relativity and
quantum gravity. For this reason, we provide copious notes at the end
of each part, listing our favorite reading material on all these subjects.
Indeed, the reader who wishes to understand any of these subjects in
depth may find it useful to read some of these references in parallel
with our book. This is especially true because we have left out many
relevant topics in order to keep the book coherent, elementary, and
reasonable in size. For example, we have not discussed fermions (or
mathematically speaking, spinors) in any detail. Nor have we treated
principal bundles. Also, we have not done justice to the experimental
aspects of particle physics and general relativity, focusing instead upon
their common conceptual foundation in gauge theory. The reader will
thus have to turn to other texts to learn about such matters.

One really cannot learn physics or mathematics except by doing
it. For this reason, this text contains over 300 exercises. Of course,
far more exercises are assigned in texts than are actually done by the
readers. At the very least, we urge the reader to read and ponder the
exercises, the results of which are often used later on. The text also
includes 130 illustrations, since we wish to emphasize the geometrical
and topological aspects of modern physics. Terms appear in boldface
when they are defined, and all such definitions are referred to in the
index.

This book is based on the notes of a seminar on knot theory and
quantum gravity taught by J.B. at U. C. Riverside during the school
year 1992-1993. The seminar concluded with a conference on the sub-
ject, the proceedings of which will appear in a volume entitled Knots
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and Quantum Gravity.
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Part 1

Electromagnetism






Chapter 1

Maxwell’s Equations

Our whole progress up to this point may be described as a gradual develop-
ment of the doctrine of relativity of all physical phenomena. Position we
must evidently acknowledge to be relative, for we cannot describe the posi-
tion of a body in any terms which do not ezpress relation. The ordinary
language about motion and rest does not so completely ezclude the notion of
their being measured absolutely, but the reason of this is, that in our ordi-
nary language we tacitly assume that the earth is at rest.... There are no
landmarks in space; one portion of space is ezactly like every other portion,
so that we cannot tell where we are. We are, as it were, on an unruffled
sea, without stars, compass, sounding, wind or tide, and we cannot tell in
what direction we are going. We have no log which we can case out to take
a dead reckoning by, we may compute our rate of motion with respect to the
netghboring bodies, but we do not know how these bodies may be moving in
space, — James Clerk Mazwell, 1876.

Starting with Maxwell’s beautiful theory of electromagnetism, and
inspired by it, physicists have made tremendous progress in under-
standing the basic forces and particles constituting the physical world.
Maxwell showed that two seemingly very different forces, the electric
and magnetic forces, were simply two aspects of the ‘electromagnetic
field’ . In so doing, he was also able to explain light as a phenomenon
in which ripples in the electric field create ripples in the magnetic field,
which in turn create new ripples in the electric field, and so on. Shock-
ingly, however, Maxwell’s theory also predicted that light emitted by a
moving body would travel no faster than light from a stationary body.
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4 L1 Maxwell’s Equations

Eventually this led Lorentz, Poincaré and especially Einstein to realize
that our ideas about space and time had to be radically revised. That
the motion of a body can only be measured relative to another body
had been understood to some extent since Galileo. Taken in conjunc-
tion with Maxwell’s theory, however, this principle forced the recogni-
tion that in addition to the rotational symmetries of space there must
be symmetries that mingle the space and time coordinates. These new
symmetries also mix the electric and magnetic fields, charge and cur-
rent, energy and momentum, and so on, revealing the world to be much
more coherent and tightly-knit than had previously been suspected.
There are, of course, forces in nature besides electromagnetism, the
most obvious of which is gravity. Indeed, it was the simplicity of gravity
that gave rise the first conquests of modern physics: Kepler’s laws of
planetary motion, and then Newton’s laws unifying celestial mechanics
with the mechanics of falling bodies. However, reconciling the sim-
plicity of gravity with relativity theory was no easy task! In seeking
equations for gravity consistent with his theory of special relativity,
Einstein naturally sought to copy the model of Maxwell’s equations.
However, the result was not merely a theory in which ripples of some
field propagate through spacetime, but a theory in which the geometry
of spacetime itself ripples and bends. Einstein’s equations say, roughly,
that energy and momentum affect the metric of spacetime (whereby
we measure time and distance) much as charges and currents affect
the electromagnetic field. This served to heighten hopes that much or
perhaps even all of physics is fundamentally geometrical in character.
There were, however, severe challenges to these hopes. Attempts by
Einstein, Weyl, Kaluza and Klein to further unify our description of the
forces of nature using ideas from geometry were largely unsuccessful.
The reason is that the careful study of atoms, nuclei and subatomic
particles revealed a wealth of phenomena that do not fit easily into any
simple scheme. Each time technology permitted the study of smaller
distance scales (or equivalently, higher energies), new puzzles arose. In
part, the reason is that physics at small distance scales is completely
dominated by the principles of quantum theory. The naive notion that
a particle is a point tracing out a path in spacetime, or that a field
assigns a number or vector to each point of spacetime, proved to be
wholly inadequate, for one cannot measure the position and velocity



Maxwell’s Equations 5

of a particle simultaneously with arbitrary accuracy, nor the value of a
field and its time derivative. Indeed, it turned out that the distinction
between a particle and field was somewhat arbitrary. Much of 20th cen-
tury physics has centered around the task of making sense of microworld
and developing a framework with which one can understand subatomic
particles and the forces between them in the light of quantum theory.

Our current picture, called the standard model, involves three forces:
electromagnetism and the weak and strong nuclear forces. These are
all ‘gauge fields’, meaning that they are described by equations closely
modelled after Maxwell’s equations. These equations describe quantum
fields, so the forces can be regarded as carried by particles: the elec-
tromagnetic force is carried by the photon, the weak force is carried by
the W and Z particles, and the strong force is carried by gluons. There
are also charged particles that interact with these force-carrying par-
ticles. By ‘charge’ here we mean not only the electric charge but also
its analogs for the other forces. There are two main kinds of charged
particles, quarks (which feel the strong force) and leptons (which do
not). All of these charged particles have corresponding antiparticles of
the same mass and opposite charge.

Somewhat mysteriously, the charged particles come in three fami-
lies or ‘generations’. The first generation consists of two leptons, the
electron e and the electron neutrino v, and two quarks, the up and
down, or u and d. Most of the matter we see everyday is made out
of these first-generation particles. For example, according to the stan-
dard model the proton is a composite of two up quarks and one down,
while the neutron is two downs and an up. There is a second genera-
tion of quarks and leptons, the muon g and muon neutrino v, and the
charmed and strange quarks ¢, s. For the most part these are heavier
than the corresponding particles in the first generation, although all
the neutrinos appear to be massless or nearly so. For example, the
muon is about 207 times as massive as the electron, but almost iden-
tical in every other respect. Then there is a third, still more massive
generation, containing the tau 7 and tau neutrino v,, and the top and
bottom quarks ¢ and b. For many years the top quark was merely con-
jectured to exist, but just as this book went to press, experimentalists
announced that it may finally have been found.

Finally, there is a very odd charged particle in the standard model,
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the Higgs particle, which is neither a quark nor a lepton. This has not
been observed either, and is hypothesized to exist primarily to explain
the relation between the elecromagnetic and weak forces.

Even more puzzling than all the complexities of the standard model,
however, is the question of where gravity fits into the picture! Einstein’s
equations describing gravity do not take quantum theory into account,
and it has proved very difficult to ‘quantize’ them. We thus have not
one picture of the world, but two: the standard model, in which all
forces except gravity are described in accordance with quantum the-
ory, and general relativity, in which gravity alone 1s described, not in
accordance with quantum theory. Unfortunately it seems difficult to
obtain guidance from experiment; simple considerations of dimensional
analysis suggest that quantum gravity effects may become significant
at distance scales comparable to the Planck length,

£, = (hr /)2,

where # is Planck’s constant, x is Newton’s gravitational constant, and
c is the speed of light. The Planck length is about 1.616-1073° meters,
far below the length scales we can probe with particle accelerators.

Recent developments, however, hint that gravity may be closer
to the gauge theories of the standard model than had been thought.
Fascinatingly, the relationship also involves the study of knots in 3-
dimensional space. While this work is in its early stages, and may
not succeed as a theory of physics, the new mathematics involved is
so beautiful that it is difficult to resist becoming excited. Unfortu-
nately, understanding these new ideas depends on a thorough mastery
of quantum field theory, general relativity, geometry, topology, and al-
gebra. Indeed, it is almost certain that nobody is sufficiently prepared
to understand these ideas fully! The reader should therefore not expect
to understand them when done with this book. Our goal in this book
is simply to start fairly near the beginning of the story and bring the
reader far enough along to see the frontiers of current research in dim
outline.

We must begin by reviewing some geometry. These days, when
mathematicians speak of geometry they are usually referring not to
Euclidean geometry but to the many modern generalizations that fall
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under the heading of ‘differential geometry’. The first theory of physics
to ezplicitly use differential geometry was Einstein’s general relativity,
in which gravity i1s explained as the curvature of spacetime. The gauge
theories of the standard model are of a very similar geometrical charac-
ter (although quantized). But there is also a lot of differential geometry
lurking in Maxwell’s equations, which after all were the inspiration for
both general relativity and gauge theory. So, just as a good way to
master auto repair is to take apart an old car and put in a new engine
so that it runs better, we will begin by taking apart Maxwell’s equations
and putting them back together using modern differential geometry.

In their classic form, Maxwell’s equatlons describe the behavior of
two vector fields, the electric field E and the magnetic field B.
These fields are deﬁned throughout space, which is taken to be IR®.
However, they are also functions of time, a real-valued parameter ¢.
The electric and magnetic fields depend on the electric charge density
p, which is a time-dependent function on space, and also on the electric
current density 7, which is time-dependent vector field on space. (For
the mathematicians, let us note that unless otherwise specified, func-
tions are assumed to be real-valued, and functions and vector fields on
IR™ are assumed to be smooth, that is, infinitely differentiable.)

In units where the speed of light is equal to 1, Maxwell’s equa-
tions are:

V-B =0

. 9B
E+ 2= —
V X +6t 0
V-E = p

OFE
B-=—= = 7
V X 5 7

There are a number of interesting things about these equations that
are worth understanding. First, there is the little fact that we can only
determine the direction of the magnetic field experimentally if we know
the difference between right and left. This is easiest to see from the
Lorentz force law, which says that the force on a charged particle
with charge ¢ and velocity v is

—

F=gq(E+7xB).
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To measure E, we need only measure the force F on a static particle
and divide by ¢. To figure out B, we can measure the force on charged
particles with a variety of velocities. However, recall that the definition

of the cross product involves a completely arbitrary right-hand rule!
We typically define

Fx B = (vyB, — v, By,v, By —vaB,,v:By — vyB;).

However, this is just a convention; we could have set

v X B = (v,By —vyB,,v.B, — 'UZB_.,:uyB,, — v:By),
/

and all the mathematics of cross products would work just as well.
If we used this ‘left-handed cross product’ when figuring out B from
measurements of F for various velocities 7, we would get an answer
for B with the opposite of the usual sign! It may seem odd that B
depends on an arbitrary convention this way. In fact, this turns out
to be an important clue as to the mathematical structure of Maxwell’s
equations.

Secondly, Maxwell’s equations naturally come in two pairs. The
pair that does not involve the electric charge and current densities

. 0B
0 x E + T ,
looks very much like the pair that does:
V.E= B—— =7
p VX 5 7

Note the funny minus sign in the second pair. The symmetry is clear-
est in the vacuum Maxwell equations, where the charge and current
densities vanish:

—

- 0B
.B = E4+-= —
\% 0 V X +8t 0,

E =0 ng—@zo.
ot

<
&
I
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Then the transformation
B E, Ews —B

takes the first pair of equations to the second and vice versa! This
symmetry is called duality and is a clue that the electric and magnetic
fields are part of a unified whole, the electromagnetic field. Indeed, if
we introduce a complex-valued vector field

£=EFE +iB,
duality amounts to the transformation
£rs —1;5,
and the vacuum Maxwell equations boil down to two equations for g

- . 8E
Vv-£€=0, VxE=1—
ot
This trick has very practical applications. For example, one can use it
to find solutions that correspond to plane waves moving along at the

speed of light, which in the units we are using equals 1.

Exercise 1. Let k be a vector in R3 and let w = |E| Fiz E € €3 with

= =

kE-E=0and k x E = iwE. Show that
£(t,8) = E e~ (wt=k4)
satisfies the vacuum Mazwell equations.

The symmetry between E and B does not, however, extend to the
non-vacuum Maxwell equations. We can consider making p and 7 com-
plex, and writing down:

V-E=p, fozz’(%f—-l-]“).

However, this amounts to introducing magnetic charge and current den-
sity, since if we split p and 7'into real and imaginary parts, we see that
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the imaginary parts play the role of magnetic charge and current den-
sities:

pe + 1pm,
.7 = j; + 1_7111
We get
0B
V-B=p, VXE+4—=7n,
p +5, =7
, . OE
V-E =p, VXB——=7.
P ot
These equations are quite charming, but unfortunately no magnetic
charges — so called magnetic monopoles — have been observed!

(We will have a bit more to say about this in Chapter 6.) We could
simply keep these equations and say that p and 7 are real-valued on
the basis of experimental evidence. But it is a mathematical as well
as a physical challenge to find a better way of understanding this phe-
nomenon. It turns out that the formalism of gauge theory makes it
seem quite natural.

Finally, there is the connection between Maxwell’s equations and
special relativity. The main idea of special relativity is that in addition
to the symmetries of space (translations and rotations) and time (trans-
lations) there are equally important symmetries mixing space and time,
the Lorentz transformations. The idea is that if you and I are both un-
accelerated, so that my velocity with respect to you is constant, the
coordinates I will naturally use, in which I am at rest, will differ from
yours, in which you are at rest. If your coordinate system is (¢, z,y, z)
and I am moving with velocity v in the z direction with respect to you,
for example, the coordinates in which I am at rest are given by

~

t' = (cosh @)t — (sinh @)z
g’ = —(sinh @)t + (cosh @)z
v =y

where ¢ is a convenient quantity called the rapidity, defined so that
tanh ¢ =v. Note the close resemblance to the formula for rotations in
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space. The idea is that just as the z, y, and z components of position
are all just aspects of something more important, the position itself,
space and time are just aspects of a unitary whole, spacetime.

Maxwell’s equations are invariant under these Lorentz transforma-
tions — indeed, this was the main fact that led Einstein to special
relativity! He realized that Maxwell’s equations predict that any un-
accelerated observer will measure light moving in any direction in the
vacuum to have the same speed. Mathematically speaking, the point is
that if we have a solution of Maxwell’s equations and we do a Lorentz
transformation on the coordinates together with a certain transforma-
tion of E, g, p and 7, we again have a solution.

For example, suppose that we do a Lorentz transformation of veloc-
ity v in the z direction, as above. The precise recipe for transforming
the charge and current densities is

p' = (cosh¢)p — (sinh ¢)jx

ji = —(sinh@)p + (cosh §)sa
]; = jy
]; = s

Note that p and 7 get mixed up together. In fact, we shall see that
they are really just two aspects of a single thing called the ‘current’,
which has p as its component in the time direction and 7., 74, 7, as its
components in the space directions.

he formula for transforming the electric and magnetic fields under
the same Lorentz transformation is somewhat more complicated:

E. - E
E, = (cosh¢)E, — (sinh¢)B,
E, = (sinh¢)By, + (cosh@)E,,

B, - B,
B, = (cosh¢)B, + (sinh@)E,
B, = —(sinh¢)E, + (cosh ¢)B,.

The most important message here is that the electric and magnetic
fields are two aspects of a unified ‘electromagnetic field’. Also, we see
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that the electromagnetic field is more complicated in character than
the current, since it has six independent components that transform in
a more subtle manner. It turns out to be a ‘2-form’.

When we have rewritten Maxwell’s equations using the language
of differential geometry, all the things we have just discussed will be
much clearer — at least if we succeed in explaining things well. The
key step, which is somewhat shocking to the uninitiated, is to work
as much as possible in a manner that does not require a choice of
coordinates. After all, as far as we can tell, the world was not drawn
on graph paper. Coordinates are merely something we introduce for
our own convenience, and the laws of physics should not care which
coordinates we happen to use. If we postpone introducing coordinates
until it is actually necessary, we will not have to do anything to show
that Maxwell’s equations are invariant under Lorentz transformations;
it will be mansfest.

Just for fun, let us write down the new version of Maxwell’s equa-
tions right away. We will explain what they mean quite a bit later, so
do not worry if they are fairly cryptic. They are:

dFF = 0
xdx F =

Here F is the ‘electromagnetic field’ and J is the ‘current’, while the d
and * operators are slick ways of summarizing all the curls, divergences
and time derivatives that appear in the old-fashioned version. The
equation dF = 0 is equivalent to the first pair of Maxwell’s equations,
while the equation *xd x FF = J is equivalent to the second pair. The
‘funny minus sign’ in the second pair will turn out to be a natural
consequence of how the x operator works.

If the reader is too pragmatic to get excited by the terse beauty
of this new-fangled version of Maxwell’s equations, let us emphasize
that this way of writing them is a warm-up for understanding gauge
theory, and allows us to study Maxwell’s equations and gauge theory on
curved spacetimes, as one needs to in general relativity. Indeed, we will
start by developing enough differential geometry to do a fair amount of
physics on general spacetimes. Then we will come back to Maxwell’s
equations. We warn the reader that the next few sections are not really
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a solid course in differential geometry. Whenever something is at all
tricky to prove we will skip it! The easygoing reader can take some
facts on faith; the careful reader may want to get ahold of a good book
on differential geometry to help fill in these details. Some suggestions
on books appear in the notes at the end of Part I.






Chapter 2
Manifolds

We therefore reach this result: In the general theory of relativity, space
and $ime cannot be defined in such a way that differences of the spatial co-
ordinates can be directly measured by the unit measuring-rod, or differences
in the time co-ordinate by a standard clock.

The method hitherto employed for laying co-ordinates into the space-
time conlinuum in a definite manner thus breaks down, and there seems to
be no other way which would allow us to adapt systems of co-ordinates to
the four-dimensional universe so that we might expect from their application
a particularly simple formulation of the laws of nature. So there is nothing
for it but to regard all imaginable systems of co-ordinates, on principle, as
equally suitable for the description of nature. This comes to requiring that:

The general laws of nature are to be expressed by equations which hold
good for all systems of co-ordinates, that is, are co-variant with respect to
any substitutions whatever (generally covariant). — Albert Einstein

In order to do modern physics we need to be able to handle spaces
and spacetimes that are more general than good old IR®. The kinds
of spaces we will be concerned with are those that look locally like
IR™, but perhaps not globally. Such a space is called an n-dimensional
‘manifold’. For example, the sphere

m2+y2+z2:1,

looks locally like the plane IR?, which is why some people thought the
Earth was flat. These days we call this sphere S — the 2-sphere — to
indicate that it is a 2-dimensional manifold. Similarly, while the space

15



16 1.2 Manifolds

we live in looks locally like IR3, we have no way yet of ruling out the
possibility that it is really S3, the 3-sphere:

w2+m2+y2+z2:1,

and indeed, in many models of cosmology space is a 3-sphere. In such a
universe one could, if one had time, sail around the cosmos in a space-
ship just as Magellan circumnavigated the globe. More generally, it is
even possible that spacetime has more than 4 dimensions, as is assumed
in so-called ‘Kaluza-Klein theories’. For a while, string theorists seemed
quite sure that the universe must either be 10 or 26-dimensional! More
pragmatically, there is a lot of interest in low-dimensional physics, such
as the behavior of electrons on thin films and wires. Also, classical
mechanics uses ‘phase spaces’ that may have very many dimensions.

These are some of the physical reasons why it is good to generalize
vector calculus so that it works nicely on any manifold. On the other
hand, mathematicians have many reasons of their own for dealing with
manifolds. For example, the set of solutions of an equation is often a
manifold (see the equation for the 3-sphere above).

We now head towards a precise definition of a manifold. First of
all, we remind the reader that a topological space is a set X together
with a family of subsets of X, called the open sets, required to satisfy
the conditions:

1) The empty set and X itself are open,

2)I{ U,V C X areopen,sois U NV,

3) If the sets U, C X are open, so is the union | U,.

The collection of sets taken to be open is called the topology of X.
An open set containing a point z € X is called a neighborhood of z.
The complement of an open set is called closed.

A basic example is IR", where a set U is taken to be open if for

every ¢ € U, all points sufficiently close to z are also in U:
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Fig. 1. An open set in IR?

The use of a topology is that it allows us to define continuous func-
tions. Roughly speaking, a function is continuous if it sends nearby
points to nearby points. The trick is making the notion of ‘nearby’ pre-
cise using open sets. A function f: X — Y from one topological space
to another is defined to be continuous if, given any open set U C Y,
the inverse image f~'U C X is open.

Fig. 2. A continuous function from X to Y

If one has not yet, one should do the following exercise.

Exercise 2. Show that a function f:IR™ — IR™ is continuous according to
the above definition if and only if it is according to the epsilon-delta defini-
tion: for all z € R™ and all € > 0, there erists § > 0 such that ||y — z| < §
implies || f(y) — f(z)| <e.

The idea of a manifold is that, like the globe, we can cover it with
patches that look just like IR®. More precisely, we say that a collection
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U, of open sets covers a topological space X if their union is all of X.
Given a topological space X and an open set U C X, we define a chart
to be a continuous function ¢: U — IR™ with a continuous inverse (the
inverse being defined on the set p(U)).

Fig. 3. A charton X

As long as we work ‘in the chart ¢’ we can pretend we are working
in IR™, just as the Europeans could pretend they lived on IR? as long
as they did not go too far from home. For example, if we have a
function f:U — IR, we can turn it into a function on IR™ by using

foe l:IR® - IR.

Fig. 4. Turning a function on U into a function on IR™

Finally, we say that an n-dimensional manifold, or n-manifold,
is a topological space M equipped with charts ¢o: U, — IR?, where U,
are open sets covering M, such that the transition function ¢, o <p51
is smooth where it is defined. Such a collection of charts is called an



Manifolds 19

atlas.

Fig. 5. Two charts and the transition function

What does this definition mean? First, every point of M lives in
some open subset U, that looks like IR", or in other words, we can ‘patch
together’ the whole manifold out of bits that look like IR™. Second,
it means that we can tell using charts if a function on M is smooth,
without any ambiguity, because the transition functions between charts
are smooth. To be precise, we say a function f: M — IR is smooth
if for all @, fo ¢;':IR® — IR is smooth. Suppose you are using the
chart ¢,: Uy, — IR™ and I am using the chart g : Us — IR", and let
V = U, NUg be the overlap of our two charts. Suppose that you think
the function f is smooth on V, that is, suppose f o ¢! is smooth on
vaV, as below:

Fig. 6. Your picture

Then I will agree that f is smooth on V, that is, f o cpgl will be
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smooth on gV too:

Fig. 7. My picture

Why? Because we can express my function in terms of your function
and the transition function:

fopgt=(fowz')o(pac s

Strictly speaking, the sort of manifold we have defined here is called
a smooth manifold. There are also, for example, topological mani-
folds, where the transition functions are only required to be continuous.
For us, ‘manifold’ will always mean ‘smooth manifold’. Also, we will
always assume our manifolds are ‘Hausdorfl’ and ‘paracompact’. These
are topological properties that we prefer to avoid explaining here, which
are satisfied by all but the most bizarre and useless examples.

In the following exercises we describe some examples of manifolds,
leaving the reader to check that they really are manifolds.

Exercise 3. Given a topological space X and a subset S C X, define the
induced topology on S to be the topology in which the open sets are of the
form UNS, where U is open in X. Let S™, the n-sphere, be the unit sphere

in R™1;
nil )
st = {5 € IR.n_H'I Z((El)z = 1}
=1

Show that S™ ¢ R™! with its induced topology is a manifold.

Exercise 4. Show that if M is a manifold and U is an open subset of M,
then U with its induced topology is a manifold.
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Exercise 5. Given topological spaces X and Y, we give X xY the product
topology in which a set is open if and only if it is a union of sets of the
form U x V, where U is open in X and V is open in Y. Show that if M is
an m-dimensional manifold and N is an n-dimensional manifold, M x N is
an (m + n)-dimensional manifold.

Exercise 6. Given topological spaces X andY, we give X UY the disjoint
union topology in which a set is open if and only if it is the union of
an open subset of X and an open subset of Y. Show that if M and N
are n-dimensional manifolds the disjoint union M U N is an n-dimensional
mantfold.

There are many different questions one can ask about a manifold,
but one of the most basic is whether it extends indefinitely in all di-
rections like IR? or is ‘compact’ like $3. There is a way to make this
precise which proves to be very important in mathematics. Namely, a
topological space X is said to be compact if for every cover of X by
open sets U, there is a finite collection Uy, ..., U,, that covers X. For
manifolds, there is an equivalent definition: a manifold M is compact
if and only if every sequence in M has a convergent subsequence. A
basic theorem says that a subset of IR™ is compact if and only if it is
closed and fits inside a ball of sufficiently large radius.

The study of manifolds is a fascinating business in its own right.
However, since our goal is to do physics on manifolds, let us turn to the
basic types of fields that live on manifolds: vector fields and differential
forms.






Chapter 3

Vector Fields

And it is a noteworthy fact that ignorant men have long been in advance
of the learned about vectors. Ignorant people, like Faraday, naturally think
in vectors. They may know nothing of their formal manipulation, but if they
think about vectors, they think of them as vectors, that is, directed magni-
tudes. No ignorant man could or would think about the three components
of a vector separately, and disconnected from one another. That is a device
of learned mathematicians, to enable them to evade vectors. The device is
often useful, especially for calculating purposes, but for general purposes of
reasoning the manipulation of the scalar components instead of the vector
ttself is entirely wrong. — Oliver Heaviside

Heaviside was one of the first advocates of modern vector analysis,
as well as a very sarcastic fellow. In the quote above, he was making
the point that the great physicist Faraday did not need to worry about
coordinates, because Faraday had a direct physical understanding of
vectors. Pictorially, a vector field on a manifold can be visualized as
a field of arrows. For example, a vector field on S? is basically just a
field of arrows tangent to the sphere:

23
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Fig. 1. Vector field on §?

To do calculations with vector fields, however, it is nice to define them in
an algebraic sort of way. The key to defining vector fields on manifolds
is to note that given a field of arrows, one can differentiate a function
in the direction of the arrows. In particular, given a function f and a
vector field v on IR", we can form the directional derivative of f in the
direction v, which we will write simply as v f.

Let us write a formula for v f in this case. The formula for a di-
rectional derivative should not be news to the readers of this book,
but we will rewrite it using some slick physics notation. We will write
z!,...,z" for the coordinates on IR", and write just d, for the partial
derivative 3/8z*. (When we are dealing with three or fewer dimensions
we will sometimes write z,, z instead of z!, z?, z3, and write 0,, 8y, 0,
for 8y, 02,0;.) Also, we will use the Einstein summation convention
and always.sum over repeated indices that appear once as a subscript
and once as a superscript. Then if v has components (v!,...,v"), we

have the formula

vf =v"0,f.
If this seems enigmatic, remember that it is just short for
1 0f n0f

'uf—'u——+ “+v B

In fact, since the formula vf = v*d,f holds for all f, we can be

even more slick and write

ot
v =v"0,.
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What does this mean, though? The sight of the partial derivatives 8,
sitting there with nothing to differentiate is only slightly unnerving;
we can always put a function f to the right of them whenever we
want. Much odder is that we are saying the vector field v is the linear
combination of these partial derivatives. What we are doing might
be regarded as rather sloppy, since we are identifying two different,
although related, things: the vector field v, and the operator v#8, that
takes a directional derivative in the direction of v. In fact, this ‘sloppy’
attitude turns out to be extremely convenient, and next we will go even
further and use it to define vector fields on manifolds. It is important
to realize that in mathematics it is often crucial to think about familiar
objects in a new way in order to generalize them to a new situation.
Now let us define vector fields on a manifold M. Following the phi-
losophy outlined above, these will be entities whose sole ambition in life
is to differentiate functions. First a bit of jargon. The set of smooth
(real-valued) functions on a manifold M is written C*°(M), where the
C® is short for ‘having infinitely many continuous derivatives’. Note
that C*°(M) is an algebra over the real numbers, meaning that it is
closed under (pointwise) addition and multiplication, as well as multi-
plication by real numbers, and the following batch of rules holds:

f+g = g+Ff
f+(g+h) = (f+g)+h

flgh) = (f9)h \
flg+h) = fg+fh
(f+9)h = fh+gh

f = f

o(Bf) = (aB)f
of+g) = aftog
(a+B)f = of +Bf,

where f,g,h € C*(M) and o, 3 € R. Of course it is a commutative
algebra, that is, fg = ¢f.

Now, a vector field v on M is defined to be a function from C*°(M)
to C°°(M) satisfying the following properties:
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o(f+9) = o(f)+(9)
v(af) = ov(f)
v(fg) = v(f)g+ fu(g),
for all f,g € C°(M) and o € IR. Here we have isolated all the basic

rules a directional derivative operator should satisfy. The first two
simply amount to linearity, and it is the third one, the product rule or
Leibniz law, that really captures the essence of differentiation.

This definition may seem painfully abstract. We will see in a bit
that it really is just a way of talking about a field of arrows on M.
For now, note the main good feature of this definition: it does not rely
on any choice of coordinates on M! A basic philosophy of modern
physics is that the universe does not come equipped with a coordi-
nate systemn. While coordinate systems are necessary for doing specific
concrete calculations, the choice of the coordinate system to use is a
matter of convenience, and there is often no ‘best’ coordinate system.
One should strive to write the laws of physics in a manafestly coordinate-
independent manner, so one can see what they are really saying and
not get distracted by things that might depend on the coordinates.

Let Vect( M) denote the set of all vector fields on M. We leave it to
the reader to check that one can add vector fields and multiply them
by functions on M as follows. Given v,w € Vect(M), we define v + w
by

(v+w)(f) = v(F) +w(),
and given v € Vect(M) and g € C°(M), we define gv by

(gv)(f) = gv(f)
Exercise 7. Show that v+ w and gw € Vect(M).

Exercise 8. Show that the following rules for all v,w € Vect(M) and
frge C®(M):
flotw) = fotfw
(F+g)v = fotgy
(Ffg)v = flgv)

v = wv.
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(Here ‘1’ denotes the constant function equal to 1 on all of M.) Mathemat-
ically, we summarize these rules by saying that Vect(M) is a module over

C=(M).

It turns out that the vector fields {0,} on IR™ span Vect(IR") as
a module over C®°(M). In other words, every vector field on R" is a
linear combination of the form

v*0, = 10 + - + "0y,

for some functions v* € C*°(IR™). It is also true that the vector fields
{0,} on IR™ are linearly independent

Exercise 9. Show that if v#3, = 0, that is, v*8,f = 0 for all f €
C>(IR"™), we must have v* = 0 for all p.

This implies that every vector field v on IR™ has a unique representation
as a linear combination v#d,; we say that the vector fields {d,} form
a basis of Vect(IR"). The functions v* are called the components of
the vector field v.

Tangent Vectors

Often is is nice to think of a vector field on M as really assigning an
‘arrow’ to each point of M. This kind of arrow is called a tangent vector.
For example, we may think of a tangent vector at a point p € §? as a
vector in the plane tangent to p: |

Fig. 2. Tangent vector



28 1.3 Vector Fields

To get a precise definition of a tangent vector at p € M, note that a
tangent vector should let us take directional derivatives at the point p.
For example, given a vector field v on M, we can take the derivative v(f)
of any function f € C°(M), and then evaluate the function v(f) at p.
We can think of the result, v(f)(p), as being the result of differentiating
f in the direction ‘v,’ at the point p. In other words, we can define

v:C®(M) - R

by
u(f) = v(f)(p),

and think of v, as a tangent vector at p. We call v, the value of v at p.
Note that v, has three basic properties, which follow from the defi-
nition of a vector field:

vp(f + g) = Up(f) + 'Up(g)
”p(af) = a'”p(f)
vp(f9) = ve(f)g(p) + f(P)vo(g)-

Henceforth, we will simply define a tangent vector at p € M to be
a function from C®(M) to IR satisfying these three properties. Let
T,M, the tangent space at p, denote the set of all tangent vectors at
pEM.

It now follows rigorously from our definitions that for each p € M,
a vector field v € Vect(M) determines a tangent vector v, € T,M. One
can also show, though it takes a bit of work, that every tangent vector
at p is of the form v, for some vector field or other. A related fact,
which is much easier to show, is the following:

Exercise 10. Let v, w € Vect(M). Show that v = w if and only if v, = w,
forallpe M.

Why do tangent vectors as we have defined them ‘look like arrows’?
First of all, we can add two tangent vectors v,w € T,M by

(v +w)(f) = v(f) + w(f),

and multiply tangent vectors by real numbers:

(aw)(f) = ew(/)-
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(Now we are using the letters v, w to denote tangent vectors, not vector
fields!) With addition and multiplication defined this way, the tangent
space 1s really a vector space. For example, in Figure 2 we have drawn
a tangent space to look like a little plane. The tangent vectors can be
thought of as arrows living in this vector space.

Exercise 11. Show that T,M is a vector space over the real numbers.

Another reason why tangent vectors really look like arrows is that
curves have tangent vectors:

M

Fig. 3. The tangent vector to a curve in M

By a curve we will always mean a function from IR or some interval
to M that is smooth, i.e., such that for any f € C°(M), f(v(¢))
depends smoothly on t. Given a curve v:IR — M and any t € R, the
tangent vector v'(t) should be a vector in the tangent space T, y)M. We
define ¥/(t) in the only sensible way possible: it is the function from
C*°(M) to IR that sends any function f € C®(M) to the derivative

d

- t)).

5 7((2))
In other words, the tangent vector 4'(¢) differentiates functions in the
direction that v is moving in at time .

Exercise 12. Check that v'(t) € TytyM using the definitions.

If the curve v describes the motion of a particle through space, the
tangent vector v'(t) represents its velocity. For this reason, we will
sometimes write

dy

dt
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for 4'(t), especially when we are not particularly concerned with which
value of t we are talking about.

Note that for manifolds it generally makes no sense to say that a
tangent vector v € T,M is ‘the same’ as another one, w € T,M, unless
the points p and ¢ are the same. For example, there is no ‘best’ way to
compare tangent vectors at the north pole of S? to tangent vectors at
the equator. It also makes no sense to add tangent vectors at different
points!

Fig. 4. Tangent vectors at different points of S?

We mention this because the reader may be used to IR"™, where one
often says the following two vectors are ‘the same’, even though they
are at different points in IR™:

-

-

Fig. 5. Tangent vectors at different points of IR

The reason why one can get away with this is that for any point p in
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IR", the tangent vectors
(Bu)p € TR,

form a basis. This allows one to relate tangent vectors at different
points of IR" — one can sloppily say that the vector

v = v*(0,), € T,IR"

and the vector

w=w"(0,)q € TR
are ‘the same’ if v# = w*, even though v and w are not literally equal.
Later we will get a deeper understanding of this issue, which requires
a theory of ‘parallel transport’, the process of dragging a vector at one
point of a manifold over to another point. This turns out to be a crucial
idea in physics, and in fact the root of gauge theory!

Covariant Versus Contravariant

A lot of modern mathematics and physics requires keeping track of
which things in life are covariant, and which things are contravariant.
Let us begin to explain these ideas by comparing functions and tangent
vectors. Say we have a function ¢: M — N from one manifold to
another. If we have a real-valued function on N, say f: N — IR, we
can get a real-valued function on M by composing it with f.

M e Ny
\MR:» :

Fig. 6. Pulling back f from N to M
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We call this process pulling back f from N to M by ¢. We define
¢ f=fog,

and call ¢*f the pullback of f by ¢. The point is that while ¢ goes
‘forwards’ from M to N, the pullback operation ¢* goes ‘backwards’,
taking functions on N to functions on M. We say that real-valued
functions on a manifold are contravariant because of this perverse
backwards behavior.

Exercise 13. Let ¢:IR — IR be given by ¢(t) = e'. Let = be the usual
coordinate function on IR.. Show that ¢*z = €”.

Exercise 14. Let ¢:R? — IR? be rotation counterclockwise by an angle 6.
Let z,y be the usual coordinate functions on R%. Show that

¢*z = (cosf)z — (sin8)y
'y = (sin)z + (cosB)y.

By the way, we say that ¢: M — N is smooth if f € C®(N)
implies that ¢*f € C°(M). Henceforth we will assume functions from
manifolds to manifolds are smooth unless otherwise stated, and we will
often call such functions maps.

Exercise 15. Show that this definition of smoothness is consistent with
the previous definitions of smooth functions f: M — TR and smooth curves
v:R — M.

Using our new jargon, we have: given any map
¢:N — M,
pulling back by ¢ is an operation
¢*:C=(M) —» C*=(N).

Tangent vectors, on the other hand, are covariant: a tangent vector
v € T,M and a smooth function ¢: M — N gives a tangent vector

¢.v € Typ) N, called the pushforward of v by ¢. This is defined by
(6v)(f) = v(8°f)
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We say we are pushing forward v by ¢. Note that we use a subscript
asterisk for pushforwards and a superscript for pullbacks! One way to
think of the pushforward is that if v is a curvein M with tangent vector
v'(t) € To(M), the curve ¢ oy is a curve with tangent vector

(po7)(t) = du(7'(2)) € Typ)(M).

Fig. 7. Pushing forward the tangent vector of a curve from M to N

Exercise 16. Prove that (¢ov)(t) = ¢.(7'(2)).

Exercise 17. Show that the pushfoward operation
$o: TyM — Ty N

is linear.

Exercise 18. Show that if ¢: M — N we can push forward a vector field
v on M to obtain a vector field ¢, on N satisfying

(fsv)q = bu(vp)
whenever ¢(p) = q.

Exercise 19. Let ¢:R? — IR? be rotation counterclockwise by an angle .
Let 8,0, be the coordinate vector fields on R?. Show that at any point of
]R.2

¢ = (cos )0y — (sin )0,

$.0y = (sin8)d; + (cosh)d,.
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It is traditional in mathematics, by the way, to write pushforwards
and other covariant things with lowered asterisks, and to write pull-
backs and other contravariant things with raised asterisks. It might
help as a mnemonic to remember that the tangent vectors g, are writ-
ten with the y downstairs, and are covariant. In the next chapter we
will discuss things similar to tangent vectors, but which are contravari-
ant! These things will have their indices upstairs. We warn the reader,
however, that while the vector field J, is covariant and has its indices
downstairs, physicists often think of a vector field v as being its compo-
nents v*. These have their indices upstairs, so physicists say that the
v* are contravariant! This is one of those little differences that makes
communication between the two subjects a bit more difficult.

Flows and the Lie Bracket

One sort of vector field that comes up in physics is the velocity vector
field of a fluid, such as water. Imagine that the velocity vector field v
is constant as a function of time, so that each molecule of water traces
out a curve ¥(t) as time passes, with the tangent vector of v equal to
the value of v at the point v(t):

Y(t) = vace)

for all ¢. If the curve starts at some point p € M, that is v(0) = p, we
call v the integral curve through p of the vector field v:

\ \
A

by I
byt

;f ”,TTT
Flrg!

Fig. 8. Integral curve through p of the vector field »

T
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Calculating the integral curves of a vector field amounts to solving
a first-order differential equation. Omne has to be careful, because the
solution might ‘shoot off to infinity’ in a finite amount of time:

Exercise 20. Let v be the vector field =28, + yOy on R2. Calculate the
integral curves y(t) and see which ones are defined for all t.

We say that the vector field v is integrable if all the integral curves
are defined for all ¢t.

Suppose v is an integrable vector field on M, which we think of as
the velocity vector field of some water. If we keep track of how all the
molecules of water are moving along, we have something called a ‘flow’.
Let ¢¢(p) be the integral curve of v through the point p € M. For each
time ¢, the map

b M — M

turns out to be smooth, by a result on the smooth dependence of so-
lutions of differential equations on the initial conditions. Water that
was at p at time zero will be at ¢:(p) by time ¢, so we call the family
of maps {¢;:} the flow generated by v. The defining equation for the
flow is (rewriting our equation for v):

d
Ei¢t(p) = Vgy(p)-

Exercise 21. Show that ¢ is the identity map id: X — X, and that for
all s,t € IR we have ¢; 0 @5 = Pyys-

There is an important way to get new vector fields from old ones
that is related to the concept of flows. This is called the Lie bracket or
commutator of vector fields. Given v, w € Vect(M), the Lie bracket
[v, w] is defined by

[0, wl(f) = o(w(f)) - w(e()),
for all f € C*(M), or, for short,

[v,w] = vw — wv.
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Let us show that the Lie bracket defined in this way actually is a vector
field on the manifold M. It is easy to prove linearity, so the crucial thing
is the Leibniz rule: if u = [v,w], we have

u(fg) = (vw—wv)(fyg)
= v[w(f)g + fuw(g)] — wl(f)g + fv(g)]
= vw(f)g + fow(g) —wv(f)g — fwu(g)
= u(f)g + fu(g)-

Here we used the Leibniz law twice and then used the definition of the
Lie brackets.

The Lie bracket measures the failure of ‘mixed directional deriva-
tives’ to commute. Of course, ordinary mixed partial derivatives do
commute:

[8,,8,] = 0.

We can think of this pictorially, as follows: flowing a little bit first in
the 8, direction and then in the 8, direction gets us to the same place
as if we had done it in the other order:

Ou

Ou

Fig. 9. [8,,8,] = 0

However, if we take some other vector fields, this does not usually work:
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4 [v,w]

Fig. 10. [v,w] # 0

We say in this case that the vector fields do not commute.

Exercise 22. Consider the normalized vector fields in the r and 8 direc-
tions on the plane in polar coordinates (not defined at the origin):

0z + yay

Var i

Calculate [v, w].

To make the relationship with flows precise, suppose that v gener-
ates the flow ¢;, and w generates the flow ;. Then for any f € C*(M)

d
(wh)p) = 2 f (P,
and similarly

s=0’

(wh)E) = = F(3u(r)

so one can check that

0, wl(1)P) = = Fa(p))) — S ()

If you think about it, this is related to what we said above. In
f(#:(%s(p))) we are starting at p, flowing along w a little bit, then along
v a little bit, and then evaluating f, whilein f(¢,(¢:(p))) we are flowing
first along v and then w. The Lie bracket measures (infinitesimally, as
it were) how these flows fail to commute!

s=t=0"
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Exercise 23. Check the equation above.

The Lie bracket of vector fields satisfies some identities which we
will come back to in Part II. For now, we simply let the reader prove
them:

Exercise 24. Show that for all vector fields u,v,w on a manifold, and all
real numbers a and B, we have:

1) [U7w] = —['w,v].
2) [u7a'U + ﬂw] = a[u7v] +ﬂ[u7 w]'
3) The Jacobi identity: [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0.
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Differential Forms

As a herald it’s my duty
to ezplain those forms of beauty. — Goethe, Faust.

1-forms

The electric field, the magnetic field, the electromagnetic field on space-
time, the current — all these are examples of differential forms. The
gradient, the curl, and the divergence can all be thought of as different
aspects of single operator d that acts on differential forms. The funda-
mental theorem of calculus, Stokes’ theorem, and Gauss’ theorem are
all special cases of a single theorem about differential forms. So while
they are somewhat abstract, differential forms are a powerful unifying
notion.

We begin with 1-forms. Our goal is to generalize the concept of
the gradient of a function to functions on arbitrary manifolds. What
we will do is to make up, for each smooth function f on M, an object
called df that is supposed to be like the usual gradient V f defined on
IR™. Remember that the directional derivative of a function f in the
on IR™ in the direction v is just the dot product of V f with v:

Vf-v=uvf.

In other words, the gradient of f is a thing that keeps track of the
directional derivatives of f in all directions. We want our ‘df’ to do the
same job on any manifold M.

39
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The gradient of a function on IR™ is a vector field, so one might want
to say that df should be a vector field. The problem is the dot product
in the formula above. On IR™ there is a well-established way to take the
dot product of tangent vectors, but manifolds do not come pre-equipped
with a way to do this. Geometers call a way of taking dot products of
tangent vectors a ‘metric’. In fact, we will see that in general relativity
the gravitational field is described by the metric on spacetime. Far from
there being a single ‘best’ metric on a manifold, there are typically lots
that satisfy Einstein’s equations of general relativity. This makes it nice
to avoid using a particular metric unless we actually need to. Therefore
we will not think of df as a vector field, but as something else, a ‘1-form’.

The trick is to realize what V f is doing in the formula Vf-v = v f.
For each vector field v that we choose, this formula spits out a function
v f, the directional derivative of f in the direction v. In other words,
what really matters is the operator

vis V-,
or, what is the same thing,
v uf.

Let us isolate the essential properties of this map. There is really
only one: linearity! This means that

Vf-(v+w)=Vf-v4+Vf w
for any vector fields v and w, and
Vf-(gv) =9(Vf-v)

where g is any smooth function on IR™. Since we can pull out any
function g € C*(IR™) in the above formula, not just constants, math-
ematicians say that

v— Vf v

is linear over C*°(IR™) — not just linear over the real numbers.
So, abstracting a bit, we define a 1-form on any manifold M to be
a map from Vect(M) to C*°(M) that is linear over C*°(M). In other
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words, if we feed a vector field v to a 1-form w, it spits out a function
w(v) in a way satisfying

w(v +w) = w(v) +w(w),

w(gv) = gw(v).

We use Q'(M) to denote the space of all 1-forms on a manifold M.
Later on we will talk about 2-forms, 3-forms, and so on.
The basic example of a 1-form is this: for any smooth function f

on M there is a 1-form df defined by

df(v) = vf.
(Think of this as a slick way to write Vf-v =wvf.) To show that df is

really a 1-form, we just need to check linearity:

(v +w) = (v+w)f = of +wf = df(v) + df (w),

and
df (gv) = (gv)(f) = gv(f) = g df (v).
We call the 1-form df the differential of f, or the exterior derivative
of f.
Just as we can add vector fields or multiply them by functions, we

can do the same for 1-forms. We can add two 1-forms w and p and get
a l-form w + p by defining

(w + p)(v) = w(v) + p(v),

and we can multiply a 1-form w by a smooth function f and get a
1-form fw by defining

(fw)(v) = fw(v).

Exercise 25. Show that w + i and fw are really 1-forms, i.e., show lin-
earity over C®(M).

Exercise 26. Show that Q(M) is a module over C®° (M) (see the defini-
tion in Erzercise 8.)
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The map d: C*(M) — (M) that sends each function f to its
differential df is also called the differential, or exterior derivative. It is
interesting in its own right, and has the following nice properties:

Exercise 27. Show that

d(f+9)=df +dg
d(af) = adf

(f+9g)dh = fdh+ gdh
d(fg) = fdg + g df,

for any f,g,h € C°(M) and any o € RR.

The first three properties in the exercise above are just forms of
linearity, but the last one is a version of the product rule, or Leibniz
law:

d(fg) = fdg + gdf.

It is the Leibniz law that makes the exterior derivative really act like
a derivative, so if you only want to do part of Exercise 27 check that
the Leibniz law holds! It is worth mentioning, by the way, that when
Leibniz was inventing calculus he first guessed that d( fg) = df dg, and
only got it right the next day.

In fact, the reader has seen differentials before, in calculus. They
start out as part of the expressions for differentiation

dy
dz
and integration

ff(m) dz

but soon take on a mysterious life of their own, as in
dsinz = cos z dz!

We bet you remember wondering what the heck these differentials really
are! In physics one thinks of dz as an ‘infinitesimal change in position’,
and so on — but this is mystifying in its own right. Early in the
history of calculus, the philosopher Berkeley complained about these
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infinitesimals, writing “They are neither finite quantities, nor quanti-
ties infinitely small, nor yet nothing. May we not call them ghosts of
departed quantities?” More recently, people have worked out an al-
ternative approach to the real numbers, called ‘nonstandard analysis’,
that includes a logically satisfactory theory of infinitesimals — puny
numbers that are greater than zero but less than any ‘standard’ real
number. Most people these days, however, prefer to think of differen-
tials as 1-forms.

Let us show that dsinz = cosz dz is really true as an equation
concerning 1-forms on the real line. We need to show that no matter
what vector field we feed these two 1-forms, they spit out the same
thing. This is not hard. Any vector field v on IR is of the form v =
f(z)0,, so on one hand we have

(dsinz)(v) =vsinz = f(z)0,sinz = f(z)cosz,
and on the other hand:
(coszdz)(v) = (cosz)v(z) = f(z)cosz O,z = f(z)cosz.
This is in fact just a special case of the following:
Exercise 28. Suppose f(z!,...,z™) is a function on R™ Show that
df = 8, f da™.

This means that on IR™ the exterior derivative of a function is really
just a different way of thinking about its gradient, since in old-fashioned
language we had

Vi=(6:f,...,0.f).

To do the exercise above one needs to use the fact that the vector
fields {0,} form a basis of vector fields on IR™. In fact, this implies that
the 1-forms {dz*} form a basis of 1-forms on IR™. The key is that

dz#(8,) = 8,z* = 6"

where the Kronecker delta é* equals 1 if 4 = v and 0 otherwise. Now
suppose we have a 1-form w on IR™. Then we can define some functions

Wy = w(au):
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and we claim that

w = wydzh.
This will imply that the 1-forms {dz*} span the 1-forms on R™. To
show that w equals w,dz#, we just need to feed both of them a vector

field and show that they spit out the same function! Feed them v =
v¥0,, for example. Then on the one hand

w(v) = w(v”8,) = v"w(6,) = vw,,
while on the other hand,
(wudz*)(v) = (wudz)(v70,) = wuv’dz?(0,) = wyv”

using the fact that dz#(0,) = 8.
We leave it to the reader to finish the proof that the 1-forms {dz*}
form a basis of Q'(IR™):

Exercise 29. Show that the 1-forms {dz*} are linearly independent, i.e.,
if
w=wudzt =10

then all the functions w, are zero.

Cotangent Vectors

Just as a vector field on M gives a tangent vector at each point of M, a
1-form on M gives a kind of vector at each point of M called a ‘cotan-
gent vector’. Given a manifold M and a point p € M, a cotangent
vector w at p is defined to be a linear map from the tangent space
T,M to R. Let Ty M denote the space of all cotangent vectors at p.

For example, if we have a 1-form w on M, we can define a cotangent
vector w, € Ty M by saying that for any vector field v on M,

wp(vp) = w(v)(p).

Here the right-hand side stands for the function w(v) evaluated at the
point p.
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Exercise 30. For the mathematically inclined: show that the wy is really
well-defined by the formula above. That is, show that w(v)(p) really depends
only on v,, not on the values of v at other points. Also, show that a 1-form
is determined by its values at points. In other words, if w,v are two 1-forms
on M with w, = vy for every point p € M, thenw = v.

y

%

Fig. 1. A picture of the cotangent vector (df),

How can we visualize a cotangent vector? A tangent vector is like
a little arrow; it points somewhere. A cotangent vector does not. A
nice heuristic way to visualize a cotangent vector is as a little stack
of parallel hyperplanes. For example, if we have a function f on a
manifold M, we can visualize df at a point p € IR? by drawing the level
curves of f right near p, which look like a little stack of parallel lines.
The picture in Figure 1 is two-dimensiondl, so level surfaces are just
contour lines, and hyperplanes are just lines.

The bigger df is, the more tightly packed the hyperplanes are. When
we take a tangent vector v € T,M, the number df(v) basically just
counts how many little hyperplanes in the stack df the vector v crosses.
In Figure 2 we show a situation where df(v) = 3. By definition, of
course, the number df(v) is just the directional derivative v(f)!
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=

Fig. 2. df(v) =3

Actually we must be a bit careful about thinking about df(v) in
terms of pictures, because it could be negative! If we think of the
little stack of hyperplanes as ‘contour lines’, we should really count the
number of them v crosses with a plus sign if v is pointing ‘uphill’ and
a minus sign if it 1s pointing ‘downhill’.

=

y

Fig. 3. df(—v) = -3

If this way of thinking of 1-forms is confusing, feel free to ignore it —
but people with a strong taste for visualization may find it very handy.

Now let us explain precisely what we mean by 1-forms being dual
to vector fields. First of all, given any vector space V, the dual vector
space V* is defined to be the space of all linear functionals w:V — IR.
In particular, the cotangent space Ty M is the dual of the tangent space
TpM. More generally, if we have a linear map from one vector space to
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another,
VoW,
we automatically get a map from W* to V*, the dual of f, written
W -vr

and defined by
(frw)(v) = w(f(v)).
Thus the dual of a vector space is a contravariant sort of beast: linear

maps between vector spaces give rise to maps between their duals that
go ‘backwards’.

Exercise 31. Show that the dual of the identity map on a vector space V
is the identity map on V*. Suppose that we have linear maps f:V — W and
9:W — X. Show that (gf)* = f*g*.

This means that cotangent vectors are contravariant. In other
words, suppose we have a map ¢: M — N from one manifold to another
with ¢(p) = ¢q. We saw in the last section that there is a linear map

¢ ToM — TyN.
This gives a dual map, which we write as ¢*, going the other way:
¢ Ty N — T, M.

If w is a cotangent vector at ¢(z), we call ¢*w the pullback of w
by ¢. Explicitly, if v € T,M and w € TyN, we have

(¢'w)(v) = w(gwv).

We can also do this ‘pulling back’ globally. That is, given a 1-form w
on N, we get a 1-form ¢*w on M defined by

($"w)p = ¢™(wq)
where ¢(p) = q.

Exercise 32. Show that the pullback of 1-forms defined by the formula
above really exists and is unique.
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Recall from the previous section that we can also pull back functions
on N to functions on M when we have a map ¢: M — N. There is
a marvelous formula saying that the exterior derivative is compatible
with pullbacks. Namely, given a function f on N and amap ¢: M — N,
we have

¢*(df) = (4" f).

Mathematicians summarize this by saying that the exterior derivative
is natural. For example, if ¢:IR® — IR™ is a diffeomorphism repre-
senting some change of coordinates, the above formula implies that we
can compute d of a function on IR™ either before or after changing co-
ordinates, and get the same answer. (We discuss this a bit more in the
next section.) So naturality can be regarded as a grand generalization
of coordinate-independence.

To prove the above equation we just need to show that both sides,
which are 1-forms on M, give the same cotangent vector at every point

pin M:
(8°(df))p = (d(6" ))e-

This, in turn, means that

(¢°(df))p(v) = (d(4" f))p(v)

for all v € T,M. To prove this, work out the left hand side using all
the definitions and show it equals the right hand side:

(¢"(df)e(v) = (df)a($0)
= ((¢.v)f)(p)
= v(¢"f)(p)
(d(¢"f))(v)
To make this more concrete it might be good to work out some exam-

ples:

Exercise 33. Let ¢:IR — R be given by ¢(t) = sint. Let dz be the usual
1-form on R.. Show that ¢,dr = cost dt.

Exercise 34. Let ¢:IR? — R? denote rotation counterclockwise by the
angle 0. Let dz, dy be the usual basis of 1-forms on R2. Show that

¢*dez = cosfdz —sinfdy
¢*dy = sinfdz + cosfdy.
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The formula

¢*(df) = d(¢" f)
is a very good reason why the differential of a function has to be a 1-form
instead of a vector field. Both functions and 1-forms are contravariant,
soif ¢: M — N and f € C®(N), both sides above are 1-forms on N. If
one tried to make the differential of a function be a vector field, there

would be no way to write down a sensible formula like this, since vector
fields are covariant. (Try it!)

Change of Coordinates

Indeed, from childhood we have become familiar with the appearance of phys-
ical equations in non-Cartesian systems, such as polar coordinates, and in
non-inertial systems, such as rotating coordinates. — Steven Weinberg

The introduction of numbers as coordinates [...] is an act of violence whose
only practical vindication is the special calculatory manageability of the or-
dinary number continuum with its four basic operations. — Hermann Weyl

So far we have been avoiding coordinates as much as possible. The
reason, of course, is that the world does not come equipped with co-
ordinates! As far as we can tell, coordinates are something we impose
upon the world when we want to talk about where things are. They
are extremely useful, and in many applications quite essential. Unfor-
tunately, different people might pick different coordinates! So it is good
to know how the components of a vector field or 1-form depend on the
coordinates used.

First let us describe how one can use coordinates locally on any
manifold to work with vector fields and differential forms. We described
the basic idea back in Chapter 2: given an n-dimensional manifold M,
a chart is a diffeomorphism ¢ from an open set U in M to IR™. This
allows us to do turn calculations on U into calculations on IR™.

For example, we can use ¢ to pull back the coordinate functions
z# from IR™ to U. Instead of calling these functions @*z* as one really
should, we usually call them simply z#. This is not too confusing as long
as we know we are ‘working in the chart’ p:U — IR™. The functions
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z# on U are known as local coordinates on U. Any function on U
can be written as a function f(z!,...,z") of these local coordinates.

Similarly, the coordinate vector fields 0, are a basis of vector fields
on IR™, and we may push these forwards by p~! to a basis of vector
fields on U. As with the local coordinates, people usually denote these
vector fields simply as 0,. These are called the coordinate vector
fields associated to the local coordinates z* on U. One thus writes any
vector field v on U as

v = v"0,.

In the same way, the coordinate 1-forms dz* are a basis of 1-forms on
IR™, which we may pull back to U by ¢, obtaining a basis of 1-forms on
U. These are called the coordinate 1-forms associated to the local
coordinates z#. These are written simply as dz*. Note that our use
of z* and dz* to denote functions and 1-forms on U, while sloppy, is
consistent:

Exercise 35. Show that the coordinate 1-forms dz* really are the differ-
entials of the local coordinates =* on U.

We can write any 1-form w on U as
- "
w = wydzh.

We should emphasize that it is bad to think of vector fields v or
1-forms w as being their components v* or w,. Instead, we should think
of them as having components, which depend on the basis used. For
example, the usual coordinate functions z!,...,z"™ on IR™ give a basis
{0,} for Vect(IR™). Given any vector field v on IR, I can write it
uniquely as

v = v"0,,

where the v* are functions on IR™. But suppose you chose some other
coordinates on IR™ — that is, some functions z,...,z™ on IR™ such
that {0,} was another basis for Vect(IR™). Then you would write

v =1v"0..

The vector field v is the same in both cases — it is blissfully unaware
of which coordinates we mere mortals are using. But its components
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depend on a coordinate system, and for us to talk to each other, we
need to know how your components, v™, are expressed in terms of mine,
v,

First, since your vector fields form a basis, we can express mine as
linear combinations of yours:

0. =1T,0,,

where the T are a matrix of functions on IR™. It is not too hard to

figure out these functions. Just apply both sides of the equation, which

are vector fields, to the coordinate function =

IAN _ gl I\
Oux’” = T,,0,z".

The partial derivative 8,z is just the Kronecker delta 6, so actually

v?
we just have

A A
O,z =T,
We can write this out somewhat more impressively as follows:
am/)\
Ty = —.
Oz+
This implies that
0z"™
0, = -—0,.
Ozw

Then, to express the components v’* in terms of the components
v#, start with the fact that v'#8, = v#0,, and use the equation above
to get

amlll
waol _ . }
vv0, =v o 0,.
Equating coefficients, we get
w_ amlu ’U“
Ozr

Now we can talk to each other! In short, to translate from my com-
ponents to yours, I simply multiply by a matrix of partial derivatives
corresponding to the change of coordinates.

l-forms work the same way, and we leave them as an important
exercise for the reader:
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Exercise 36. In the situation above, show that

v
dz'” = —-g::“ dz*.

Show that for any 1-form w on R™, writing
w = wydz* = wldz",
your components w,, are related to my components w, by

wl, = ai“w
v az/,, B

There is an interesting distinction between ‘active’ or ‘passive’ co-
ordinate transformations. A passive coordinate transformation is a
change of coordinate functions (on IR™, or on a chart), which is what
we have just been considering. We are not moving points of our space
around, just changing the functions we use to describe them. An active
coordinate transformation is just another name for a diffeomorphism

¢ M — M,

it moves the points of M around. We can push vector fields forwards
by a diffeomorphism, and pull functions and 1-forms back. It is nice to
know how these look in the special case of IR™ (or a chart). Not surpris-
ingly, the formulas look similar to the formulas for passive coordinate
transformations that we have just derived!

There is, however, something a bit tricky about this business. The
simplest example of this trickiness occurs when people in certain places
switch from standard time to daylight saving time in the spring. The
mnemonic formula is ‘spring forward, fall back’. This is supposed to
remind you to set your clock forward in the spring and back in the fall.
The hard part is remembering what setting a clock ‘forward’ means! Is
one supposed to move the hour hand to a later time, so one has to wake
up earlier than one otherwise would? Or is one supposed to move the
hour hand to an earlier time, so one can stay in bed later? Note that
it takes a clock and a point in time to give a number that we call the
‘time’ t. More generally, it takes a coordinate system together with a
point in spacetime to give a number. Changing the coordinate system
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one way has a similar effect to moving points of spacetime around the
opposite way.

Let us now consider the effect a map ¢: R™ — IR™ has on coordinate
vector fields and 1-forms. If n = m and ¢ is a diffeomorphism, this is
an ‘active coordinate transformation’, but it is actually easier to keep
things straight if we work in the general case. Write z!,...,z™ for
the coordinates on IR™, and z,...,z™ for the coordinates on R™.
First note that we can pull back the coordinate functions z™ on R™ to
functions ¢*z™ on IR™ using ¢. The definition is that

(¢°z™)(p) = z™((p))
for any point p in IR™. In what follows, we will be sloppy and write

amll/
OzH

when we really mean

0 . w
—¢*z".
31:“45
The reason we do this is simply that everyone does it, and the reader
will have to get used to it.
Now consider the coordinate vector field §, on IR™. We can push
0, forward by ¢, and we claim that
oz" ,
A
To see this, just apply both sides to any coordinate function z'* on R™
and show that we get the same answer. The left hand side gives

(‘75*8#)(3,)‘) = 3“(45*3:)‘)

am/)\

Ozr’

where in the last step we are being sloppy in the way described above.

The right hand side gives
oz"™ oz"

i 1Y), S, A
Oz+ Oz Oz+ 5
aml)\

Oz’

/
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which 1s the same.
Finally, consider a coordinate 1-form dz". We can pull this back by

¢. We claim that

#*(dz™) = Zidm“.

TH
Exercise 37. Show this.

With these basic formulas in hand, you should be able to transform
between coordinates both actively and passively!

To conclude, we should note that sometimes it is nice to be more
general and work with a basis e, of vector fields on a chart that are not
the coordinate vector fields. These are easy to come by:

Exercise 38. Let

e, =T)0,,
where 0, are the coordinate vector fields associated to local coordinates on an
open set U, and T}, are functions on U. Show that the vector fields e, are a
basis of vector fields on U if and only if for each p € U the matriz T};(p) is
invertible.

If we have such a basis, we automatically get a dual basis of 1-forms

f# on U such that
fHe) = 85,
the Kronecker delta.

Exercise 39. Use the previous ezercise to show that the dual basis exists
and is unique.

We can write any vector field v on U as a linear combination
— o
v =vle,

where v',...,v™ are functions on U, called the components of v in
the basis e,. Similarly, we can write any l-form w on U as a linear
combination
— b
w=w,f"

We will use these more general bases quite a bit in the next chapter,
when we discuss the notion of a ‘metric’. This is like an inner product,
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and it will be handy to work with ‘orthonormal’ bases of vector fields
and 1-forms on a chart. We leave it to the reader to work out how
the components of a vector field or 1-form change when we perform an
arbitrary change of basis:

Exercise 40. Let e, be a basis of vector fields on U and let f* be the dual
basis of 1-forms. Let
e, =T, e,
be another basis of vector fields, and let f'* be the corresponding dual basis
of 1-forms. Show that
f= (T

Show that if v = vte, = v'¥e,,, then
,Ulp — (T—l)f,"u”,
and that if w = w, f* = w,, f* then

I

W,

v
Tuw,,.

p-forms

By the geometrical product of two vectors, we mean the surface content of
the parallelogram determined by these vectors; we however fiz the position of
the plane in which the parallelogram lies. We refer to two surface areas as
geometrically equal only when they are equal in content and lie in parallel
planes. By the geometrical product of three vectors we mean the solid (a
parallelepiped) formed from them. — Hermann Grassman

If you ever seriously wondered how to take cross products in 4 di-
mensions, you were well on your way to reinventing differential forms.
In fact, if you ever wondered why the definition of cross products re-
quires a ‘right-hand rule’, you were getting close. (This rule is especially
irksome to those who happen to be left-handed.) Differential forms al-
low one to generalize cross products to any number of dimensions, and
it turns out that if one does things correctly, no right-hand rule is neces-
sary! Interestingly, though, it turns out to be better to define the cross
product not for tangent vectors (or vector fields) but for cotangent vec-
tors (or 1-forms). If we do this, we get an extra bonus. Namely, we can
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show that the gradient, curl, and divergence are all different versions
of the same thing, and see how to define them on arbitrary manifolds.

Let us plunge right in. Let V be a vector space. We want to be able
to multiply two vectors in V somehow, and we want the basic property
of the cross product, the antisymmetry,

UXW=~—W X7,
to hold. But we will call this generalized sort of cross product the
‘wedge product’ (or ‘exterior product’) and write it with a A. We
proceed in an abstract, algebraic sort of way. Namely, we will define a
bigger vector space AV, in fact an algebra, so that the wedge product
of any number of vectorsin V will lie in this algebra. First we will give

the definition as a mathematician would: the exterior algebra over
V, denoted AV, is the algebra generated by V with the relations

vAw=—-wAv

for all v,w € V. What does this mean? Roughly, it means that we
start with the vectors in V together with an element 1, and then form
an algebra by taking all linear combinations of formal products of the
form vy A +-- A vp, where v; € V; the only relations we impose upon
these linear combinations are those in the definition of an algebra (as
defined above in Chapter 3) together with the ‘anticommutative’ rule
vAw=—-wAv.

For example, say V is 3-dimensional. Then everything in AV is a
linear combination of wedge products of elements of V. Suppose V has
a basis dy, dy, dz. (We write the basis this way because in a bit we will
want V to be a space of cotangent vectors.) Then for starters we have

le AV

and

dz,dy,dz € AV,

along with all linear combinations of these. But we can also take the
wedge product of any two elements v, w € V and get an element of AV.

If

v = vgdz + vydy +v.dz
w = wydy + wydy +w,dz
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then we have
v Aw = (vedz + vydy + v,dz) A (wedy + wydy + w,d2)

(vewy — vywg)dz A dy + (vyw, — v,wy)dy A dz + (v,w, — vow, )dz A dz,

where all we did 1s use the definition of an algebra together with the
‘anticommutative’ rule. Notice that this looks a whole lot like the
formula for the cross product! If we have a third element of V, say

U = Uzdz + uydy + u,dz,

we can get another element of AV, namely u AvAw. This triple wedge
product is closely related to the ‘triple product’ of three vectors in IR?,
% - (¥ x wW). We can also take wedge products of four or more vectors,
but if V is 3-dimensional, this is always zero:

Exercise 41. Show that

Up Uy U
vAvAw=det| vz v, v, |drAdyAdz.

Wy Wy W,

Compare this to U - (¥ X ).

Exercise 42. Show that if a,b,c,d are four vectors in a 3-dimensional
space thena AbAcAd=0.

Exercise 43. Describe AV if V is 1-dimensional, 2-dimensional, or
4-dimensional.

In general, for any vector space V, we define APV to be the subspace
of AV consisting of linear combinations of p-fold products of vectors in
V,eg.

v A A v

Elements of AV that liein APV are said to have degree p. For example,
A'V is just V itself, while A°V is by convention defined to be IR, since
numbers can be regarded as wedge products of no vectors. Copying the
example above, one can show the following:
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Exercise 44. Let V be an n-dimensional vector space. Show that APV is
empty forp > n, and that for 0 < p < n the dimension of APV is n!/pl(n—p)!

Recall that a vector space V is a direct sum of subspaces Li,..., L,
if every vector v € V can be uniquely expressed as vy + - - - + v, where
v; € L;. In this situation, we may think of vectors in L as n-tuples
(v1,...,vn) where v; € L;. Alternatively, given vector spaces Wi,..., V,,
the direct sum V; @ - -- @ V,,, sometimes written

DV

=1

is defined as the vector space of all n-tuples (vy,...,v,) with v; € V],
where addition and scalar multiplication are defined componentwise.
The exterior algebra is an example of such a direct sum:

Exercise 45. Show that AV is the direct sum of the subspaces APV :
AV = P APV,
and that the dimension of AV is 2™ if V is n-dimensional.

There is something very special about the exterior algebra in 3 di-
mensions! The wedge product of two vectors in V lies in A*V. Only in
dimension 3 is the dimension of A%V equal to that of V itself. So only
in 3 dimensions can we pretend, if we so desire, that the wedge product
of two vectors is again a vector! The way to do this (as we will see
in Chapter 5) is to define a linear map called the ‘star operator’ that
turns elements of A%(V) into AV. When V has the basis dz, dy, dz, the

star operator is given by

xdz ANdy — dz
*dy Adz +— dz
*dz ANdz — dy.

The cross product really amounts to taking the wedge product and
then applying the star operator. Note, however, that our definition of
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the star operator incorporates a right-hand rule. We could just as well

have defined x: A2V — V by

xdy Ndz — dz
xdzANdy — dz
xdz ANdz — dy

which would amount to a left-hand rule. In short, the ‘right-hand rule’
nonsense enters when we unnaturally try to make the product of two
elements of V to come out to an element of V, instead of A?V. This
1s noted in some physics books, where they say that the cross product
of two vectors is a ‘pseudovector’ or ‘axial vector’, rather than a true
vector. We prefer to say that the wedge product of 2 vectors lies in
A%V — this is true in all dimensions.

Exterior algebra is an interesting subject in itself, but we do not just
want to generalize the cross product of vectors; we want to generalize
the cross product of vector fields. Actually, as already mentioned, it is
much better to take products of 1-forms! We will do this by copying
our construction of AV, with the smooth functions C*°(M) on some
manifold M taking the place of the real numbers, and the 1-forms
Q(M) taking the place of the vector space V. Namely, we define the
differential forms on M, denoted (M), to be the algebra generated
by Q'(M) with the relations

wWAp=—phw

for all w, u € Q}(M). To be precise, we should emphasize that we form
QM) as an algebra ‘over C*(M)’. This means, first of all, that Q(M)
consists of linear combinations of wedge products of 1-forms with func-
tions as coeflicients. We allow all locally finite linear combinations,
that is, those for which every point p in M has a neighborhood where
only finitely many terms are nonzero. Secondly, it means that Q(M)
satisfies the rules of an algebra with functions taking the place of num-
bers. Maybe we should say again what all these rules are. We have, for
all w,p,v € Q(M) and f,g9 € C*(M),

wAp=ptw, w+(prr)=W+p)ty, wAAY) = WAL AY,
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wA(pt+v)=wApt+wAy, (W+p)Av=wAv+pAy,

lw=w, f(gw)=(fow, flp+v)=fo+fr, (f+9w= fwtgw.

We define the 0-forms, Q°(M), to be the functions themselves, and
define the wedge product of a function with a differential form to be
the ordinary product: f Aw = fw. We define the product of a number
¢ and a differential form w to be the product of the constant function
c € Q°(M) and w. Elements that are linear combinations of products
of p 1-forms are called p-forms, and we write the space of p-forms on

M as QP(M). We have

QM) = P OF(M).

For example, suppose M = IR™. The 0-forms on IR™ are just functions,
like

f
The 1-forms all look like

m
wudz

where the coefficients w, are functions. It is easy to check that the

2-forms all look like

—Z—w“,,dq:“ A dz”

where we have put in a factor of ; because dz* A dz¥ = —dz* A dz*.
Also for this reason, we may as well assume that w,,, = —w,,,. Then on
IR3, for example, we have

w = wyadz! A de? 4 wasdz? A dzd 4 wydz® A dt.

Similarly, the 3-forms look like

1
31 wadz? A dz¥ A dz?,

and we may as well assume that w,, is totally antisymmetric (that is,
switches sign when we switch any two indices). On R® we get

w = wigz dzt A dz? A dzP.
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There are no nonzero 4-forms, 5-forms, etc., on IR®. In general, there
are no nonzero p-forms on an n-dimensional manifold if p > n.

We leave it for the reader to show some important facts about dif-
ferential forms in the following exercises.

Exercise 46. Given a vector space V, show that AV is a graded commu-
tative or supercommutative algebra, that s, if w € APV and p € AV,
then

wAp=(-1"pAw.

Show that for any manifold M, Q(M) is graded commutative.

Exercise 47, Show that differential forms are coniravariant. That is,
show that if : M — N 1is a map from the manifold M to the manifold
N, there is a unique pullback map

¢ QN) — QM)

agreeing with the usual pullback on 0-forms (functions) and I1-forms, and
satisfying

¢ (ow) = ad'w
Flotn) = $wtd
Flrm) = Fursp
for allw,p € Q(N) and a € R.

Exercise 48. Compare how I1-forms and 2-forms on R3 transform under
parity. That is, let P:IR® — R3 be the map

P(I, Y, Z) = (—2, Y —2)7

known as the ‘parity transformation’. Note that P maps right-handed bases
to left-handed bases and vice versa. Compute ¢*(w) when w is the 1-form
wydz#, and when it is the 2-form Sw,, dz* A dz¥.

In physics, the electric field E is called a vector, while the magnetic
field B is called an axial vector, because E changes sign under parity
transformation, while B does not. In Chapter 5 we will see that it is
best to think of the electric field as a 1-form on space, and the magnetic
field as a 2-form. In other words, while we may be used to thinking of
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E = (E,, E,, E,) and B = (B,, B,, B,) as vector fields, it is better to
use

E = E.dz + E,dy + E,dz

and

B = B,dy ANdz + Bydz A dz + B,dz A dy.

By the above exercise, this means that they transform differently under
parity.

If the reader is frustrated because exterior algebras and differen-
tial forms seem difficult to visualize, we suggest taking a peek ahead
to Figures 3 and 4 of Chapter 5. Grassman, the inventor of the ex-
terior algebra, visualized a wedge product v; A --- A v, as an oriented
parallelepiped with sides given by the vectors vy,...,vp. One must be
careful, however, because the wedge product of 1-forms corresponds to
a parallelepiped in the cotangent space.

The Exterior Derivative

We know from the first section of this chapter that the differential is a
nice way to generalize the good old ‘gradient’ to manifolds. As we saw,
the differential of a function, or 0-form, is a 1-form. Now we will show
how to take the differential of a p-form and get a (p + 1)-form:

d: QP(M) — QFH(M).

This will let us generalize the gradient, the curl and the divergence in
one fell swoop, and see that they are secretly all the same thing. The
big clue is that the curl of a gradient is zero:

V x (Vf)=0

This suggests that we make d satisfy d(df) = 0 for any function f.
Another clue is that the various product rules

V(fg) = (Vflg+fVg
Vx(fv) = Vfixv+fVxuw
V(fv) = Vfv+fV-v

)

V-vxw) = (V-v)w—oV-w
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should all be special cases of some sort of Leibniz law for differential
forms. Since the differential forms are graded commutative, it turns
out that we need a graded version of the Leibniz law.

After scratching our head for a while, we define the exterior deriva-
tive, or differential, to be the unique set of maps

d: (M) — QFTY(M)
such that the following properties hold:

1) d:Q°(M) — Q(M) agrees with our previous definition.

2) d(w+ p) = dw + dp and d(ew) = cdw for all w, p € Q(M) and
cec R.

3)dwAp) = dwAp+(—1)PwAdy for allw € QP(M) and p € Q(M).

4) d(dw) = 0 for all w € Q(M).

To show that these properties uniquely determine the exterior deriva-
tive, one just needs the fact that any 1-form is a locally finite linear
combination of those of the form df (with functions as coefficients).
This fact is easy to see on IR™, and can be shown in general using
charts. Then to calculate d of any differential form, say

fdg A dh,
we just use rules 1) - 4):

d(fdg Adh) = df A(dg Adh) + f Ad(dg A dh)
= df Ndg A dh + fd(dg) Adh — fdg A d(dh)
"= df Ndg A dh.
To show that d with these properties is actually well-defined, it suffices
(by the black magic of algebra) to show that this way of calculating d

1s compatible with the relations in the definition of differential forms.
The most important one of these is the anticommutative law

wAp=—phw

for 1-forms. For d to be well-defined, it had better be true that calcu-
lating d(w A p) gives the same answer as d(—p A w). This is where the
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graded Leibniz law is necessary: when w and p are 1-forms, we have

d—phw) = —d(pAw)
—dp ANw+ p A dw,
= —wAdpy+tdwAp
= d(w A p).

il

Let us calculate the exterior derivative of 1-forms and 2-forms on
IR®. Taking any 1-form

w = wzdz + wydy + w,dz,

we get

dw = dwy A dz + dwy N dy + dw, A dz,

hence by the rule for d of a function and a little extra work
dw = (Oyw, — Owy )dy Adz+ (0w — Opw, )dz N dz + (Opwy — Oyw, )dz A dy.

In other words, the exterior derivative of a 1-form on IR® is essentially
just the curl! We need right-hand to define the curl, however, while the
exterior derivative involves no right-hand rule. This is because d of a
1-form is a 2-form; the right-hand rule only comes in when one tries to
pretend that this 2-form is a 1-form, using the star operator as follows:

*xdw = (Oyw, — O,wy)dz + (Q,wy — Opw,)dy + (Opwy — Oyw, )dz.

And, as noted, this pretense is only possible in 3 dimensions, while we
can take d of a 1-form in any dimension:

Exercise 49. Show that on R™ the erterior derivative of any 1-form is
given by
d(wudz") = O w,dz” A dz¥.

Next, taking a 2-form on R3:

W = Weydz N dy + wy,dy N dz + woedz A dx
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we get

dw = dwgy Adz Ady+dwy, Ndy Ndz + dw,p Adz A dz
= Owaydz Adz A dy + Opwy.dz A dy A dz + Oyw,.dy A dz A dz
= (OWay + Opwy, + Oyw,z)dz A dy A dz.

Thus the exterior derivative of a 2-form on IR? is just the divergence
in disguise. In short, the exterior derivative has as special cases the
following familiar operators:

o Gradient d:Q°(R%) — Q}IR?)
o Curl d:QYR?) — Q*(IR?)
o Divergence d: Q*(IR?) — Q3(IR?)

In fact, there is a simple formula for the exterior derivative of any
differential form on IR™. Let [ stand for a multi-index, that is, a
p-tuple (i1,...,1,) of distinct integers between 1 and n. Let dz! stand
for the p-form

dz" A --- Adz'®

on IR"™. Then any p-form on IR™ can be expressed as
w = wrdz!

where following the Einstein summation convention we sum over all
multi-indices /. We have

dw:dw,-/\dq:I

by the Leibniz law, since d(dz’) = 0 (as can easily be checked). More
concretely, using the formula for d of a function, we have

dw = (O wr) dz* A dz’.
Using this formula it is easy to derive an amazing identity:

d(dw) = 0
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for any differential form on IR™. Just compute:

d(dw) = d(B,wrdz* A dzh)
0,0 wrdz” A dz A dz!

Il

and note that on the one hand
0,0,wr = 0,0,wr
by the equality of mixed partials, but on the other hand
dz¥ A dz* = —dz* A dz¥

by the anticommutative law. With a little thought one can see this
means that d(dw) is equal to the negative of itself, so it is zero. This
rule is so important that people often write it as

d?w =0
or even just
d® =0.

On IR3?, d acts like the gradient on 0-forms, the curl on 1-forms and
the divergence on 2-forms, so the identity d% = 0 contains within it the
identities

V x (Vf)=0

and

V-(Vxv)=0.

But this identity is better, since it applies to differential forms in any
dimension. In fact it applies to any manifold! Here is an easy proof
that does not use coordinates. By definition, any p-form on a manifold
is a linear combination — with constant coefficients — of p-forms like

w= fodfi A - Ndfp.
So it suffices to prove the identity for p-forms of this sort. We have

dw = dfg A dfy A+ A df,
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by the Leibniz law and the fact that d(df) = 0 for any function. Using
the Leibniz law and d(df) = 0 again, we obtain

d(dw) = 0.

It turns out that the identity d® = 0 and its generalizations have
profound consequences for physics, starting with Maxwell’s equations.
It is also the basis of a very important connection between geometry
and topology, called deRham theory. We will explore these in Chapter
6. When we do, it is important to remember that this identity is just
a way of saying that partial derivatives commute! As so often the case,
the simplest facts in mathematics lie at the root of some of the most
sophisticated developments.

We will wrap up this section by showing that the exterior derivative
is natural. We already discussed this for functions in Section 4; it
simply meant that d commutes with pullbacks. In fact, this is true for
differential forms of any degree. In other words, for any map ¢: M — N
between manifolds, and any differential form w € Q?( M), we have

¢ (dw) = d(¢"w).

The proof is easy. By Exercise 47, ¢* is real-linear, so it suffices to treat
the case where

w= fodfy A+ Adf,.

We then have, using Exercise 47 again together with the naturality of
d on functions,

¢*(dw) = ¢*(dfo Adfi A Adfy)
' ¢*dfo A - - A Pdfp
dp*foA--- Ndd"fp

d(¢"fo NdS* fr A A dd" fp)
d(¢* fo A P dfs A -+ A $*dfp)
= d(¢"(fo Ndfi A---Adfy))
= d(¢'w)

Il

Il

1l

as desired.






Chapter 5

Rewriting Maxwell’s
Equations

Hence space of itself, and time of itself, will sink into mere shadows, and
only a union of the two shall survive. — Hermann Minkowsk:

The First Pair of Equations

We now have developed enough differential geometry to generalize the
first pair of Maxwell equations,

—r

V-B =0

. OB
VxE+ T 0,
to any manifold. We claim that they have a very beautiful form as a
single equation in terms of differential forms.

Before giving away the answer, let us consider a special case: the
static case. Then we just have two equations for vector fields on space,
R3:

V.-B= 0, VxE=0
In the language of differential forms, the divergence becomes the exte-
rior derivative on 2-forms on IR3. Thus, instead of treating the magnetic
field as a vector field B = (B, By, B,) we will treat it as the 2-form

B = B,dy ANdz + Bydz A dz + B,dz N dy.

69
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Similarly, the curl becomes the exterior derivative on 1-forms on R, so
instead of treating the electric field as a vector field E = (E,, E,, E,)
we will treat it as the 1-form

E =FE,dz+ E,dy + E.d>.
The first pair of static Maxwell’s equations then become
dE =0, dB = 0.

Next consider the general, time-dependent case. Now we must think
of the electric and magnetic fields as living on spacetime. We begin by
working on Minkowski spacetime, IR*, using the standard coordinate
system, which we will number as (z° 2!, 2% z3). We will often write
t instead of z° for the time coordinate, and z,v, z for the space coor-
1 2%,z3). The electric and magnetic fields are 1-forms and
2-forms on IR*, namely

dinates (z

E=E,dz + E,dy+ E.dz

and
B = Bydy Ndz+ Bydz A dz + B,dz A dy

We can combine both fields into a unified electromagnetic field F, a
2-form on IR*, as follows:

F=B+ EAdt.

If we want to look at all the components,
1 " y
F= EF“,,dq: A dz¥,

we can write them out as a matrix:

0 -E, —-E, —E,
s _|EB 0o B -B,
w=|E, -B, 0 B,

E. B, -B, 0
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The beauty of this way of unifying the electric and magnetic fields is
that the first pair of Maxwell equations become simply

dF = 0.
To see this, first note that
dF =d(B+ ENdt)=dB+dE Ndt

Then split up the exterior derivative operator into a spacelike part and
a timelike part. Recall that for any differential form w we have

dw = B wr dz* A dz’,

where I ranges over all multi-indices and g = 0,1,2,3. We can thus
write dw as a sum of the spacelike part

dsw = OQuw; dz* A dz!
where 1 ranges over the ‘spacelike’ indices 1,2,3, and the timelike part
dt A Bw = Bowy dz° A dz’.
Then we have

dF = dB+dENdt
dsB+dt A OB+ (dsE +dt AOE) N dt
dsB+(0:B+ dsE)Ndt

Note that the first term has no dt in it while the second one does. Also
note that the second one vanishes only if the expression in parentheses
does. It follows that dF = 0 is equivalent to the pair of equations

dsB = 0,
BtB+dsE = 0

These are just the first pair of Maxwell equations in slightly newfangled
notation!
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Fig. 1. Splitting spacetime into space and time

One advantage of the differential form language is its generality. We
can take our spacetime to be any manifold M, of any dimension, and
define the electromagnetic field to be a 2-form F on M. The first pair
of Maxwell equations says just that

dF = 0.

Sometimes — but not always — we can split spacetime up into space
and time, that 1s, write M as IR x S for some manifold S we call ‘space’.
If so, we can write ¢ for the usual coordinate on IR, and split F' into an
electric and magnetic field:

Exercise 50. Show that any 2-form F on IR X S can be uniquely ezpressed

as B+ E Adt in such a way that for any local coordinates =* on S we have
E = E;dz* and B = %B;jdz‘ A dzI

We can also split the exterior derivative into spacelike and timelike

parts as before:

Exercise 51. Show that for any form w on IR x S there is a unique way
to write dw = dt A Oyw + dsw such that for any local coordinates =* on S,
writing t = z°, we have
dsw = Owr dz* A dI:I,
dtAOw = Oowrdz® Adzl.
When we split spacetime up into space and time, dF' = 0 becomes
equivalent to the pair of equations

dsB =0, 0,B+dsE = 0.
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In the static case, when ;E = 8;B = 0, we can forget about the ¢
coordinate entirely and treat E and B as forms on space satisfying the
static equations

dsB=0, dsE=0.

Note that the electric and magnetic fields are only defined after we
choose a way of splitting spacetime into space and time! If someone
hands us a manifold M, it may be diffeomorphic to IR x S in many
different ways, or in no way at all. In special relativity one learns
that different inertial frames (corresponding to observers moving at
constant velocity) will give different splittings of spacetime into IR x IR?,
which are related by Lorentz transformations. This means that the
electric and magnetic fields will get mixed up when we do a Lorentz
transformation, as described in Chapter 1. More drastically, we could
split spacetime into space and time in a wiggly way as in Figure 1
above. This may seem perverse, but there is usually no ‘best’ way
to split spacetime into space and time, particularly in the context of
general relativity.

The Metric

In the Space and Time marriage we have the greatest Boy meets Girl story
of the age. To our great-grandchildren this will be as poetical as the ancient
Greek marriage of Cupid and Psyche seems to us. — Lawrence Durrell,
Balthazar

The first pair of Maxwell equations does not involve measuring dis-
tances in spacetirne. That is why they are ‘generally covariant’, i.e.,
one can pull back a solution by any diffeomorphism, no matter how
much 1t stretches or distorts spacetime, and get another solution. This
1s not the case for the second pair, which require for their formulation
a way of measuring distances and times. The key idea of relativity
1s that distances and time intervals are two aspects of a single con-
cept, the ‘spacetime interval’. Mathematically, spacetime intervals are
calculated using a ‘metric’ on spacetime.

In ordinary Euclidean IR® we measure distances and angles using
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the dot product of vectors:

1 2 3
v-w=vw + 7w’ +v w3,

and the norm defined using the dot product:
foll? = o -v.

In Minkowski spacetime we measure ‘intervals’ using a generalization
of the dot product. In units where the speed of light, ¢, is equal to 1,
this is given by
v-w = —v%° -+ viw?! + v2w? + v3ws.

If z € Vhas z-z > 0, z is called spacelike, since it points more in the
space directions than the time direction. If z is spacelike, the square
root of z -z represents the length of a straight ruler that stretched from
the origin to z. If z has z -z < 0 we call it timelike, since it points
more in the time direction than in the space directions. The velocity
of a particle moving slower than the speed of light is timelike. If z is
timelike, the square root of z-z measures the time a clock would tick off
as 1t moved from the origin to z in a straight line. If z-z = 0, z is called
null or lightlike, since it points just as much in the time direction as
in the space directions. We should add that sometimes people use the
negative of our Minkowski metric and reverse the definitions of spacelike
and timelike. This i1s just a matter of convention — but we will always
follow the above convention!

The notion of a metric generalizes these concepts. A semi-
Riemannian metric (or just ‘metric’) on a vector space V is a map

gV xV > 1R,
that 1s bilinear, or linear in each slot:

g(cv+v',w) = cg(v,w)+ g(v',w)
glv,ew+w') = g(v,w)+ cg(v,w'),

symmetric:
g9(v,w) = g(w,v),
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and nondegenerate: if g(v,w) =0 for all w € V|, then v = 0. We say
that v € V is spacelike, timelike or null depending on whether g(v,v)
is positive, negative or zero. If g(v,w) = 0, we say that v and w are
orthogonal. Note that null vectors are orthogonal to themselves!

Given a metric on V, we can always find an orthonormal basis for
V, that is, a basis {e,} such that g(e,,e,)is 0if p # v, and +1if p = v.
The number of +1’s and —1’s is independent of the orthonormal basis,
and if the number of +1’s is p and the number of —1’s is q, we say the
metric has signature (p,q). For example, Minkowsk: spacetime has
signature (3,1), with the Minkowski metric given by

n(v,w) = —0%w® + vlw?! + viw? 4+ viuwd.

So far we have been talking about spacetimes that are vector spaces.
Now let M be a manifold and consider a situation where the metric
depends on where one is. A metric g on M assigns to each point
p € M a metric g, on the tangent space T,M, in a smoothly varying
way. By ‘smoothly varying’ we mean that if v and w are smooth vector
fields on M, the inner product g,(vp, wy) 1s a smooth function on M.
By the way, we usually write this function simply as g(v,w).

One can show that the smoothness condition implies that the sig-
nature of g, is constant on any connected component of M. We are
really only interested in cases where the signature is constant on all of
M. If the signature of g is (n,0), where dim M = n, we say that g
is a Riemannian metric, while if the signature is (n — 1,1), we say
that g is Lorentzian. By a semi-Riemannian manifold we mean
a manifold equipped with a metric, and similarly for a Riemannian
manifold and a Lorentzian manifold.

In relativity, spacetime is a Lorentzian manifold, which in the real
world appears to be 4-dimensional, although other cases are certainly
interesting. The easiest way to get ahold of a 4-dimensional Lorentzian
manifold is to take a 3-dimensional manifold S, ‘space’, with a Rieman-
nian metric 3¢, and let M, ‘spacetime’, be given by IR x S. Then we
can define a Lorentzian metric

g=—dt*+ %

on M as follows. Let z* (s = 1,2,3) be local coordinates on an open
subset U C S, and let ¢ or z° denote the coordinate on IR, that is,
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‘time’. Then z* (p = 0,1,2,3) are local coordinates on R x U C M,
and we can define the metric g to be that with components

-1 0 0 0
0

glﬂ’: 0 sgij
0

This represents a special sort of static spacetime, in which space has
a metric that 1s independent of time.

The most basic use of a Lorentzian metric i1s to measure distances
and times. For example, if a path v:[0,1] — M is spacelike, that 1s, if
its tangent vector is everywhere spacelike, we define its arclength to

be
[ Vot v

If -y 1s timelike, we define the proper time along v — that is, the time
ticked off by a clock moving along v — to be

[ Vel

We will mainly be interested in some more sophisticated applica-
tions of the metric, however. The most fundamental of these is ‘raising
and lowering indices’, that 1s, converting between tangent and cotan-
gent vectors. If V is a vector space equipped with a metric g, there is
a natural way to turn an element v € V into an element of V*, namely
the linear functional g(v,-) which eats another element of V and spits
out a number.

Exercise 52. Use the nondegeneracy of the metric to show that the map
from V to V* given by
v g(v,-)

s an isomorphism, that is, one-to-one and onto.

It follows that if M is a semi-Riemannian manifold the metric de-
fines an isomorphism between each tangent space T, M and the corre-
sponding cotangent space T; M. We can picture this as follows: if the
tangent vector v is a little arrow, the cotangent vector w = g(v,-) is
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a stack of hyperplanes perpendicular to v, as in Figure 2. The reason
for this is that w vanishes on vectors orthogonal to v. The key point is
that one needs the metric to know what ‘orthogonal’ means!

Fig. 2. Tangent vector v and cotangent vector g(v,-)

(v)')

Similarly, we can convert between vector fields and 1-forms on M.
By using the metric on space, for example, we can think of the electric
field as a vector field instead of a 1-form. We need to do this in order
to think of the electric field as ‘pointing’ in some direction.

Suppose M is a semi-Riemannian manifold. Now that we can visu-
alize 1-forms on M as fields of little arrows, there 1s a nice way for us
to visualize p-forms for higher p as well. We can draw a wedge product
wA p of two cotangent vectors at p as a little parallelogram, as in Figure
3. So we can visualize a 2-form on M as field of such ‘area elements’.
Similarly, we can draw a wedge product w A p A v of three cotangent
vectors at p as a little parallelepiped, as in Figure 4, and visualize a
3-form as a field of these ‘volume elements’ — and so on for higher
p-forms.

Fig. 3. Picture of w A p € ATy M
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Fig. 4. Pictureof w A p Av € T3 M

We should not take these pictures too seriously. For example, if we
drew

(dz + dy) A (dy + d=)

and

(dy + dz) A (dz — dx)

this way, we would get different-looking parallelograms, even though
they are equal as elements of AZT; IR®. However, there is a lot about
these parallelograms that is the same. First, they lie in the same plane
V C IR®. Second, they have the same area. And third, the pairs
(dz +dy,dy +dz), (dy + dz,dz — dz) are bases for V that have the same
orientation, in the usual sense of right-handed versus left-handed bases.
This is true in general, which is why we think of w A p € A*T; M as an
‘area element’. Similar statements are true for wedge products of more
cotangent vectors. On the other hand, 1t is worth noting that there
are usually plenty of elements of AiT; M that are not wedge products
of 7 cotangent vectors — we need to consider linear combinations, too.
Still, with a little care one can get some good insights about differential
forms using these pictures, as we will see.

Now let us say some things about how the metric looks in the lan-
guage of indices. Let us work in a chart, and let e, be a basis of vector
fields. Then we can define the components of the metric as follows:

9w = 9(€u, &)
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If M 1is n-dimensional, g, is an n X n matrix. The nondegeneracy
condition implies this matrix is invertible, so let g*¥ denote the inverse
matrix. Then we have the following handy formulas, which explain why
the process of converting between vector fields and 1-forms using the
metric 1s called raising and lowering indices:

Exercise 53. Let v = vfe, be a vector field on a chart. Show that the
corresponding 1-form g(v,-) is equal to v, f¥, where f* is the dual basis of
1-forms and

vy = G v*.

Exercise 54. Let w = w,f* be a I-form on a chart. Show that the corre-
sponding vector field is equal to w”e,, where

W’ =g w,.

Exercise 55. Let 7 be the Minkowski metric on R* as defined above. Show
that its components in the standard basis are

= o o O

{0 10
Tw =119 0 1
0 0 0

In general, if we have any quantity with some indices, such as

Aaﬁ"qge...c,

we can lower or raise any index with the metric and its inverse, using
the Einstein summation convention. E.g., we can lower a and get

Aaﬁ"qge...c = ga,,A“ﬁ"qae...c,
or raise § and get

Aaﬁ'ﬂ&emc — gGuAaﬁ-'"ermc_
If we have a lot indices floating around it is important to keep track
of their order when we raise and lower them; otherwise things get con-
fusing. Note that we can even raise and lower indices on the metric
itself:
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Exercise 56. Show that g¥ is equal to the Kronecker delta ¥, that is, 1 if
i = v and 0 otherwise. Note that here the order of indices does not matter,

since guy = Gup-

We finish off this section by showing how to extend the idea of a
metric to differential forms. Let M be a semi-Riemannian manifold.
Recall that if v and w are vector fields on M, g(v,w) is a function on
M whose value at p is gp(vp, wp). This is bilinear,

9(fv+v'w) = fg(v,w)+9(v',w), g(v, fw+v') = fg(v,w)+g(v,v’),
where now f is any function on M. It 1s also symmetric:
g9(v,w) = g(w,v),
and nondegenerate :
Vw eV glv,w)=0 = v=0.

We can define something with the same properties that works for 1-
forms on M using the fact that the metric allows us to turn 1-forms
into vector fields. Given two 1-forms w and u, we call the resulting
function (w, ), the inner product of w and p. In terms of indices, if

9(v,w) = gapv™uwP,

then for any 1-forms w and p we have

(w, ) = g% wapg.

Next, we define the inner product of p-forms. The inner product
of two p-forms w and g on M will be a function (w,pu) on M, and it
is required to be bilinear, so 1t suffices to define 1t for p-forms that are
wedge products of 1-forms. Say e!,...,e? and f',..., fP are 1-forms

on M. Then we define
(&' A AP fE A+ A fP) = det [g(e, f)]

where the right-hand side denotes the determinant of the p x p matrix
of inner products g(e*, f7).
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Exercise 57. Show that the inner product of p-forms is nondegenerate by
supposing that (€, ..., e™) is any orthonormal basis of 1-forms in some chart,
with

g(e',e) = €(2),

where €(i) = +1. Show the p-fold wedge products
et A A€
form an orthonormal basis of p-forms with
(€ A NEP TN A e'r) = (1) - €(ip).

Exercise 58. Let E = E,dz + Eydy + E.dz be a 1-form on R?3 with its
Euclidean metric. Show that

(E,E)= E!+ El + EZ.
Similarly, let
B = BydyAdz+ Bydz Ndz + B,dz A dy
be a 2-form. Show that
(B,B) = BZ + B2 + B2
In physics, the quantity .
2
is called the energy density of the electromagnetic field. The gquantity

((E,E) + (B, B))

S((B,E) ~ (B, B))

is called the Lagrangian for the vacuum Mazwell’s equations, which we
discuss more in Chapter 4 of Part II, in greater generality.

Exercise 59. InIR* let F be the 2-form given by F = B + E A dt, where
E and B are given by the formulas above. Using the Minkowsk: metric on
R*, calculate —%(F, F) and relate it to the Lagrangian above.
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The Volume Form

Since a metric allows us to measure distances on a manifold, it should
allow us to measure volumes as well, and thus allow us to do integrals.
This is in fact the case. We will postpone the study of integration on
manifolds to Chapter 6, but we will define a basic ingredient of it here,
the ‘volume form’. This concept is needed to write down Maxwell’s
equations in differential form language. It turns out that a closely
related concept is that of an ‘orientation’, that is, a globally well-defined
way to tell the difference between left and right.

Given an n-dimensional vector space V with two bases {e,}, {f.},
there 1s always a unique linear transformation T:V — V taking one
basis to the other:

Te, = fu.
This 1s necessarily invertible, so its determinant is nonzero. Let us
say that {e,} and {f,} have the same orientation if detT" > 0, and
the opposite orientation if det T < 0. For example, any right-handed
basis in IR® has the same orientation as the usual right-handed basis

(e1, e, €3):
er = (1,0,0), es=(0,1,0), es=(0,0,1),

while any left-handed basis, like (—e;, —ez, —e3), has the opposite ori-
entation.

Exercise 60. Show that any even permutation of a given basis has the
same orientation, while any odd permutation has the opposite orientation.

Let us define an orientation on V to be a choice of an equivalence
class of bases of V', where two bases are deemed equivalent if they have
the same orientation. E.g., on IR® there is the right-handed orientation,
which contains the basis (ej, ez, €3) and all other bases with the same
orientation, and the left-handed orientation. There are always only two
orientations on V.

There is another way to think about orientations. Suppose V is an
n-dimensional vector space with basis {e,}. Then

ex N---Nep
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is a nonzero element of A"V which we call the volume element asso-
ciated to the basis {e,}. We can picture it as a little parallepiped in n
dimensions.

Let us see how the volume element depends on a change of basis.
Note that any element w € A"V can be written as

ces N+ Aenp,

for some constant c, since a wedge product that contains any e, twice
automatically vanishes. Suppose {f,} is another basis of V and let it
be the matrix with

fo =Tle,.
Then

AN ANfn = (Tlen+ +Tre ) A A(Trer + - + Tre,)
— (detT)esA---Aen

since in the first line one is really summing over all expressions of the
form
sign(o)Ty™M . T9Mey A Aey,

where o is a permutation and sign(c) is its sign, which comes in from
the anticommutativity of the wedge product. Thus two bases have
the same orientation if the corresponding volume elements differ by a
positive scalar multiple. Or, if we like, we can think of an orientation
as being a choice of a volume form modulo positive scalar multiples.
Now let us turn from vector spaces to manifolds in general. As
usual, let M be an n-dimensional manifold. We define a volume form
w on M to be a nowhere vanishing n-form. Thus for each point p € M,
wp 1s a volume element on T; M. The standard volume form on IR™ is

w=dz' A---Adz"™
As we will see, when we do a multiple integral like
/ f dadydz
]R3

we are really integrating the 3-form fdz A dy A dz.
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We say M is orientable if there exists a volume form on M. By an
orientation on M we mean a choice of an equivalence class of volume
forms on M, where two volume forms w and «’ are equivalent if w' = fw
for some positive function f. Any volume form that is in the chosen
equivalence class is said to be positively oriented; otherwise it is said
to be negatively oriented. In particular, the standard orientation
on IR™ 1s the equivalence class containing the volume form dz! A- - -Adz™.

If we have an orientation on M, we can decide unambiguously
whether any basis e* of a cotangent space Ty M is right-handed or
left-handed, as follows. Just pick a volume form w in the equivalence
class, write e! A--- Ae™ as a constant times w, and check to see whether
the constant 1s positive or negative. This is the precise sense in which
an orientation gives a global definition of right vs. left. Since a basis
of the tangent space gives a dual basis of the cotangent space, we can
also define right-handed and left-handed bases of the tangent space.

The classic example of a nonorientable manifold is the Mobius strip:

Fig. 5. The Mobius strip is nonorientable

As the figure indicates, there is no way to define the notion of a
right-handed basis of T; M for the Mobius strip in a smoothly varying
way. Using a Riemannian metric we can identify Ty M with the tangent
space T,M. We have drawn a ‘right-handed’ basis of T,M at one point,
and show how if one drags it smoothly around a noncontractible loop
it become ‘left-handed’. If space was nonorientable, we might take a
long journey in a spaceship around a noncontractible loop and come
back home as a mirror-image version of ourselves. (However, we would
not feel reflected; we would think everything else had been reflected.)



The Volume Form 85

A manifold equipped with an orientation is said to be oriented.
One can also think of an oriented manifold as one having ‘oriented
charts’ as follows:

Exercise 61. Let M be an oriented manifold. Show that we can cover M
with oriented charts ¢,: U, — IR", that s, charts such that the basis dz*
of cotangent vectors on IR™, pulled back to Uy by 4, is positively oriented.

Exercise 62. Given a diffeomorphism ¢: M — N from one oriented man-
ifold to another, we say that ¢ is orientation-preserving if the pullback of
any right-handed basis of a cotangent space in N is a right-handed basis of
a cotangent space in M. Show that if we can cover M with charts such that
the transition functions @4 o tpgl are orientation-preserving, we can make
M into an oriented manifold by using the charts to transfer the standard
orientation on R™ to an orientation on M.

Now suppose that M is an oriented n-dimensional manifold with
metric g. There is a canonical volume form on M which we can con-
struct as follows. First, cover M with oriented charts @q: U, — IR™. In
any chart set

G = g(a;n BV)y

vol = y/| det g, | dz' A -+ A dz™.

Clearly this is a volume form on U. What we need to show is that given
any overlapping chart ¢': U’ — IR", and defining

9w = 9(8,,,0,),

and define

then the volume form

vol' = /| det g/, | dz" A --- Ada™,

agrees with vol on the overlap U N U’. This will imply the existence
of a volume form on all of M, defined by this sort of formula, and
independent of choice of chart.

On the overlap we have

dz" = T:dm“
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where the matrix-valued function T is given by
TV amlll

B Pzm’

Thus we have
dz A - Adz"™ = (det T)dz' A --- A dz™,

so to show vol = vol’ we need to show

y/|det gl | = (det T) /| det gl

To see this, note that
G = 9(0,0))
Oz , 0zP
9 O )
= (T7)3T 7" Vo gas
or, taking determinants,

det g, = (det T) *det g, .

Since both charts are oriented, det T' > 0, so
v/1det gl | = (det T)™*y/| det g, |
as desired.

We call vol the volume form on M associated to the metric g. People
often write the volume form as /| det g|d*z. In the Lorentzian case,
this 1s just

vol = /—det gd"z,

since the determinant of g, 1s negative. In general relativity, people
often write the volume form as simply /=g d"z, using g to stand for
the determinant of g,,.

In Chapter 6 we will describe integration theory on an oriented
manifold, and show how to integrate functions on an oriented semi-
Riemannian manifold M. The basic idea is that when we integrate a
function f over M, we are really doing the integral

/M f vol,
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that 1s, integrating the n-form fvol. Right now our main goal is to
describe the second pair of Maxwell equations in differential form lan-
guage. For this, we need the volume form to define something called
the Hodge star operator. The following fact will come in handy:

Exercise 63. Let M be an oriented n-dimensional semi- Riemannian man-
ifold and let {e,} be an oriented orthonormal basis of cotangent vectors at
some point p € M. Show that

e1 A A ey = volp,

where vol is the volume form associated to the metric on M, and vol, is its
value at p.

The Hodge Star Operator

The Hodge star operator is the key to understanding the ‘duality’ sym-
metry of the vacuum Maxwell equations, as described in Chapter 1.
This symmetry is the reason why the second pair of Maxwell equa-
tions look similar (but not quite the same) as the first pair. Think
about these equations in ordinary Minkowski space. In old-fashioned
notation, they are:

V.-B = 0
Y]
VXE—{.E =0

V-E = »p
. AE .
VXB—E 7

In differential form notation, the first pair becomes:

dsB =
BtB + dsE = 0,
where B is a 2-form on space and F is a 1-form on space (both functions

of time). The funny thing is that the second pair seems to have the
roles of F and B reversed (modulo the minus sign). This would amount
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to treating F as a 2-form and B as a 1-form! The Hodge star operator
saves the day, since it converts 1-forms on 3-dimensional space into
2-forms, and vice versa. However, it does so at a price: it requires a
choice of metric and also a choice of orientation.

How does the Hodge star operator do this? Here is where our way
of drawing differential forms comes in handy. At any point p in a 3-
dimensional Riemannian manifold M, the Hodge star operator maps
a l-form v, which we draw as a little arrow, into a 2-form w A u that
corresponds to an area element that is orthogonal to v, as follows:

Fig. 6. The Hodge star of v is w A

Conversely, it maps w A p to v. In general, in n dimensions the
Hodge star operator maps p-forms to (n — p)-forms in a very similar
way, taking each little ‘p-dimensional area element’ to an orthogonal
‘(n — p)-dimensional area element’.

The precise definition of the Hodge star operator uses the inner
product of differential forms. Let M be an n-dimensional oriented
semi-Riemannian manifold. Then the inner product of two p forms w
and g on M is a function (w,p) on M. We define the Hodge star
operator

« QP(M) — Q" P(M)

to be the unique linear map from p-forms to (n — p)-forms such that
for all w, u € QP(M),
wAxp = (w,p) vol

Note that both sides of the equation are n-forms. We often call xu th
dual of 4. :
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It might not be obvious from this definition that the Hodge star
operator really exists, or how to compute it! For this, it is nice to
have a formula for it. Suppose that e!,...,e" are a positively oriented
orthonormal basis of 1-forms on some chart. Thus

(e, e") =0

if p # v, and
(e, ") = e(u)

where ¢(p) = +1. Then we claim that for any distinct 1 <7iy,...,3, <
n7
*(eT Ao AeP) = fe Pt A A e

where {tp11, ..., } consists of the integers from 1 to n not included in

{31, ..., 2}
{tp+1y- -y} =91, ...,n} = {o1,.. ., 25}
The sign + is given by
sign(iy, ..., tn)e(t1) - - €(ip),

where sign(1, . . ., %») denotes the sign of the permutation taking (1,...,n
to ('il, .. .,'i-,,,).

Exercise 64. Show that if we define the Hodge star operator in a chart
using this formula, it satisfies the property w A . = (w,u)vol. Use the

result from Ezercise 63.

The formula for the Hodge star operator might seem complicated,
so consider an example. Take dz, dy,dz as a basis of 1-forms on IR®
with its usual Euclidean metric and orientation. Then we have

xdz = dy ANdz, xdy =dz Adz, xdz= dz Ady,
and conversely

*dz Ady = dz, xdy Adz =dz, *dzA\dz=dy.
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If one interprets the definition correctly, one also can work out what the
Hodge star operator does to the 0-form (or function) 1 and the volume
form dz A dy A dz:

*xl=dzAdyAndz, xdzAdyANdz=1.

Since Hodge star operator on IR? lets us turn 1-forms into 2-forms
and vice versa, it sheds some new light on familiar operations like the
cross product, curl and divergence. Given two 1-forms w and g on IR?,
their wedge product is a 2-form, and is perfectly well-defined without
reference to a metric and orientation. But if we allow ourselves to use a
metric and orientation, we can take the Hodge star of w A v and obtain
a 1-form! If

i i
w = w;dz’, v = ydz’,

then using the standard metric and orientation we get
wHw Av) = (wyv, — w,vy)dz + (w,vg — wev,)dy + (Wevy — wyvy)dz.

This is basically just the cross product! The reader may wonder why
we have done all this work to get back to concepts that everyone knows
from basic vector calculus. Part of the point is that we now can work
in spacetimes of arbitrary dimension, with arbitrary metrics and orien-
tations. But it is also nice to see just where the metric and orientation
are needed in the definition of the cross product in IR*: only when we
want to take a 2-form and convert it into a 1-form are they necessary.

Moreover, if w is a 1-form on IR?, dw is a 2-form, but xdw is a 1-
form again, and if we use the standard metric and orientation this is
basically just the curl of w:

Exercise 65. Calculate xdw when w is a 1-form on IR3.

Similarly, if w is a 1-form on IR?, d%w is a 3-form, but xd*w is a 0-form,
or function, and this basically amounts to taking the divergence of w:

Exercise 66. Calculate xd xw when w is a I-form on IR3.

We encourage the reader to do the following exercises, too:
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Exercise 67. Give R* the Minkowski metric and the orientation in which
(dt,dz,dy,dz) is positively oriented. Calculate the Hodge star operator on
all wedge products of dz*’s. Show that on p-forms

2= (_1)p(4—p)+1‘
Exercise 68, Let M be an oriented semi-Riemannian manifold of dimen-
sion n and signature (s,n — s). Show that on p-forms

2 = (e,
Exercise 69. Let M be an oriented semi-Riemannian manifold of dimen-

sion n and signature (s,n — s). Let e* be an orthonormal basis of 1-forms
on some chart. Define the Levi-Civita symbol for 1 <1i; < n by

e . sign(iy,...,%,) alli; distinct
teetn T Q) otherwise

Show that for any p-form

1 1:1 2
W= —Wj., e A Aer
1 P
p!
we have 1
W gt SRS P
( )]1 In—p p| € n ]n——pw‘ll ip

The Second Pair of Equations

We now use the Hodge star operator to write the second pair of Maxwell
equations in terms of differential forms. The key thing to understand
is the effect of taking the dual xF' of the electromagnetic field F'.

First consider the case where M is Minkowski spacetime with its
usual coordinates z#. We will sometimes write ¢ for the time coordinate
z°. Then we can split F' into electric and magnetic fields,

F=B+ENdt,

where B is a time-dependent 2-form on space and E is a time-dependent
1-form on space. If one likes components, we have F' = %Fw,dm” A dz¥
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where
0 —-E, —-E, -E,
o E, 0 B, -B,
w1 E, -B, 0 B,

E, B, —-B, 0

Now introduce the Minkowski metric on spacetime:
(v, w) = —0%w° + vlw! + 2w + 3wl

This allows us to define the Hodge star operator. A little calculation
using Exercise 67 shows that

O B, B, B,
-B, 0 E -—E,
-B, -E, 0 E,
B, E, -E, 0

(*F)uu =

In other words, taking the dual of F' amounts to doing the replacements
E,' = —B,', B,' — E,'.

This is the main difference between the first pair of Maxwell equations
— which in old-fashioned form are

V-B=10 VXE—-!—T??:O,
and the second pair:
, . OF
B = B-—=17
V-E=p V x 5 7

The other difference between the first and second pairs is that the
latter contain p and 7. To speak of these in the language of differential
forms, we use the fact that the metric allows us to turn vector fields
into 1-forms. Thus we can turn the good old current density

j= jlal + ]-262 +7%0,

into the 1-form
j =gnda’ + jada® + jada®.



The Second Pair of Equations 93

Similarly, we can combine the current density and the electric charge
density p in a single vector field on Minkowski spacetime:

J = pBo+7'61 + j20, + 7°8s,

and by using the Minkowski metric, we can turn this vector field into
a l-form
J=7—pdt

which we call the current.
Now we claim that just as the first pair of Maxwell equations are

really
dF =0,

the second pair are reall};
*xdx F = J.

This is not so surprising, because at least on Minkowski space, the
second pair of Maxwell equations

—

-, -~ J0FE

can be rewritten as

*sds *s E = P,
—OF + xsds xs B = 7,

where x5 denotes the Hodge star operator on ‘space’, that is, R*® with
its usual Euclidean metric.

Exercise 70. Check this result.

These look very similar to the version of the first pair of Maxwell equa-
tions in which we have split spacetime into space and time:

dsB = 0,
OB +dsE =

The difference really amounts to using the Hodge star operator twice.
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More generally, start by assuming that spacetime M is any manifold.
Then the electromagnetic field F' is a 2-form on M the current J is a
I-form on M, and the first Maxwell equation is dF = 0. We must
assume M is semi-Riemannian and oriented to write down the second
pair of Maxwell’s equations, that is, xd x F' = J. To introduce electric
and magnetic fields we must assume M = IR x S, where S is space,
and write F' = B + E A dt. Similarly we write J = 7 — pdt. Then the
first Maxwell equation splits into

dsB = 0, 0B +dsFE = 0.

Suppose also that space is 3-dimensional and that the metricon M is a
static one of the form g = —dt?+ 3g where 3¢ is a Riemannian metric on
space, S. Let xs denote the Hodge star operator on (time-dependent)
differential forms on S. Then

*F =xgFE — xsB A dt

SO

dx F =xsO, ENdt +dsxs E —dsxs B Adt

and

xdx F = —~0F —%gdsxs E Ndt +xsdg *s B.
Setting xd x F' = J and equating like terms, we obtain
*xsds xs E = p, —OF +*sdsxs B =7,
as desired.
Exercise 71. Check the calculations above.

It is interesting to note that in the static Maxwell equations,
where E and B are independent of ¢, there is a pair involving only E:

dEZO, *sds*sE:p,
and a pair involving only B:

dBZO, *sds*sBZO.
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This makes it clear that only when the electric and magnetic fields are
time-dependent do they affect each other. Historically, it was Faraday
who first discovered in 1831 that a changing magnetic field causes a
nonzero curl in the electric field. He is responsible for the

0B

ot
term in the equations of electromagnetism. Maxwell’s brilliant con-
tribution to the equations came when he hypothesized in 1861 that a

changing electric field causes a nonzero curl in the magnetic field. In
other words, he guessed there should be a

OE

ot
term, too. It is only when both of these effects are taken into account
that we get electromagnetic radiation, in which ripples in E cause rip-
ples in B and vice versa, causing waves that move through space.

Interestingly enough, the reason Maxwell made his hypothesis was

not an experiment, but a problem with the equations of electromag-
netism as they stood at the time. This was the problem of charge con-
servation. Not only is the total electric charge of the world constant,
the only way charge can get from one place to another is by moving
through the intervening regions. This is called a ‘local conservation
law’. Mathematically, one can formulate it in Minkowski spacetime by
saying that any increase or decrease in the charge density at any point
is solely due to the divergence of the current density. In old-fashioned
language one expresses this by the continuity equation

dp .
E{——V'].

Maxwell realized that the E /0t term would make the continuity equa-
tion an automatic consequence of the laws of electromagnetism! This
can be seen by starting with

—

- JF
B—-——=7
V x 57 7
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taking the divergence of both sides to obtain

OE
I v v
V- = 7;
and then interchanging the order of the derivatives on the left hand

side and using the fact that
V.-E= p.

In fact, the continuity equation can expressed more elegantly in
differential form language as

dxJ =0,

and this law is a simple consequence of Maxwell’s equations in their
most general modern form. Starting with xd x F' = J and taking the
dual of both sides we obtain d x FF = £ % J, where the sign depends
on the value of ** on 1-forms (see Exercise 68). Taking the exterior
derivative of both sides and using d? = 0, we get d* J = 0. In terms of
components, this equation is written 6*J, = 0.

This is a good example of how the identity d* = 0 has power-
ful physical consequences. When we get to gauge theories we will see
that Maxwell’s equations are a special case of the Yang-Mills equa-
tions, which describe not only electromagnetism but also the strong
and weak nuclear forces. A generalization of the identity d? = 0, the
Bianchi identity, implies conservation of ‘charge’ in all of these theories
— although these theories have different kinds of ‘charge’. Similarly,
we will see when we get to general relativity that due to the Bianchi
identity, Einstein’s equations for gravity automatically imply local con-
servation of energy and momentum! So what we are seeing here is only
the tip of the iceberg.

It is also interesting to consider the vacauum Maxwell equations,
that is, the case J = 0:

dF =0, dxF =0.
These are preserved by duality:
F — xF.
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Recall that when spacetime M is of the form R x S, so that F =
B + E A dt, we have xF' = xgE — xs B A dt, so duality amounts to:

B —xsE, E— —x¢ B,
or when § = R®, . . . .
B E, Ew- -B
in old-fashioned language.

In 4 dimensions something very interesting happens, since then the
dual of a 2-form is a 2-form. Note from Exercise 67 that if M is a
Lorentzian 4-dimensional manifold, the operator

*x (M) — QB*(M)
has
* =1,

while if M is Riemannian, we have
*? = 1.

In the Riemannian case things are very nice: we say F € Q*(M) is
self-dual if xF = F, and anti-self-dual if +F = ~F. Since x? = 1, it
is not surprising that the Hodge star operator has eigenvalues +1. That
is, we can write any F' € Q*(M) as a sum of self-dual and anti-self-dual
parts:

F=F, +F_, *Fy = +F,.

Exercise 72. Show this is true if we take
Fi = %(F + *F).

In the Lorentzian case things are not quite as nice, since ¥ = —1
implies its eigenvalues are +:. This means that we should really con-

sider complex-valued differential forms on M. If we do that, we can
write any F' € Q*(M) as

F=F,+F

where

*Fi = i"’LFi
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Exercise 73. Show that this result is true.

Let us bend words a bit and say in this case too that F is self-dual
and F_ is anti-self-dual.

In either the Riemannian or Lorentzian case, if we have a self-dual
(or anti-self-dual) 2-form F satisfying the first pair of vacuum Maxwell
equations:

dF =0,

it automatically satisfies the second pair:
dxF =0.

Of course, in the Lorentzian case F' will need to be complex-valued,
which is not very sensible physically. However, since Maxwell’s equa-
tions are linear, we can always take the real part (or imaginary part)
of a solution and get a real-valued solution.

The trick of turning two pairs of vacuum Maxwell equations into
one turns out to be the tip of another iceberg. First, the Hodge star
operator and the exterior derivative interact with each other in a very
nice way that has a lot to do with topology. This leads to a subject
called Hodge theory. Self-duality is also important in the Yang-Mills
equations. These are a lot harder to solve than Maxwell’s equations,
because they are nonlinear, but using self-duality one can find some
solutions in the Riemannian case. These self-dual (or anti-self-dual)
solutions are called ‘instantons’, because they start out small near t =
—00, get big for a little while, and then get small again near t = +o0.
Instantons are of importance both in the physics of the strong force
and in studying the topology of 4-dimensional manifolds.

Self-duality also turns out to be important for the Einstein equa-
tions. This was emphasized by Penrose, who used a method called
‘twistors’ to find self-dual solutions to the Einstein equations. Self-
duality of a somewhat different sort is also crucial in Ashtekar’s refor-
mulation of general relativity, which we discuss in Chapter 5 of Part
ITI.

We can get a bit of the flavor of this business by using self-duality to
find some solutions of the vacuum Maxwell’s equations on Minkowski
space. These solutions represent light moving around through empty
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space! If we write

F=B+EAdt

we have
*F = xgE — xgB A dt,

so F' will be self-dual if
*sE =1B, *xsB = —1iE.

Exercise 74. Show that these equations are equivalent, and both hold if at
every time t we have

E = Eydz' + Epda® + Eadz®,
B = —i(E;dz® A dz® + cyclic permutations).

Let us assume F' is self-dual and that E is a plane wave, that is,
of the form _
E(z) = Ee'*="

where E = E;dz’ is a constant complex-valued 1-form on R? and
k € (IR*)* is a fixed covector, called the energy-momentum. Recall
that the covector k eats the vector z € IR* corresponding to a point
in Minkowski space and spits out a number k(z) in a linear way: in
coordinates this is just

k(z) = k,z".
By self-duality, we have
B(z) = Betk+"

where B = —txg E. Thus the first Maxwell equation, dgB = 0, implies
that _
B A dse®=" =0

at all points z. Let us write 3k for k;dz?, the spatial part of the energy-
momentum, called the momentum of the plane wave. Then

ik, xH iy ™
dse‘:.k,,z :etlc,‘z 3k,

so the first Maxwell equation holds precisely when

BA3k=0.
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Expressing B in terms of E, this equation is equivalent to
xsE A 3k =0,
or, by the definition of the Hodge star operator,
(E,%k) = 0.

This says that the electric field must be orthogonal to the momentum
of the plane wave.
Similarly, the second Maxwell equation, ;B + dsE = 0, says that

3k A E == koB
Exercise 75. Check the above result.

This equation is really just a fancy way of saying that the cross product
of the electric field and the momentum is proportional to the magnetic
field. The number kg is called the frequency of the plane wave. Writ-
ing B in terms of E, we obtain an equation E must satisfy:

3k ANE = —'iko*s E.

Exercise 76. Show this equation implies k,k* = 0. Thus the energy-
momentum of light is light-like!

If we solve the first pair of vacuum Maxwell’s equations this way,
duality automatically implies we have solved the second pair. A simple
example of a solution is

k=dt — dz, E = dy —dz.
Note that 3k and E are really orthogonal, and also
Sk ANE = —dz Ady +idz Adz = —iko xs E,

as required.
It is enlightening to express this solution in old-fashioned language.
It gives:

E = (0, eilt-=). ——iei(t—z)), B = (0, __,L'ei(t—z), ___ei(t—z))‘
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Exercise 77. Check the above result.

Of course, to get an honest, real solution of Maxwell’s equations we can
take the real part:

E = (0,cos(t — z),sin(t — z)), B = (0,sin(t — z), — cos(t — z)).

In other words, the plane wave moves in the z direction at the speed
of light, with the electric and magnetic fields orthogonal to each other
rotating counterclockwise in the yz plane. A plane wave in which E
and B rotate counterclockwise when viewed as the wave moves towards
one is said to be left circularly polarized. As it turns out, all the
self-dual plane wave solutions of Maxwell’s equations are left circularly
polarized. To get right circularly polarized plane waves, we need the
anti-self-dual plane wave solutions. General plane wave solutions will
be linear combinations of self-dual and anti-self-dual ones.

One thing we see here is a close connection between the Hodge
star operator and chirality, or handedness. In a more sophisticated
quantum-field theoretic picture of light, we may think of it as made of
photons that spin either clockwise or counterclockwise about their axis
of motion. Light has no preferred chirality. However, a different sort of
massless particle, the neutrino, does have a preferred chirality — one
of the puzzles of nature.

Exercise 78. Prove that all self-dual and anti-self-dual plane wave solu-
tions are left and right circularly polarized, respectively.

Exercise 79. Let P:IR* — R* be parity transformation, that is,
P(t,z,y,2) = (t,—z,—y,—2).

Show that if F ts a self-dual solution of Mazwell’s equations, the pullback
P*F is an anti-self-dual solution, and vice versa.






Chapter 6

DeRham Theory in
Electromagnetism

I received your paper, and thank you very much for it. I do not say I venture
to thank you for what you have said about “Lines of Force”, because I know
you have done it for the interests of philosophical truth; but you must suppose
it ts work grateful to me, and gives me much encouragement to think on. I
was at first almost frightened when I saw such mathematical force made to
bear upon the subject, and then wondered to see that the subject stood it so
well. — Michael Faraday, to James ClerkMazwell

Closed and Exact 1-forms

As we have seen, the first pair of Maxwell equations simply say that
electromagnetic field F has dF = 0. In the static case, they say that
the electric field has dE = 0 and the magnetic field B has dB = 0.
Equations of this sort are especially charming because they are ‘gen-
erally covariant’, that is, independent of any fixed choice of metric or
other geometrical structure on spacetime. This implies that they are
preserved by any diffeomorphism. In other words, if w is a form on a
manifold M satisfying the equation dw = 0, the pullback of w under any
diffeomorphism of M again satisfies this equation. Since a diffeomor-
phism is a kind of change of coordinates, this means that the first pair of
Maxwell equations is invariant, not just under Lorentz transformations,
rotations, and translations, but under all coordinate transformations.

103
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Now let us try to solve these equations. It is easy to come up
with lots of solutions, because d> = 0. If F is d of something, it
automatically satisfies dF' = 0, and similarly for £ and B in the static
case. This simple observation is the basis of a surprisingly large amount
of mathematics and physics. It leads to a very interesting question: can
one get all the solutions of the first pair of Maxwell equations this way?
The branch of mathematics that answers this sort of question is called
deRham cohomology.

Let us first introduce some standard terminology. In general, if the
exterior derivative of a differential form is zero, we say the differential
form is closed. On the other hand, a differential form that is the
exterior derivative of some other differential form is called exact. The
equation d° = 0 may thus be expressed in words by saying ‘all exact
forms are closed’. For example, if the electric field E is d of some
function on space, we will automatically have dE = 0. In physics one
calls a function (or 0-form) ¢ with

E=—d¢$

a scalar potential for E; the minus sign is just a convention. Sim-
ilarly, if the magnetic field B is d of some l-form on space, we will
automatically have dB = 0. One calls a 1-form A with

B=dA
a vector potential for B. Also, if the electromagnetic field F satisfies
F=dA

for some 1-form A on spacetime, we automatically have dF = 0, and
we call A a vector potential for F.

Now let us study when a closed l-form is exact. Say we have a
manifold S, with a 1-form E on it satisfying dE = 0. Can we cook up
a function ¢ on § with E = —d¢? Let us try and see what, if anything,
prevents us. We will attempt to find such a function ¢ by integrating
the 1-form E along paths in S. Technically, a path « in § is a piecewise
smooth map from +: [0,7] — S, but in this section we will be lazy and
only work with smooth paths. If v is a path, 4'(t) is a tangent vector
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at the point 7(¢), and applying the cotangent vector E,( at the same
point we get a number; then we integrate this from 0 to T. We write
this as

[,E - /OT E, (' (2)) dt.

Our plan will be to define ¢ as follows: fix any point p € S and for any
g€ S let

ﬂ®=—LE

where v is some path from p to q. The reader may be familiar with
this strategy in the special case when S = IR?; this is how one writes a
curl-free vector field as the gradient of a function.

There are a number of potential problems with this plan. First,
there might not be any path from p to ¢! It is rather odd to imagine in
terms of physics, but mathematically there is nothing to stop S from
being made of several pieces, or ‘components’, with no paths from one
to another. For example, S might be the disjoint union of two copies
of IR* — two separate universes, as it were — and there would be no
path from one to the other. We will have to rule out this case. If there
is a path between any two points in S, we say that S is connected (or
more precisely, arc-connected). If not, a maximal connected subset
of S is called a connected component. Henceforth in our quest to
solve dE = 0 we will assume S is connected. (If not, it would be easy
to apply our technique to each connected component separately. )

The next problem, which is more serious, is that the integral [ E
will in general depend on the details of the path «, not just its endpoints
v(0) = p and 4(T') = ¢q. We want to see what conditions are necessary
to rule out this problem. First, let us see how the integral changes
when we smoothly vary the path 4. In other words, suppose that we
have a smoothly varying family of paths from p to ¢ labelled by some
parameter s € [0,7]. We can describe all these by a function (s, ).
For each s, v(s,-) is a smooth path with v(s,0) = p and 7(s,T) = g,
and +(s,t) should depend smoothly on s as well as ¢.
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Fig. 1. A smoothly varying family of paths from p to ¢

To see how r
I, = /0 Eqyon(7'(s, 1)) dt

depends on s, let us differentiate it with respect to s. To do compu-
tations we can assume we are working in a coordinate chart on § - if
not, break up the integral into pieces that each fit in a chart. Using
coordinates to describe the pairing of the 1-form E and the tangent
vector ', we have

I, = /OT Eu((s, 1)) 8ev*(s, 1) dt,
Thus
1, = / Bu[Eu(v(s,1)) 8ev*(s, 1)) dt
= [10Bu(x(5,)) ev*(s,8) + Eulr(s,£)) ,06r"(s, 1) dt
= [18.Bu(2(5,£)) 807 (s,2) — BBu(1(5,£)) Bev*(s, )]
= / B, Eu(1(5,1)) [0:7” By — Bey” D] dit

using the product rule, then integration by parts, and then the chain
rule. Recalling that
dE = (0.E, — 0,E,)dz"dz”,

we obtain

8,1, = / (dE), 8578y di.
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Thus I, is independent of s when dE = 0. This shows that I, will
be the same for two different paths as long as we can find a smoothly
varying family of paths interpolating between them.

In math jargon, we say two paths ~o,v::{0,T] — S from p to ¢ are
homotopic if there exists a smooth function v:[0,1] x [0,T] — S such
that +(s,-) is a path from p to ¢ for each s, and

V(O,t) = '70(t)’ V(I,t) = 71(t)'
We call the function v a homotopy between 7, and ;. In this ter-
minology, what we have shown is that a closed 1-form has the same
integral along any two homotopic paths.
There still may be a problem with defining

M@Z—LE

where 7 is any path from p to ¢q. Perhaps not all paths from p to ¢ are
homotopic! A nice example is the plane with the origin removed: this
is a manifold, and the two paths from (-1, 0) to (1,0) shown below are
not homotopic:

a
NI

Fig. 2. Two paths that are not homotopic in IR? — {0}

It is pretty obvious that there is no way to smoothly deform the
path 4, to the path 41 without getting snagged on the hole at the
origin. Of course, being ‘obvious’ does not count as a proof! However,
we can really prove this fact by finding a closed 1-form that has different
integrals along the two paths. It is not hard: try

_zdy —ydz
- z? +y?
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This 1-form ‘wraps around the hole’, so it has different integrals along
~o and ~;:

Exercise 80. Show that this 1-form E 1is closed. Show that S E=-7
and [ E=m.

This means that we cannot use ¢(q) = — [ E to define ¢ in a path-
independent manner. We can visualize how E wraps around the hole
if we draw F in the manner described in Chapter 4:

Fig. 3. Picture of E = (zdy — ydz)/(z? + y?)

The fact that E is not exact simply means that there is no function
whose level curves are the lines in the figure. If there were such a
function, say —¢, we would have E = —d¢.

Given a connected manifold S, we say that S is simply connected
if any two paths between two points p, ¢ are homotopic. If S is simply
connected, we can carry out our plan and define ¢ unambiguously when
E is closed. In particular, things are fine on IR™:

Exercise 81. Show that R™ is simply connected by ezhibiting an explicit
formula for a homotopy between any two paths between arbitrary points p, q €
R™.

Now let us show that when S is simply connected our plan really
succeeds! Namely, suppose that S is simply connected and E is a closed
1-form on §. Pick any point p € S and define a function ¢ on S by

M®=—ﬁE
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where v is any path from p to ¢ € S. Let us show that
E = —d¢.

To show that these 1-forms agree at some point ¢, it suffices to show
that they agree when applied to any tangent vector v € T,S. By the
definition of d¢, this means we need to show

E(v) = —v(¢).

To do this, pick a path 4:{0,2] — S with 4(0) = p and v(1) = ¢, and
such that 4'(1) = v, as shown below. Then we have

E(w) = E(v(1))
= & [,
RO

= —(9)

using the fact that the derivative of ¢(y(s)) with respect to s is the
same as the derivative of ¢ in the direction 4'(s) = v.

s=1

Y (H=v

Y (0)=p YD =4

Fig. 4. Proof that E = —d¢

To summarize, we have shown that on a simply connected manifold,
every closed 1-form is exact. In this case, we can always find a scalar
potential for the electric field. Later, we will show how to generalize
this result to p-forms for higher p. For 2-forms, this will let us un-
derstand when we can find a vector potential for the magnetic field or
electromagnetic field.
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Let us finish this section with a few words about loops! A path
7:[0,T] — S is a loop if it ends where it starts, that is, if 4(0) =
¥(T) = p for some point p € S. We also say then that v is a loop
based at p, or that p is the basepoint of 4. Loops play a special
role in electromagnetism, gauge theory and in the new approach to
quantum gravity known as the ‘loop representation’, for which this book
is intended as preparation. The basic idea is that we can understand
fields in a very natural way by imagining a particle that goes around a
loop and is altered somehow in the process. For example, we will explain
later in this chapter how when we move a charged particle around a
loop in space, its wavefunction is multiplied by a number e, where 8 is
proportional to the integral of the vector potential around the loop! A
similar fact holds for loops in spacetime, with the electromagnetic field
F taking the place of the magnetic field. And a grand generalization
of this fact holds for all the forces in the standard model — this is why
we say they are all ‘gauge fields’. Gravity is similar but in a sense even
simpler: gravity is just a manifestation of the curvature of spacetime,
where by ‘curvature’ we refer to the fact that if we take an object
and move it around a loop, trying our best to ‘parallel transport’ it,
nonetheless it comes back rotated.

We conclude this section by describing the role loops play in elec-
trostatics. Let us suppose, as above, that space is some manifold S and
the electric field on S is a 1-form E on S. Consider the integral of E
around a loop 7, i.e. [, E. If we wish to emphasize that -y is a loop we
can write this as

$E.
o

In certain important cases this will be zero! We say that a loop
v:10,T] — S based at p is contractible if it is homotopic to a constant
loop 7 that just stays at p:

n(t) =p

for all t € [0,7). Below we show a contractible loop v and a noncon-

tractible loop 6 in IR? — {0}.
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v

o
™
W,

T

Fig. 5. A contractible loop « and a noncontractible loop é

By the result established earlier, if dE = 0 then we must have [ B =0
if 4 is contractible, since the integral of E around a constant loop is
zero. In particular, if S is simply connected, [, E = 0 for all loops if
dE = 0. This is definitely not true when § is not simply connected; for
example, our friend the 1-form

zdy — ydz
12 -+ y2

on IR? — {0} gives an integral of 27 around the loop § shown above.
More generally, it gives 27 times the winding number of the loop,
that is, the number of times the loop goes around the origin, counted
with a plus sign when it goes around counterclockwise, and with a
minus sign when it goes around clockwise.

There is a converse, too, that allows us to rephrase the electrostatic
equation dE = 0 purely in terms of integrals around loops. This con-
verse is a consequence of Stokes’ theorem relating the curl of a vector
field to its integral around a loop bounding a surface. Let us pick a
chart giving coordinates z* about some point p € S, and consider the
integral of E around a square loop « in the z#-z¥ plane:
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N

Y

xH

Fig. 6. The integral of E around a small square

Suppose this square is given by
{0 <z <e 0<z¥ <€}

Then by Green’s theorem,

/ E-= / ) / “(8.E, — 8,E,) da"dz”
v 0 Jo
and in the limit as € — 0 this is equal to

€ (0uBy — 0,E,) = €(dE)

evaluated at p, plus terms of order €*. So if [, E vanishes for all con-
tractible loops in S, then dE = 0.

In short, a 1-form E is closed if and only if [ E = 0 for all con-
tractible loops «. Similarly, it follows from things we have already
shown that E is exact if and only if [, E = 0 for all loops. In the next
sections we will generalize this result to p-forms. For this, we will need
to generalize Stokes’ theorem.

Exercise 82. Show that a I-form E is exact if and only if J,E =0 for
all loops v. (Hint: if w 1s not exact, show that there are two smooth paths
7,7’ from some point z € M to some point y € M such that f_yw # f_y,w.
Use these paths to form a loop, perhaps only piecewise smooth.)

Exercise 83. For any manifold M, show the manifold S x M is not simply
connected by finding a 1-form on it that is closed but not exact.



Stokes’ Theorem 113

Stokes’ Theorem

The objects which we shall study are called exterior differential forms. These
are the things which occur under integral signs. — Harley Flanders

We have been so busy showing what differential forms have to do
with Maxwell’s equations that we have neglected to properly emphasize
that differential forms are just things that one integrates! This is a
terrible omission, which we now correct. We will see that n-forms can
be integrated over n-manifolds, or more generally n-manifolds with a
‘boundary’, and that the concepts of exterior derivative and boundary
are tied together by the modern version of Stokes’ theorem.

The modern version of Stokes’ theorem is beautiful because it shows
that a number of important theorems of calculus are really all aspects of
the same thing. Let us give rough statements of these to point out how
similar they are. First, there is the fundamental theorem of calculus.
This says that if one has a function f:[a,b] — IR, then

[ F)dz = £(5) ~ o).

It relates the integral of the derivative of f over the closed interval [a, b]
to the values of f on the ‘boundary’, that is, the endpoints. Second,
there is the good old version of Stokes’ theorem. This says that if one
has a 2-dimensional surface S in IR*® whose boundary 8 is traced out
by a loop v:[0,T] — IR?, and A is a vector field on IR?, then

/S(VXE)-ﬁ=/fT,

where 7 is the unit normal to S. Again, this relates the integral of the
derivative of A over S to the integral of A over the boundary 4S. Third,
there is Gauss’ theorem. This says that if one has a 3-dimensional
region R C IR? with smooth boundary 4R, and A is a vector field

defined on R, then
fv-A=[ A7
R 8R

where 7 is the outwards-pointing unit normal to R. This too relates
the integral of the derivative of A over R to the integral of A over the
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boundary dR. In physics, we call [y A - 7 the flux of A through the
surface OR.

Now that we know about differential forms, it is clear that in the
fundamental theorem of calculus we are starting with a function, or
0-form, f, forming the 1-form df = f'(z)dz, and integrating it over a
closed interval. A closed interval is not quite a manifold, since the two
endpoints do not have neighborhood that looks like IR, but we will see
that it is a 1-dimensional ‘manifold with boundary’. We have also seen
that the curl really amounts to d of a 1-form. Thus in Stokes’ theorem
we are really taking d of a 1-form, obtaining a 2-form, and integrating
it over a 2-dimensional manifold with boundary, S. We have also seen
that the divergence in R? is really d of a 2-form. So in Gauss’ theorem
we are really taking d of a 2-form, obtaining a 3-form, and integrating
it over a 3-dimensional manifold with boundary, R.

Roughly speaking, the general Stokes’ theorem says that under cer-
tain conditions, if M is a n + 1-dimensional manifold with boundary
and w is an n-form on M, then

/de = Jam

We will not prove this theorem, but we will make sense of all the pieces
involved. To do this, we will define a manifold with boundary, and
then explain how to integrate differential forms over manifolds with
boundary. We refer the reader to the notes at the end of Part I for
books that prove the theorem — it is not really all that hard!

The concept of a manifold with boundary is a simple generalization
of that of an ordinary manifold. A simple example would be the annulus

{(z,y) € R*: 1 < z* +4* <2}
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Fig. 7. A manifold with boundary: the annulus

The point p = (3/2,0) has a neighborhood that looks just like IR?,
but the point ¢ = (1,0), which is on the boundary, does not. It does,
however, have a neighborhood that looks like the closed half-plane

H? = {(z,y):y > 0}.

Thus in a manifold with boundary we want to allow charts that look
like the closed half-space

H™ = {(z',...,z"): 2" > 0}.

We have to worry a bit about the fact that we have not yet defined what
1t means for a function on H® to be smooth! We want such functions
to be smooth ‘up to and including the boundary’. Perhaps the simplest
way to say this is that a function on H™ is smooth if it extends to a
smooth function on the manifold

{(z},...,z"): "™ > —¢€}

for some € > 0.

So: we define a n-dimensional manifold with boundary to be a
topological space M equipped with charts of the form ¢qo: U, — R"
or @,:U, — H", where U, are open sets covering M, such that the
transition function ¢, © gogl is smooth where it is defined. (We also
assume some technical conditions, namely that M is Hausdorff and
paracompact. We will have a bit more to say about these in a bit.) Note
that a plain old manifold is automatically a manifold with boundary,
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but not vice versa. If M is a manifold with boundary, we define the
boundary of M to be the set of p € M such that some chart ¢,: U, —
H™ maps p to a point in

OH™ = {(z',...,2"): 2" = 0}.
We write M for the boundary of M.
Exercise 84. Let the n-disk D™ be defined as
D™ ={(z1, -, zp): 23 + -4 22 < 1}.
Show that D™ is an n-manifold with boundary in an obvious sort of way.

We say that a function f: M — IR is smooth if for any chart ¢,,
f 0 pq 1s smooth as a function on R™ or H™. Similarly, smooth maps,
vector fields, differential forms, and so on are defined just as in the
‘without boundary’ case. In particular, the tangent space at a point in
the boundary of a manifold works out being a vector space as usual.
One should imagine something like this:

Fig. 8. Tangent space of a point on the boundary

Exercise 85. Check that the definition of tangent vectors in Chapter 3
really does imply that the tangent space at point on the boundary of an n-
dimensional manifold with boundary is an n-dimensional vector space.

Now let us explain how to integrate differential forms. The main
idea 1s that when we do an integral on R" like

1 n ) n
]Rnf(:c,...,:c )dz dz",
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we should think of it as integrating the n-form
fdz' A - -+ A dz™,

not the function f. The reason is that when we change coordinates,
an n-form picks up exactly the right factor of the determinant of the
Jacobian of the coordinate transformation that we need in the change
of variables formula for multiple integrals.

More precisely, suppose w is any n-form on IR". We can write

w= fdz' A --- Adz™,

/nw:/nfd:cl»»-dx",

assuming the integral on the right side converges. Now let us see
whether this definition is coordinate-independent. Suppose that z'*
are another set of coordinate functions on IR", and write

so let us define

w=f'dz" .. dz™

for some other function f'. We saw in the section on the volume form
in Chapter 5 that

dz"" A Adz™ = (det T)dz' A--- A da™

where "
™ Oz
Y Ozv
is the Jacobian of the coordinate transformation from the unprimed to
the primed coordinates. Thus

f = (det T)f".

This implies
fdz' - dz" = / f' (detT)dz' - - dz™,
R" R™
but by the change of variables formula for multiple integrals we have

! 1. n__ 0 m
[ 7@t dat do = [ frda - dom
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Thus we do indeed have coordinate-independence,

fdz!-- dz™ = "de" - - dz'™
e ! ’

tf det T > 0. Recall from Chapter 5 that when det T > 0, the volume
forms dz' A--- Adz™ and dz A - - - A dz'™ define the same orientation.

Now let M be an oriented manifold with boundary, and let w be an
n-form on M. The obvious way to define

[ w

is to break the integral up into a sum of integrals over charts. So
let {¢a} be an atlas of charts for M, with either ¢,:U, — IR™ or
Ya: Us — H™. We can assume that all these charts are oriented. (See
the section on the volume form in Chapter 5.) As it turns out, we can
always find a collection of smooth functions {f,} on M such that:

1. f. is zero outside UL,.

2. Any point p € M has an open set containing it on which only
finitely many of the functions f, are nonzero.

3. Forany pe M,

Y fa=1

These functions {f,} are called a partition of unity. This technical
result uses the fact that M is ‘paracompact and Hausdorff’” — see the
references in the notes for details — but this is the case in all reasonable
examples, and we have been implicitly assuming this hypothesis all
along.

Using this device we have

w:Zfaw

where f,w vanishes outside U,. We may thus write

fow = ga(z', ..., z™)dz A --- A dz”
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where z* are the local coordinates on U, associated to the chart ¢,,
and the function g, vanishes outside U,. We then define

/Mw:;/ga(z:l,...,x")dxl/\---/\dx"

whenever the integrals and sum on the right hand side converge abso-
lutely. Using the fact that all the charts are oriented, one can show
that this definition of f;; w is independent of the choices we have made.

Exercise 86. For the mathematically inclined reader: prove that fy,w is
independent of the choice of charts and partition of unity.

The other thing to note is that if M is an oriented manifold with
boundary, the boundary OM is an oriented manifold in a natural way.
Take an atlas of charts for M and only consider those charts @,: Uy, —
H" that map to the half-space H". Let V, = U, N OM, so that V, is
an open subset of M, and let 1, denote the restriction of ¢, to V.
Then

Po: Vo — R™!

is continuous with a continuous inverse, and the transition functions
Yo © ¢gl are smooth and orientation-preserving. Thus {¢,} form a
collection of charts for 9M, making it into an (n — 1)-manifold, and it
becomes an oriented manifold by Exercise 62.

Exercise 87. Show that 0D™ = S™!, where the n-disk D™ is defined as
in Ezercise 84.

Now we can state Stokes’ theorem again, and everything in it
should make sense. Namely, let M be a compact oriented n-manifold
with boundary and let w be an (n — 1)-form on M. Then

/de:/aMw.

Alternatively, we can drop the hypothesis that M be compact if we
assume that w vanishes outside of some compact set.
The simplest example is the following:
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Exercise 88. Let M = [0,1]. Show that Stokes’ theorem in this case is
equivalent to the fundamental theorem of calculus:

[ #e)d2 = 101y~ 500)

Exercise 893. Let M = [0,00), which is not compact. Show that without
the assumption that f vanishes outside a compact set, Stokes’ theorem may
not apply. (Hint: in this case Stokes’ theorem says f) f'(z)dz = —f(0).)

For fancier examples, it is nice to consider ‘submanifolds’. Given
a subset S of a n-manifold M, we say that S is a k-dimensional sub-
manifold of M if for each point p € S there is an open set U of M
and a chart ¢: U — IR™ such that

SNU = ¢ 'R,

In other words, just as M looks locally like IR™, S locally looks like a
k-dimensional hyperplane in IR", as below:

Fig. 9. A submanifold S C M
Exercise 90. Show that any submanifold is a manifold in its own right in
a natural way.
Exercise 91. Show that S*! is a compact submanifold of R™.

Exercise 92. Show that any open subset of a manifold is a submanifold.
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There is a similar definition for S to be a submanifold with
boundary of an n-manifold M; here for some points p € S,

SNU = ¢ 'H*,

If N is a manifold (possibly with boundary) and ¢: N — M is a smooth
map such that ¢(N) is a submanifold of M (possibly with boundary),
we say ¢ is an embedding of N in M, and we say N is embedded
in M. Applying our generalized Stokes’ theorem to such submanifolds
of R™ for n equal to 2 or 3, we get several classic theorems of vector
calculus: the original version of Stokes’ theorem, as well as Green’s and
Gauss’ theorems.

Exercise 93. Show that if S is a k-dimensional submanifold with boundary
of M, then S is a manifold with boundary in a natural way. Moreover, show
that 0S5 is a (k — 1)-dimensional submanifold of M.

Exercise 94. Show that D™ is a submanifold of R™ in this sense.

Exercise 95. Suppose that § C R? is a 2-dimensional compact orientable
submanifold with boundary. Work out what Stokes’ theorem says when ap-
plied to a I-form on S. This is sometimes called Green’s theorem.

Exercise 96. Suppose that S C R? is a 2-dimensional compact orientable
submanifold with boundary. Show Stokes’ theorem applied to S boils down
to the classic Stokes’ theorem.

Exercise 97. Suppose that S C R? is a 3-dimensional compact orientable
submanifold with boundary. Show Stokes’ theorem applied to S is equivalent
to Gauss’ theorem, also knoum as the divergence theorem.

Next, we will apply Stokes’ theorem to the problem of closed versus
exact forms.
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DeRham Cohomology

The boundary of a boundary is zero. — John Archibald Wheeler

All exact forms are closed but not vice versa. The study of this ‘vice
versa’ is called deRham cohomology, after the inventor of differential
forms. In the previous section we saw that the closed 1-forms on a
manifold are automatically exact if a certain topological condition held,
namely that the manifold was simply connected. If a manifold is not
simply connected, it has some sort of ‘holes’ in it: think of the example
IR? — {0}, or more generally the plane with some finite set of points
removed. One might call these ‘1-holes’ (this is not standard termi-
nology!) because they prevent closed 1-forms that ‘wrap around them’
from being exact. They also deserve that name because they prevent
certain 1-dimensional objects, namely paths, from being homotopic.

There are, however, various sorts of holes besides 1-holes. For ex-
ample, the space IR*~ {0} clearly has some sort of ‘hole’ in it. However,
this space is simply connected; it is easy to visualize how any two paths
in the space are homotopic by a homotopy that ‘dodges the hole’. So
this hole is not a 1-hole. In fact, this hole deserves to be called a
‘2-hole’, because it prevents certain 2-dimensional surfaces from being
deformed into one another, namely the upper and lower hemispheres of
the unit sphere:

Fig. 10. Two surfaces that are not homotopic in R* — {0}

Cohomology is basically the study of holes by algebraic methods. Hav-
ing holes is a topological property of a space, that is, a property pre-
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served by all continuous mappings with continuous inverses, so coho-
mology theory is a branch of algebraic topology. We will barely scratch
the surfaces of this subject, which is becoming ever more important in
physics, but we provide a list of basic references in the Notes at the end
of Part L.

The ‘pth deRham cohomology’ of a manifold M is a vector space,
written H?(M), whose dimension is the number of ‘p-holes’ in M. To
define this vector space, first write ZP(M) for the set of closed p-forms
on M. This is a vector space, since the sum of closed forms, or any
number times a closed form, is again closed. Similarly, let us write
B?P( M) for the vector space of exact p-forms. The exact p-forms are a
subspace of the closed p-forms:

BA(M) C ZP(M)

so the most natural way to see how many closed forms there are that
are not exact is to take the quotient space

HP(M) = B*(M)/Z*(M),

called the pth deRham cohomology group of M. This is really
a vector space, not just a group (every vector space is a group under
addition), but the term group is used because other sorts of cohomology
theories only give groups.

It might not hurt to remind the reader what this quotient space
business really means. An element of HP(M) is an equivalence class
of closed p-forms, where two closed forms w,w’ are equivalent if they
differ by an exact p-form, or in other words, if there is a (p — 1)-form
i such that

w—w = du.

As part of the jargon of cohomology theory, when w and w' are equiv-
alent in this way we say they are cohomologous, and we call the
equivalence class of w its cohomology class:

w]=Av" Jp w—w =du}.

The simplest case of these definitions is H°. Let M be a manifold.
When is a 0-form on M closed? Recall that the 0-forms on M are just
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functions. In local coordinates,
df = 0,f dz*

for any function f on M. Thus a 0-form f is closed if and only if all
its first partial derivatives vanish, that is, if it is locally constant. A
function can be locally constant but not constant if M is not connected.
For example, suppose M has connected components M, ..., My. Then
the most general locally constant function on M is one that takes the
constant value ¢; on the ith component. When is a 0-form on M exact?
When it is d of a (—1)-form, presumably, but there are no (—1)-forms!
Thus by convention we say that the space of exact 0-forms is the trivial
vector space {0} consisting only of the zero function. We thus have

H*(M) = Z°(M)/B°(M) = Z°(M)/{0} = Z°(M),

or in words, the Oth deRham cohomology of M is isomorphic to the
space of locally constant functions on M. This is a vector space whose
dimension is the number of connected components of M. Thus H°(M)
conveys some very basic information about the topology of M. In
particular, H’(M) = {0} if and only if M is connected.

Similarly, as we have said before in other ways, H'(M) = {0} if and
only if M is simply connected, since then every closed 1-form is exact.
But how do we calculate H(M) when it is not zero? There are lots of
ways, but going into these would require a long digression on algebraic
topology. Here we will only describe how to show a given closed 1-form
1s not exact. This is a step in the right direction, since if we can find
a set of closed 1-forms w',...,w? on M such that no nontrivial linear
combination of them is exact:

[Zciwi]:0=>cl,...,cd:0,

1

then we know that H'(M) is at least d-dimensional.
The trick is to use Stokes’ theorem. Suppose § C M is a circle
embedded in M. If w € Q'(M) equals df for some function f, then

Stokes’ theorem implies

o= [0
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because 0S5 is the empty set! So if we can find a circle S C M with

/Sw#O

we automatically know that w is not exact. In fact, we saw this a
different way in the first section of this chapter: there we showed that
if the integral of w around any loop is nonzero, w is not exact.

In fact, this trick can be substantially generalized. Suppose w =
dy is an exact p-form on M. Then for every compact p-dimensional
manifold S and map ¢: S — M, we have

[#w=[ o= [dsw=[ su=0

since S has no boundary. In particular, if § C M is any compact
orientable submanifold, we have

/w:O.
s

There is, in fact, a remarkable converse: if fg ¢*w = 0 for every
map ¢: S — M of a p-dimensional manifold S to M, then w is exact.
For p =1 this fact is only a slight refinement of Exercise 82, but it is
considerably trickier when p > 1. We will not prove this fact, referring
the reader instead to the notes.

This fact gives us a new outlook on exact differential forms: they
are the ones whose integrals are zero! In the following sections we
apply this idea to electromagnetism. We leave the reader with a few
handy facts presented as exercises, and the following pretty formula
that explains the quote by Wheeler at the beginning of this section:

0= / dPw = / dw = w=20
M oM 89M
since M has no boundary.

Exercise 98. Show that the pullback of a closed form is closed and the
pullback of an exact form is exact.
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Exercise 99. Show that given any map ¢: M — M' there is a linear map
from HP(M') to HP(M) given by

[w] = [¢*w]
where w 1s any closed p-form on M'. Call this linear map
¢*: HP(M') - HP(M).
Show that if 10: M' — M" is another map, then

(P@)* = ¢*¢™.

Gauge Freedom

Just as one can get solutions for one of the two equations of electrostat-
ics more cheaply if the electric field comes from a scalar potential, one
can simplify work in magnetostatics if the magnetic field comes from a
vector potential. Remember that the equations of magnetostatics are

dB =0, xdx B =j

where the magnetic field B is a 2-form on space and the current density
j is a 1-form. If B is exact:

B =dA,

the first equation is automatically true, and the second one reduces to
the following equation for the 1-form A:

*dx dA = j.

Given the magnetic field B, a 1-form A is called a vector potential
for B. We say ‘a’ vector potential rather than ‘the’ vector potential
because A is not uniquely determined, since we can add any closed
1-form to A without changing dA. In particular, we can change A to
A + df for any function f without changing B. This way of changing
A is called a gauge transformation. Our freedom in choosing A is
called gauge freedom.
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As we have noted, the same remarks hold in the spacetime context
for the electromagnetic field F. Maxwell’s equations say that this 2-
form satisfies

dF =0, *dx F = J.

We say A is a vector potential for F if dA = F; if this is the case,
Maxwell’s equations reduce to

*dxdA = J.

It can be handy to use the gauge freedom to make the vector poten-
tial satisfy various extra conditions. Choosing such a condition is called
choosing a gauge. Many physicists have gauges named after them,
the most well-known being Coulomb gauge, Lorentz gauge, Feynman
gauge and Landau gauge. We do not want to get very deep into this
issue, but, particularly for mathematicians (who tend to be scared of
this for some reason), we want to give an example.

The simplest gauge is temporal gauge. Suppose we are working on
a spacetime of the form IR x S, where S is ‘space’, and IR x S is given
the Lorentzian metric dt? — 3g, where 3¢ is a Riemannian metric on S
and t, ‘time’, is the coordinate on IR. Differentiation with respect to
t can be thought of as a vector field 0; on R x S. If the 1-form A on
R x S satisfies

A(G,) =0,

we say Ais in temporal gauge. For example, in Minkowski spacetime,
IR*, any 1-form A can be written as

A = Apdt + Aydz + Axdy + Azdz,

and temporal gauge is simply the condition that Ag = 0. To keep our
notation simple, let us define

Ag = A(0))

for any spacetime of form R x S, so that A is in temporal gauge if
Ay = 0.

Given any exact 2-form F on IR x S, we can find some A in temporal
gauge such that dA = F. To see this, start with A, not necessarily in
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temporal gauge, such that dA = F'. Let f be the function on R x S
such that for any point (¢,p) € R x S,

f(tap) = At AO(Sap) ds.
Let
A = A—df.

We claim that dA’ = F and that A’ is in temporal gauge. For the
former, simply note that

dA'=d(A—df)=dA=F.
For the latter, note that
Ai)(tap) = AO(tap) - (df(at))(tap)
= A(t,p) — (8:f)(t, )
t
= Ao(t,p) — at/O Ao(s,p) ds
= 0.
Let us see what Maxwell’s equations on IR x S look like when the

vector potential A is in temporal gauge. Since Ay = 0, we can think
of A as just a 1-form on S that is a function of time. Moreover, since

F =B+ FEAdt and
F=dA=dtN0;A+dsA,

we have

E= —6tA, B = dsA

We will rewrite Maxwell’s equations in terms of the Cal;chy data
(A, E) on a spacelike surface {t} x S. The first pair of Maxwell equa-
tions, namely

dsB = 0, 6tB + dsE = 0,

become tautologies in terms of A:

dgA = 0, atdsA - dsatA = 0,
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while the second pair, namely
xsdg xg E = P, —OF 4+ xsdgxg B = 7

become two equations about the Cauchy data. The first equation, the
Gauss law, is a constraint that the Cauchy data (A, E) must satisfy
at any given time:

*sds *xg FE = p-

The second equation, together with the fact ;4 = —FE, can be sum-
marized as an evolutionary equation that says how the Cauchy data
change with time:

6t(A,E) = (—E, *sds *S dsA -—])

If we are good at differential equations, we can use the evolutionary
equation to determine (A, E) at any later (or earlier) time provided we
know it at time t. Typically one starts with ¢t = 0.

It is worth noting that as long as the continuity equation

atp+*5d5 *xs7 =10

holds (recall that this expresses local conservation of electric charge),
the Gauss law at ¢t = 0 together with the evolutionary equation imply
the Gauss law at later times. We say that the Gauss law is ‘preserved
by time evolution’. The basic idea of the proof is that the evolutionary
equation and continuity equation at any time ¢t imply that

at(*sds *xg FE — p) = 0,

so if the Gauss law holds at time ¢ it will continue to hold later. To see
this, just compute:

at(*sds *xg E - p) = *SdS *xg BtE — atp
= *sds *xg (*sds *xg dsA—]) —atp
—*xg dgxs ] — Op
=0

using the facts that «4 = +1 and d% = 0.
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One other thing to note is that if we have an exact 2-form F' on
R x S, the 1-form A in temporal gauge such that F = dA is not
unique. In other words, there is still some gauge freedom. The reason
is that if w 1s any fixed closed 1-form on space, A’ = A + w will again
be a 1-form on R x S that is in temporal gauge and has dA’ = F. In
particular, we can take w = df for some function f on space. Getting
rid of this remaining gauge freedom, if for some reason we want to, is
more work.

The Bohm-Aharonov Effect

The Bohm-Aharonov effect is important because it dramatizes the im-
portance of the vector potential in electromagnetism, especially in the
context of quantum mechanics, and also shows how funny things can
happen in regions of space that are not simply connected. It also has
technological applications, as we shall see.

First let us do a little problem in magnetostatics that we will need
the answer to later: determining the magnetic field produced by a
current running through an infinitely long cylindrical wire. Suppose
the wire runs along the z axis. We will use cylindrical coordinates
(r,8,2) on R®. Here we should note that z is a smooth function on R?,
so dz is a 1-form defined on all IR?, but r is smooth only away from
the z axis, that is, r = 0, so dr is defined only away from this line.
Moreover, the ‘coordinate’ 6, in addition to being ill-defined on the z
axis, is really only defined modulo 27. Nonetheless, it is customary to
define a 1-form ‘df’, which we can do in rectangular coordinates by

40 — zdy — ydm‘
2 + y2
The calculation in Exercise 80 shows that ‘df’ is closed, but we have
seen that it is not exact, so the name ‘df’ is very misleading. We will
bow to tradition and call it df, however.
Now, suppose the current is cylindrically symmetric and flows in
the z direction, so that

j = f(r)da.
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Then one can calculate that (away from the 2z axis)
*xj = f(r)rdr A df.
Exercise 100. Do this. (Hint: show that xdz = rdr A d6.)

Since the curl of the magnetic field must be the current, the magnetic

field should look something like this:

T
—

7t s

RN

—

~——

ANNNAN

Fig. 11. Magnetic field produced by a current running through a wire

Thus we will assume B has the form
*B = g(r)df
or
B = Mdz A dr.
T
Exercise 101. Show that xdf = 1dz A dr.

Then the first equation of magnetostz;tics, dB = 0, is automatic, while
the second, d x B = %j, is equivalent to ¢'(r) = rf(r).

Exercise 102. Check that d x B = xj holds if and only if ¢'(r) = r f(r).

Integrating, we obtain:

9(r) = 9(0) + [ sf(s)ds.
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We will assume g(0) = 0 so that B does not blow up as r — 0. Suppose
that the wire is of radius R and f is zero outside the wire. Then for
r > R we have

xB = idﬂ

1
o y B = %dz A d'r',

where the total current I flowing through the wire is given by

I=2n /0 * fryrdr.

Actually there is a certain amount of ambiguity to the field B. In
other words, B is not completely determined by the equations dxB = %3
and dB = 0, since we can add to it any 1-form C such that

dC =dxC =0.

Note that such 1-forms actually exist. For example, a 1-form C;dz’
with constant coefficients C; has this property. Why then did we feel
entitled to speak of ‘the’ magnetic field produced by the wire? The
reason is that no 1-form C on IR?® with dC = dx C = 0 goes to zero at
infinity. Our solution for this problem is the unique one for which B
goes to zero as r — oo.

Next, let us do a different problem that turns out to be mathemati-
cally very similar. One can build a solenoid by winding a wire around
a cylinder in a tight spiral. Say the cylinder is centered on the z axis.
If one flows a current through the wire, one obtains a constant mag-
netic field inside the solenoid, and a zero magnetic field outside (in the
idealized situation where the solenoid is infinitely long and the wire is
infinitely thin). That is,

*B = f(r)dz, B = f(r)rdr A df

where f is a constant for r < R and zero for r > R. Now, what is a
vector potential A for this magnetic field?
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Fig. 12. Vector potential produced by magnetic field in a solenoid

Note that in our previous problem we had a current j running along
a wire and sought a magnetic field with dB = 0, dx B = xj. Now we
have a magnetic field B with the same form as the previous xj, and
seek a vector potential with dA = B. It follows that we can borrow the
answer to our previous problem, and take

A= g(r)ds

where
g(r) = /Or sf(s)ds.

In particular, outside the solenoid we have

A= g—)—dﬂ
27
where @ is the magnetic flux through the solenoid, that is, the integral

of B over the disc r < R in any plane of constant z:

d =27 /OR f(r)rdr.

Of course, in this problem there is even more ambiguity in our answer
for A, but all we want is some vector potential for B.

The Bohm-Aharonov effect occurs when a charged particle passes
around a solenoid. It is a purely quantum-mechanical effect, so we
need to explain a small amount of quantum mechanics. Our treatment
will be very brief, so we refer the reader to some books on quantum
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mechanics in the notes for more details. In quantum theory the states
of a physical system are typically described as unit vectors in some
Hilbert space H, called state vectors. The inner product of H is
closely related to the probabilistic nature of quantum theory. More
precisely, if one prepares the system in a state represented by a unit
vector ¥ € H, and immediately does an experiment to see if it is in the
state represented by the unit vector ¢ € H, the probability that one
receives the answer ‘yes’ is

(¢, $)|%.

Such a quantity is called a transition probability, while the inner
product

(¢, %)

itself is called the transition amplitude. Moreover, observables
(that is, measurable quantities) are represented by self-adjoint opera-
tors on H, and the expected value (average measured value) of an
observable A in the state represented by the vector ¢ is given by

(¢, Ag).

While we represent states as unit vectors, it is important to note
that if two states 1) and ¢’ differ by a phase, that is, if

¢I — 6i0¢

for some real number 6, then they describe the same state. The reason
is that no transition probabilities are affected by using 1’ instead of :

(b, 11" = 1, )"

for all ¢ € H. Similarly, expected values are unaffected by the phase.

Magnetism has a remarkable relationship to the phase in quantum
mechanics, which is roughly as follows. First let us be very sloppy, just
to get the idea across quickly! Suppose we have a particle in IR® with
electric charge ¢ in the state described by the vector . Suppose there
is a magnetic field B with vector potential A. If we drag the particle
around a loop <, ¥ is multiplied by the phase
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where h is Planck’s constant, equal to about 1.055 - 1073* joule-
seconds. In particular, if there is some oriented 2-disk D embedded in
IR? such that v runs counterclockwise around the boundary of D, by
Stokes’ theorem we have

[a=],m

¥ D

and the latter quantity is called the magnetic flux through D. Then
as we drag the particle around «, % is multiplied by the phase

e_%qu B,

In fact, the same formulas hold for a loop in spacetime rather than
space, except that B must be replaced by the electromagnetic field F'.

Fig. 13. Moving a particle around a loop

The alert reader will note that we are being too sloppy! First we said
that two vectors that differ by a phase describe the same physical state,
and then we said that if one drags a particle in a magnetic around a
loop, its vector v is only multiplied by a phase! What possible physical
significance could this have? Also, it is an oversimplification to speak
of dragging a particle along a path «, since in quantum mechanics a
particle does not really follow a well-defined trajectory.

To answer this we need to briefly mention path integrals, which are
an approach to quantum mechanics developed by Richard Feynman. In
classical mechanics, a particle moves along some path 4 in IR®. There
is an important quantity called the Lagrangian, which is the kinetic
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energy minus the potential energy, and is a function of time that can
be calculated from the particle’s position and velocity:

L = L(~(),7'(2))-

The exact formula for the Lagrangian depends on the forces acting
upon the particle. If we consider the particle’s path only from time 0
to time T and integrate the Lagrangian over this interval of time, we
get a quantity called the action,

5(7)=/0TL.

The amazing thing about the action is that in classical mechanics, a
particle going from some point p at time 0 to some point g at time T
will always follow a path + that is a critical point for the action. That
is, if we change the path a little bit to a new path from p to q, the action
will be unaffected to first order. Often the path simply minimizes the
action, as if nature were lazy, but this is not always the case. We will
derive the basic equation of classical mechanics, F' = ma, from this
‘action principle’ in Chapter 4 of Part II.

In quantum mechanics the action also plays an important role. Here
the state of the particle i1s described by a vector in a Hilbert which in
the simplest case is just L?(IR%), the space of all complex functions on
IR? such that

[ (@) ¢ < oo

This space has the inner product

(# ) = [ F(2)9(z) .

We call a state vector 9 € L2(IR®) a wavefunction. Given the wave-
function ¢ € L%(IR%), we can think of 1(z) as being the amplitude
density for the particle to be at the point z € IR3, or |1(z)[? as the
probability density, meaning that the probability for it being in some
set U CIR3is

/(@) =
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Now suppose that we have a quantum-mechanical particle that
starts out in the state ¢y at ¢ = 0 and we wish to compute its state
¢ at some other time T'. Suppose first that there is no magnetic field.
Let

P ={y:[0,T] = R* 4(0) = a, 7(T) = b}
denote the space of all paths that start at the point e at time 0 and
end at the point b at time 7. Then

#b) = [ ¥ p(a) Dy

where D~ is some sort of mysterious ‘Lebesgue measure’ on the space
P. In other words, we can think of the particle as taking all paths from
a to b, weighted by the phase factor

exS(n).

One can show that as A — 0, this phase factor oscillates very rapidly
except near the paths that are critical points of the action, cancelling
out in such a way that only the classical path contributes.

We emphasize, however, that doing these integrals over P, or path
integrals, is highly nontrivial, primarily because the ‘Lebesgue mea-
sure’ Dy is not really a measure according to the standard mathemati-
cal definition. Figuring out what D~ really means and how to compute
with it is a serious challenge! There are much easier ways to make quan-
tum mechanics rigorous than via path integrals — for rigor, it is easier
to use the ‘Hamiltonian’ approach. Path integrals are especially useful,
however, for qualitative insight into quantum theory and for practical
perturbative calculations. While many mathematicians have torn out
their hair trying to provide a rigorous foundation for path integrals,
with only partial success, physicists sail right along using them very
effectively.

Next let us suppose that, in addition to whatever forces were already
acting on our particle, there is also a magnetic field B on IR® with vector
potential A. For simplicity let us consider the case when A and B are
independent of time. Then the path-integral formula for the state ¢ at
time 7" should be modified as follows:

86) = [ HH @) Dy
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In other words, the phase factor is multiplied by the additional phase
e haf, 4

Alternatively we can say that the Lagrangian L is replaced by the
Lagrangian

L—qA(v(2)).
In particular, if we are interested in the case when a = b, so that the
path v is a loop based at a, the extra phase factor is just

o wef, 4
or if 4 bounds the disk D,
e"ﬁ.q fD B,

This phase factor does have physical effects, since it can differ for dif-
ferent loops «, producing constructive or destructive interference in the
path integral.

All this about path integrals and the magnetic field applies equally
well to any manifold S we wish to use as ‘space’, not just IR3. The
Bohm-Aharonov effect is an interesting phenomenon that occurs when
S 1s not simply connected. For example, suppose we have a cylindrical
solenoid of radius 1/2 centered on the z-axis, as in Figure 12. If the
solenoid completely excludes the electron, we might as well take space
to be the manifold

S=1R3-{r<1/2},

which is not simply connected. The magnetic field vanishes in S, but
the vector potential does not. Now suppose that we send an electron
from the point a = (—~1,0,0) to the point b = (1,0,0) in S. Since this
is quantum mechanics, the electron can take any path in S from a to

b:
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Fig. 14. Bohm-Aharonov effect: two paths from a to &

However, due to the vector potential, the electron can pick up a
different phase depending on which path it takes from a to 5. This
gives rise to interference, which is the Bohm-Aharonov effect. In short,
in quantum mechanics the vector potential can affect the wavefunction
in significant ways even in regions where the magnetic field is zero!

To see this more precisely, first note that when the magnetic lux
flowing through the solenoid is ®, the vector potential is (up to gauge
freedom)

i)
A= —df
27
so the phase factor '
e, 4

equals exp(—iq®/2k) for the path 4, shown in Figure 14, while it equals
exp(1q®/2h) for the path ;. By adjusting ® to the appropriate value
we can arrange for this phase factor to be 1 for the path v, and —i
for ;. Similarly, by symmetry, every path from a to b has a reflected
version for which the phase factor has the opposite sign! On the other
hand, by symmetry, the standard action S will be the same for these
two reflected paths. Thus

/ A= [ 4
P

vanishes, where now

P ={y:[0,T] —» S: 4(0) = a, y(T') = b}.
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In other words, for the right value of ® there is complete destructive
interference: an electron starting at a will never go to d! This effect
has been observed and is in fact the basis for the technology of SQUIDs
— superconducting quantum interference devices — which are used to
accurately measure magnetic flux.

It is crucial here that the space S is not simply connected: this is
what allows integrals of a closed form along different paths from a to b
to give different answers. While one may object that space is still really
IR?, which is simply connected — and this is true — the point is that
the Bohm-Aharonov effect is most easily understood using a model in
which space is not simply connected.

Wormbholes

A more detailed scrutiny of a surface might disclose that what we had con-
sidered an elementary piece in reality has tiny handles attached to it which
change the comnectivity character of the piece, and that a microscope of
ever greater magnification would reveal ever new topological complications
of this type, ad infinitum. The Riemann point of view allows, also for
real space, topological conditions entirely different from those realized by Eu-
clidean space. — Hermann Weyl.

Wormbholes and monopoles live at the speculative end of theoretical
physics, uneasily close to science fiction. They have never been ob-
served, nor even firmly predicted from some well-established physical
theory. They are, however, quite fun to think about, and very nice
illustrations of deRham theory. We urge the reader to take this section
and the next in that spirit.

A ‘wormbhole’ is a kind of ‘handle’ in space that makes it non-si»mply-
connected. This is easiest to visualize in 2 dimensions. In 2 dimensions,
we can get a wormbhole by taking IR?, cutting out two disks, and gluing
on a handle, that is, a cylinder [0,1] x S*:
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Fig. 15. A wormhole

Alternatively, we can start with the torus T2, which is the 2-
manifold that looks like the surface of a doughnut, i.e., S* x S, and
remove a point. Suitable stretching reveals this to be the same as the
plane with a handle attached:

Fig. 16. Making a wormhole from a torus

This viewpoint makes it easy to prove that our wormhole is indeed a
manifold; first one proves that the circle S is a manifold, then that
S! x S is a manifold, and then that removing a point from a manifold
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leaves a manifold. All of these were exercises in Chapter 1. One can also
develop a very useful rigorous theory of cutting and pasting manifolds,
called ‘surgery theory’, but we will not do this here.

Wormbholes also make mathematical sense when space has 3 or more
dimensions. One can either start with IR"™, cut out two disks D", and
glue on a handle [0,1] x S®!, or start with the n-torus 7", that
is, the product of n circles, and remove a point. Note that we can
give this manifold a metric for which the handle forms a very good
shortcut between two otherwise distant points! Whether such metrics
are physically possible is another matter, of course.

An interesting idea, advocated by the relativist John A. Wheeler, is
that the ‘mouths’ of wormholes can act somewhat like charged particles.
Electric field lines can flow in one mouth and out the other, so that one
mouth looks like a negatively charged particle and the other looks like
a positively charged one, with equal and opposite charge. If we had
a theory that could describe the interaction of the wormhole metric
and the electric field (or other gauge fields) flowing through it, we
might be able to see that such wormholes would have various stable
states, corresponding to the different generations of particles. We could
even imagine calculating their masses. Unfortunately, all this is just
a dream at present, because to treat phenomena accurately at very
small distance scales requires quantum theory, and we have no quantum
theory of gravity of the sort required to treat the dynamics of the
wormhole metric. In fact, in standard general relativity, which ignores
quantum effects, wormholes tend to ‘pinch off’ very rapidly. In what
follows we will completely ignore this problem and simply treat the
wormhole metric as a given. We will also completely ignore quantum
theory and consider only the classical Maxwell equations that we have
been discussing so far.

First, recall that if we think of S* as the unit circle in the IR?, there
is a closed but not exact 1-form on it that goes by the misleading name
df. Consider T, the n-dimensional torus. Using the fact that it is the
product of n copies of S, we obtain n closed but not exact 1-forms on

T™ which we call dy, ..., d0,.

Exercise 103. Work out the details. (Hint - define maps p;: T" — S?
corresponding to projection down to the ith coordinate, where 1 < i < n, and
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let df; = pdf.)

Now consider the 1-form E = df;. If we draw this using the method
described in Chapter 5, it looks like Figure 17, at least in the 2-
dimensional case.

Fig. 17. Electric field on a torus — 1-form picture

Alternatively, we can use a metric to convert E into a vector field. Then
it looks as follows:

Fig. 18. Electric field on a torus — vector field picture

The arrows show how the ‘electric field lines’ wrap around the torus.
Finally, if we remove one point from 7™ and do some stretching, we
obtain our wormhole and an electric field E on it that is closed but still
not exact, since its integral around a loop threading the wormhole is
nonzero. This is shown in Figure 19. Each mouth of the wormhole will
appear somewhat like a charged particle, and the two ends will appear
to have equal and opposite charge, since electric field lines are flowing
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in one end and out the other.

Fig. 19. Electric field on a wormhole — vector field picture

Now let us concentrate on the 3-dimensional case. We have been
rather sketchy so far, since we have not specified metrics on our spaces,
and the full equations of vacuum electrostatics

dE =d+xE =0

require a metric. The equations actually work out more easily if we
work with a slightly different kind of wormhole, namely one connect-
ing two different ‘universes’, as in Figure 20. Here we have drawn the
2-dimensional case, which is the manifold IR x §' — that is, just a cylin-
der, but with a funny metric on it. In 3 dimensions the corresponding
space is IR x S?, with a metric of the form

g = dr* + f(r)?(d#? + sin’ ¢ d6?)

By this, we simply mean that with respect to the coordinate basis of
vector fields 0,, 8y, 0y, we have

1 0 0
Guv = 0 f('f')2 0
0 0  f(r)?sin’¢

The reason for this sort of notation will become clearer in Part III.
Here we are working in a modified version of spherical coordinates in

which the coordinate r € IR ranges from 0 to +oo in this ‘universe’ and

from 0 down to —oo in the other ‘universe’. The function f should be
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positive for all r, and it should equal 2 for |r| sufficiently large, so that
each universe looks like flat Euclidean space when |r| is large enough.
One should attempt to visualize this space. Perhaps the easiest way
is to imagine a bunch of concentric copies of 52, starting out large for
r large, narrowing down to a ‘neck’ of radius f(0) at » = 0, and then
becoming large again at r — —oo.

Fig. 20. Wormbhole connecting two universes

An electric field lowing in one mouth of this wormhole and out the
other would look like a positively charged particle in one universe and
a negatively charged one in the other! We let the reader work out the
details:

Exercise 104. In the space R x $? with the metric g given above, let E
be the 1-form

E = e(r)dr.

Show that dE = 0 holds no matter what the function e(r) is, and show that
dx E =0 holds when

8(7‘) = 4_7r_]:1(_r)3

Exercise 105. Find a function ¢ with E = —d¢.

Note that now E is exact, unlike in the previous case. Heuristically,
the reason is that there are no loops threading the wormhole in this
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case. In fact, one can show that IR x S? is simply connected, so every
closed 1-form is automatically exact. Second, we have

_qdr
" Agr?

for |r| large, so the usual inverse square law holds with the constant
q playing the role of the electric charge of the wormhole. Third, the
integral of xE over any 2-sphere centered about the mouth of the worm-
hole equals g. To do this integral, we need to pick an orientation for
52. The two choices of orientation correspond to the two volume forms
+r?sinfdf A dp, and we pick the standard choice, the one with the
plus sign.

Exercise 106. Let 5% denote any of the 2-spheres of the form {r} x $% C
IR x 52, equipped with the above volume form. Show that

/ *xE =gq.
§2

It should actually be no surprise that the integral of xE over a surface
should measure the flow of the electric field through that surface. For
recall that if we use the metric to forget the distinction between vectors
and covectors, the x operator in 3 dimensions can be thought of as
turning a vector into a little area element orthogonal to it, as in Figure
6 of Chapter 5. Thus the integral of xE over a surface is just a slick way
of talking about the integral of the normal component of the electric
field over that surface.
It is indeed quite natural to call

/ ~FE
52

the charge of the wormhole. For suppose that instead of a wormhole

we simply had an electric charge density p in a region R of Euclidean
IR? with boundary OR = 52. Then by Maxwell’s equations and Stokes’

theorem,
/ *E:/d*E:/*p:/pdmdydz
52 R R R

where the final integral of the charge density over R is what we normally
call the total electric charge of the region.
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Now for a riddle: since electric field lines are flowing in one mouth
of the wormhole and out the other, we would expect that one mouth
would look positively charged and the other negatively charged. But
in Exercise 106 we saw that the integral of xE over any 2-sphere of
constant r gave the answer g. What integral gives the answer —q?

We will give the reader a clue: we must give S? an orientation in
order to integrate over it. For the integral at hand, the standard orien-
tation, given by the volume form 72 sin § df A d¢ on the unit 2-sphere,
gives the answer q. The opposite orientation, given by —r2sin df A d¢,
gives the answer —g. The amount of electric field flowing n one mouth
is the same as that flowing out the other mouth, and it is the orien-
tation of the 2-sphere that keeps track of this distinction between ‘in’
and ‘out’.

Exercise 107. With this clue, work out a careful answer to the riddle.

It is also worth thinking about these integrals in terms of coho-
mology. The 2-form xFE is closed, but since its integral over certain
2-spheres is nonzero it must not be exact. The fact that IR x S? has
closed 2-forms on it that are not exact implies that H?(IR x S?) is
nonzero. Actually, using some algebraic topology one can show that
while the space IR x S2 has H' = 0, it has H? = IR. In 3 dimensions,
a space must have nonzero H? in order for there to be a surface S
with [¢xE # 0 when p = 0. This phenomenon is what Wheeler called
‘charge without charge’.

Exercise 108. Describe how this result generalizes to spaces of other di-
mensions.

Let us return to our wormhole and restrict our attention to one of
the two ‘universes’, namely, the region r > 0. It is easy to see that this
region, which is the manifold (0, 00) x S2, is diffeomorphic to R*—{0}.
That is because in this region we can pretend that 7,8, and ¢ are the
usual spherical coordinates on IR* — {0}. It follows that we can work
with Cartesian coordinates related to these spherical coordinates by
the usual formulas. Just for fun, let us calculate xF in terms of these
Cartesian coordinates on the part of the r > 0 region where f(r) =r.

As usual,
r=1/2? +y2? + 22,
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SO

or or or
dr = —é;dm + —é;dy -+ Edz

zdz + ydy + zdz
/z2 ;42 + 22

Since f(r) = r, the metric looks like the usual Euclidean metric on IR?,
so the usual formulas for the Hodge star operator apply, and

qdr
4rrr?
g x(zdz + ydy + 2dz)
dm(z? + g2 + 22)3
g(zdy A dz + ydz A dz + zdz A dy)
dr(z? + o2 + 22)3/ :

*xE =

In fact, we can define a 2-form

zdy ANdz + ydz Adz + 2dz A dy
(:L.Z +y2 _+_22)3/2

w =

on IR® — {0}, which blows up as » — 0. One can, if one likes, check
directly that w is closed:

Exercise 109. Show using Cartesian coordinates that w is closed on

R3 - {0}.

Since the integral of w over the unit sphere is nonzero, it is not exact.
This implies that H2(IR®—{0}) is nonzero. Using some algebraic topol-
ogy, one can show that it is 1-dimensional; in other words, w forms a
basis for the closed 2-forms modulo exact 2-forms.

Clearly this 2-form w is the natural analog in one higher dimension
of the 1-form on IR* — {0} that we discussed in the first section of this
chapter, namely

_ zdy —ydz
e

This generalizes to all dimensions:
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Exercise 110. Generalize these ezamples and find an (n — 1)-form on
R™ — {0} that is closed but not ezact. Conclude that H™ 1(IR™ — {0}) 1s
nonzero.

In fact, H™! of IR™ — {0} is 1-dimensional. This makes precise the idea
that IR®™ — {0} has a single hole in it, which is an ‘(n — 1)-hole’, since
we can wrap an (n — 1)-sphere around it as in Figure 10.

Monopoles

I think it’s a peculiarity of myself that I like to play about with equations,
just looking for beautiful mathematical relations which maybe don’t have any
physical meaning at all. Sometimes they do. — Paul Dirac

Just as we saw in the previous section a situation where the electric
field is closed but not exact, so there is no scalar potential, there are
situations, at least mathematically speaking, where the magnetic field
is closed but not exact, so there is no vector potential. In physics, this
sort of situation goes by the name of a magnetic monopole. Let us first
give an example of this situation, and then talk a bit about the physics
of it.

In fact, it is very easy for us to get a solution of the equations of
magnetostatics in a vacuum:

dB =0, dxB=0

where B is not exact, because in the previous section we found a solu-
tion of the equations of electrostatics in a vacuum:

dE =0, dxE =0

where xE was not exact. We simply need to take B = xE — in other
words, duality comes to the rescue!
Namely, suppose space is given by IR x 52, as in Figure 20, with the
metric
g = dr’ + f(r)*(d¢? + sin® ¢ d6?)
as in the previous section. Then taking

mdr
B = w——l
“am f(r)
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we know from the previous section that B satisfles the equations of
vacuum magnetostatics but is not d of any vector potential. The same
thing applies if we consider only the region r > 0, which gives the
space IR® — {0}. We call this kind of field configuration a magnetic
monopole, since if we do the integral
B=m
52
over a sphere of any radius about 5%, we get the magnetic charge m,
unlike in ordinary IR?, where the equation dB = 0 implies that B is
exact, hence
B=0
52
for any embedded 2-sphere.

Exercise 111. Check this. (Hint: show that B = (m/4m)sin¢df A de.)

Monopoles were first seriously studied by Paul Dirac. They have
not been repeatably detected, but certain ‘grand unified theories’ pre-
dict their existence. Perhaps the most interesting thing about them is
Dirac’s original argument that if one monopole existed, it would imply
that the electric charge of all particles must be an integral multiple
of a certain fundamental unit. All free particles have charges that are
an integer multiple of the electron charge. However, quarks, which ac-
cording to the standard model are ‘confined’ components of the proton,
neutron and other hadrons (particles interacting via the strong force),
have charges that are multiples of 1/3 the electron charge. Nonetheless,
it appears that all particles do have charges that are integer multiples
of some basic charge. It would be nice to find some reason for this fact.

How does Dirac’s argument go? Recall the relationship between
magnetic fields and the phase. Namely (and we are being sloppy again),
if we drag a particle with electric charge g around a loop v that bounds
a 2-disk D embedded in space, its wavefunction is multiplied by a phase

e_%quB.

If there is a vector potential A with dA = B, this phase is clearly
independent of the disk D we pick, since

LB:LA
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But in the present situation there may be an ambiguity, since there is
no vector potential. For example, say v is a loop that goes around the
equator of the unit sphere:

Fig. 21. Transporting a charged particle around a monopole

Then we can calculate the phase in two different ways! We can use
the disk D;, the northern hemisphere, or D,, the southern hemisphere.
By insisting that these two ways give the same answer, we will derive
Dirac’s result.

We have to be a bit careful about orientations. The standard orien-
tation of the northern hemisphere is the right one to use when comput-
ing [p, B, since that is the one compatible with the orientation on .
(See the section on Stokes’ theorem; the simple way to think about it is
that we need the orientation such that 4 runs counterclockwise around

the disk.) Then

x/2 2x
/ B=" / singdd Adp = =
Dy 4 Jo 0 2

giving a phase of exp(—igm/2k). On the other hand, we need to use
the opposite orientation on the southern hemisphere, so we get

m

Be - [ [T snsdond
~/132 _—E/;r/Z\/O sin ¢ /\¢———é—

giving a phase of exp(igm/2h). For these to be equal we need

e/t = 1
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or in other words, ¢ must be an integer multiple of 27h/m. Now
Planck’s original constant h was defined so that & = h /27, so we have
the result that

g= Nh/m

for some integer N.

Thus, a fixed monopole charge forces quantization upon the electric
charge; but we can equally well think of it the other way around. A
more symmetrical way of putting it is that for any particle of electric
charge ¢ and any monopole of magnetic charge m we must have the
relation

gm = Nh.

Indeed, if you compare the previous section on wormholes to the present
section, it is clear that if particles were mouths of wormholes, there
would be a complete symmetry between electrically charged particles
and magnetic monopoles! This is, of course, nothing but duality.

However, whether or not we ever find magnetic monopoles, it is
pretty clear that for some reason there is not much symmetry between
electric and magnetic charge; the former is common while the latter,
if it exists at all, is very rare. The version of Maxwell’s equations in
terms of F' emphasizes the symmetry between magnetic and electric
fields, and in 4 dimensions we can easily introduce a magnetic current
Jm by analogy with the usual electric current J,:

dF = J,, xdx F =J,.

On the other hand, the standard version in terms of the vector potential
A with dA = F makes dF = 0 a tautology and rules out the possibility
of a magnetic current. Indeed, it is a generalization of the latter version,
the so-called Yang-Mills equation, that describes the weak and strong
forces as well as electromagnetism. However, as we shall see, there is
room for monopoles even in the Yang-Mills equations if we work with
‘nontrivial vector bundles’. But that is the subject of the next part!



Notes to Part 1

1. Maxwell’s equations

Maxwell’s prescient remark appears in his book Matter and Motion, the
first edition of which appeared in 1876, but which has been reprinted by
Dover, New York, 1952. We found this quote in Genesis of Relativity by
Loyd S. Swenson, Jr., Burt Franklin, New York, 1979, which is a short,
readable history of how special relativity was born out of electromagnetism.
Another interesting history of electromagnetism is A History of the Theories
of Aether and Electricity by E. T. Whittaker, Tomash, New York, 1987. A
detailed consideration of the prehistory of relativity theory can be found in
Absolute or Relative Motion? by Julian B. Barbour, Cambridge U. Press,
Cambridge, 1989. This will be of special interest to anyone interested in the
philosophical aspects of relativity.

One of the best ways to get a gut feeling for Maxwell’s equations is to
read the second volume of The Feynman Lectures on Physics, by Richard P.
Feynman, Robert B. Leighton and Matthew Sands, Addison-Wesley, Red-
wood City, 1989. The canonical text on electromagnetism, where everything
is worked out in detail, is John David Jackson’s Classical Electrodynamics,
Wiley, New York, 1975.

2. Manifolds

The quote by Einstein is from ‘Die Grundlage der allgemeinen Relativitéts-
theorie’, which appeared in Annalen der Physik in 1916. It is reprinted
in The Principle of Relativity, translated by W. Perrett and G. B. Jeffery,
Dover, New York, 1923.

Topology is the study of topological spaces and continuous maps be-
tween them. The canonical text is General Topology by John L. Kelley, Van
Nostrand, New York, 1955.
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Differential topology is the study of smooth manifolds and smooth maps
between them. A good friendly introduction is Differential Topology by
Victor Guillemin and Alan Pollack, Prentice-Hall, Englewood Cliffs, 1974.
As a reference work, Differential Topology by Morris W. Hirsch, Springer-
Verlag, New York, 1976, is good to have on hand.

Differential geometry is closely related, but tends to emphasize various
structures one can build up on smooth manifolds. Some we will be dis-
cussing are vector bundles, connections, and metrics. There are many good
books on this subject. Two of our favorites are Frank W. Warner’s Foun-
dations of Differentiable Manifolds and Lie Groups, Springer-Verlag, New
York, 1983, and Lectures on Differential Geometry by Shlomo Sternberg,
Chelsea, New York, 1983. The canonical reference work is Foundations of
Differential Geometry, two volumes by Shoshichi Kobayashi and Katsumi
Nomizu, Interscience, New York, 1963-69.

For people interested in physics, an excellent overview of vast amounts
of differential geometry and other mathematics, with applications to physics
described, is Analysis, Manifolds, and Physics, by Yvonne Choquet-Bruhat,
Cecile DeWitt-Morette, and Margaret Dillard-Bleick, North Holland, New
York, 1982. A second part, by Choquet-Bruhat and Cecile DeWitt-Morette,
appeared in 1989, with the same publisher. This covers many examples and
somewhat more advanced topics. It is good to keep these books by ones
bedside until one learns everything in them.

If the texts above are too intimidating, it might be a good idea to try
A Course in Mathematics for Students of Physics, two volumes by Paul
Bamberg and Shlomo Sternberg, Cambridge University, Cambridge, 1988-
1990. This is an excellent gentle introduction to the mathematics modern
physicists need.

3. Vector Fields

The quote is from Oliver Heaviside’s Electromagnetic Theory, published in
1893, but we found it in Michael J. Crowe’s A History of Vector Analy-
sis, University of Notre Dame, Notre Dame, 1967. Heaviside was a fiery
polemicist in favor of notation for vectors similar to that used in current un-
dergraduate mathematics and physics courses. This notation was very close
to that developed by Gibbs, and around the turn of the twentieth century
there was a battle between this notation and the quaternionic notation de-
veloped by Hamilton and advocated by Tait. Vector fields are a basic aspect
of differential geometry and are treated in all the texts listed in the notes
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for Chapter 2.

4. Differential Forms

The quote from Goethe’s Faust was translated by George Madison Priest.
The quote from Bishop Berkeley is from ‘The Analyst: A Discourse Ad-
dressed to an Infidel Mathematician’, written in 1734, part of which is
reprinted in Volume 1 of James R. Newman’s The World of Mathematics,
Simon and Schuster, New York, 1956. The quote from Grassman is from
his Theorie der Ebbe und Flut, in which he applied his ideas on linear alge-
bra to physics; we found it in A History of Vector Analysis, as cited above.
Grassman’s works were regarded as very difficult in his day, and his devel-
opment of exterior algebra went almost unread, but Gibbs later cited it as
influencing his ideas on vectors. The quote from Weinberg is from his book
Gravitation and Cosmology, Wiley, New York, 1972. His book approaches
general relativity in a pragmatic fashion that downplays differential geome-
try, indeed, he states that “the passage of time has taught us not to expect
that the strong, weak, and electromagnetic interactions can be understood
in geometrical terms, and too great an emphasis on geometry can only ob-
scure the deep connections between gravitation and the rest of physics.”
Our own attitude is in direct contradiction to this, and is represented by the
quote from Weyl’s Philosophy of Mathematics and Natural Science, which
appeared in 1949, and has been reprinted by Atheneum, New York, 1963.

There are many ways to become acquainted with differential forms. A
highly readable introduction is Differential Forms with Applications to the
Physical Sciences by Harley Flanders, Dover, New York, 1989. They are also
treated in most of the texts on differential topology and differential geometry
listed in the notes for Chapter 2.

5. Rewriting Maxwell’s Equations

The quote from Minkowski is from his 1908 address to the 80th Assembly
of German Natural Scientists and Physicians, titled ‘Space and Time’; it is
reprinted in English translation in The Principle of Relativity, Dover, 1923.

6. DeRham Theory in Electromagnetism

The quote by Faraday appears in C. N. Yang’s Selected Papers, where Yang
warns experimentalists not to be intimidated by theorists; see the notes to
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Chapter 1 of Part II. The quote by Wheeler appears in Gravitation, as cited
in the notes to Chapter 2 of Part III. The quote by Dirac is from Abraham
Pais’ essay ‘Playing with equations, the Dirac way’, in Paul Adrien Mau-
rice Dirac, eds. Behram N. Kursunoglu and Eugene P. Wigner, Cambridge
U. Press, Cambridge, 1987. The quote by Weyl is from his Philosophy of
Mathematics and the Natural Sciences, trans. Olaf Helmer, Princeton U.
Press, New Jersey, 1949.

DeRham cohomology can only be fully appreciated if one knows some
other homology and cohomology theories. A homology theory associates
to a space X a chain complex (), that is, a sequence of vector spaces
(or more generally groups) together with linear maps (or homomorphisms)
dy:Cp — Cp_y satisfying d,_1d, = 0. The pth homology of the chain
complex is then

kerd,

imdp.H )

Typically this contains topological information about the space X. The
first homology theory one should learn about is probably singular homology,
which is based on maps from simplices or cubes into the space X. This
is discussed in many books on algebraic topology; for example, William
Massey’s Singular Homology Theory, Springer-Verlag, New York, 1980. The
canonical text on algebraic topology is Edwin Spanier’s Algebraic Topology,
Springer-Verlag, New York, 1981. This may be slightly terrifying to the
uninitiated.

Given any homology theory one can get a cohomology theory, that is,
something that associates to X a cochain complex C?, which consists of
vector spaces with linear maps d,: C? — CP*! satisfying dyt1d, = 0. The
pth cohomology of the cochain complex is then

e - kerd, _

imdp_l

DeRham’s theorem says that under certain conditions the singular cohomol-
ogy of a manifold agrees with its deRham cohomology, and it is the basis
of many applications of algebraic topology to geometry and physics. This
is proved in the books by Flanders and Warner cited above. For a deeper
look at how differential forms are used in topology see Differential Forms
in Algebraic Topology by Raoul Bott and Loring W. Tu, Springer-Verlag,
New York, 1982. For a grand tour of geometry and algebraic topology, try
the 3-volume text, Modern Geometry — Methods and Applications, by B. A.
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Dubrovin, A. T. Fomenko, and S. P. Novikov, Springer-Verlag, New York,
1990.

Stokes’ theorem is proved in any good book on differential forms, such
as the books by Flanders, Choquet-Bruhat et al, Guillemin and Pollack, or
Warner, mentioned above. A nice book that treats Stokes’ theorem in an
elementary fashion and in great detail is Calculus on Manifolds by Micheal
Spivak, Benjamin, New York, 1965.

The fact that a form on M is exact only if its pullback by all maps
¢: S — M integrate to zero is really a statement about cobordism theory
with real coefficients. Cobordism theory is a cohomology theory which is
based on maps from manifolds into a topological space. This is treated
nicely in Volume III of the book by Dubrovin, Fomenko, and Novikov cited
above.

Our favorite introduction to quantum mechanics is the third volume The
Feynman Lectures on Physics, by Richard P. Feynman, Robert B. Leighton
and Matthew Sands, Addison-Wesley, Redwood City, 1989. This needs to
be supplemented by texts that work out lots of problems in detail; a very
thorough introduction to quantum mechanics is A. Galindo and P. Pascual’s
Quantum Mechanics, in two volumes, Springer-Verlag, New York, 1990-1991.
For more on the path-integral approach to quantum mechanics, R. P. Feyn-
man and A. R. Hibbs’ Quantum Mechanics and Path Integrals, McGraw-Hill,
New York, 1965, is an excellent place to start. A detailed rigorous treat-
ment of path integrals in quantum mechanics can be found in Barry Simon’s
Functional Integration and Quantum Physics. This requires a fair amount
of competence in analysis; a good place to acquire such competence and see
its relevance to physics is the 4-volume series Methods of Modern Mathe-
matical Physics by Michael Reed and Barry Simon, Academic Press, New
York, 1980.

It is also good to spend some time pondering the mathematical and
conceptual foundations of quantum theory; for this, Josef M. Jauch’s Foun-
dations of Quantum Mechanics, Addison-Wesley, Reading, 1968, is a nice
place to start. However, we urge the reader not to get too entangled in the
endless debate about the philosophy of quantum mechanics until he or she
is rather competent at using it to solve physics problems!

A brief introduction to SQUIDs appears in Chapter 21 of Feynman’s first
volume, but more can be found in the books on superconductivity cited in
the notes for Chapter 5 of Part II. A nice place to start learning about recent
work on wormholes is ‘Wormbholes in spacetime and their use for interstellar
travel: a tool for teaching general relativity’, by Michael S. Morris and Kip
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S. Thorne, Am. J. Phys. 56 (1988), 395-412.

A good introduction to the Dirac theory of monopoles can be found
in ‘Magnetic monopoles, fiber bundles and gauge fields’, by C. N. Yang,
reprinted in his Selected Papers, as cited in the notes to Chapter 2 of Part
II. To understand the role monopoles play in grand unified theories one
must become well acquainted with gauge theory. Monopoles also play a
significant role as part of pure mathematics; see for example The Geometry
and Dynamics of Magnetic Monopoles by Michael Atiyah and Nigel Hitchin,
Princeton U, Press, Princeton, 1988, as well as the book by Jaffe and Taubes
cited in the notes for Chapter 5 of Part II.
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Chapter 1

Symmetry

Einstein in his lifetime had toiled incessantly to construct a “complete sys-
tem of theoretical physics.” He searched for “the concepts and fundamental
principles” that would allow for a grand synthesis of the structure of the
physical world. Central to this synthesis are the forces, or interactions, that
hold matter together, that produce the multitude of reactions that constitute
natural phenomena.

I believe we are today still very far from this grand synthesis that Finstein
dreamed about. But we do have one of its key elements: the principle that
symmetry dictates interactions, first used by Finstein himself. — C. N.
Yang

Lie Groups

Group theory is the study of symmetry. For mathematicians, symmetry
is worth studying simply for the sake of its beauty, but symmetry is
also very important in physics, because it allows us to at least partially
understand situations that would otherwise be too complicated. Gauge
theories are among the most beautiful, symmetrical laws of physics we
know, and our current theories of electromagnetism, the strong and
weak forces, and gravity are all gauge theories. The first three forces
are described by a kind of gauge theory called Yang-Mills theory, a
generalization of Maxwell’s equations, which we describe in this part.
Gravity, the odd man out, is described by a rather different sort of
gauge theory, general relativity, which is the topic of Part III of this
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book. In this section we give a brief introduction to group theory,
emphasizing the aspects used in gauge theory.

What is a group? A good example is the group of all rotations in
3-dimensional space. Given any two rotations, we can compose them —
do one after another — to obtain a third. Composition is associative,
but not commutative. Why? Take a book and lay it on the table facing
towards one. Rotate it 90 degrees clockwise about the z axis, then 90
degrees clockwise around the y axis. Alternatively, rotate it 90 degrees
clockwise about the y axis and then 90 degrees clockwise about the z
axis! The results are not the same. Note also that there is a particularly
boring rotation, the ‘identity’, which consists of rotating not at all. If
we compose the identity with any rotation we get that rotation back
again. Moreover, any given rotation has an ‘inverse’ rotation such that
if we compose the rotation with its inverse we get the identity. For
example, the inverse of rotating 90 degrees clockwise about some axis
consists of rotating 90 degrees counterclockwise about that axis.

Abstracting these properties, we define a group G to be a set
equipped with a binary operation - : G x G — @G, often called the prod-
uct, an operation ~!: G — G, called the inverse, and a special element
1 € G, called the identity, such that for all g,h, k € G we have

1)(g-h)-k=g-(h-k).
2)g-1=1-g=4.
3)g gt =g"-g=1

We usually leave out the - and write the product of ¢ and A simply
by gh. However, there are some groups where the product is called
‘addition’. In these groups we write the product as g + h, the identity
as 0, and the inverse of g as —¢g. For example, the real or complex
numbers form a group with addition as the product.

Many of the groups useful in physics are matrix groups, that is,
sets of matrices closed under matrix multiplication and inverse, and
containing the identity matrix. For example, the group of all invertible
n X n matrices with real entries is called the general linear group
GL(n,R). Similarly, the group of all invertible n xn matrices with com-
plex entries is denoted GL(n,C). A subgroup of a group is a subset
closed under multiplication and inverse, and containing the identity, so
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we may say that a matrix group is a subgroup of GL(n, IR) or GL(n, C).
Of course, GL(n, IR) is a subgroup of GL(n,C).

Some other important matrix groups are as follows. The special
linear group is the set of matrices with determinant 1; we write
SL(n,IR) for the n x n real matrices with determinant 1, and SL(n, C)
for the n x n complex matrices with determinant 1. We can think
of SL(n,IR) as the group of all volume-preserving linear transforma-
tions of IR™, since the Jacobian of a linear transformation is simply its
determinant.

Just as it is interesting to consider groups of linear transformations
that preserve volume, it is interesting to consider groups that preserve
distances and angles — that is, the metric. If p and q are nonnegative
integers with p + ¢ = n, let g be a metric on IR™ of signature (p, q), for
example,

g(v,w) = viw' 4 4 vPwP — PPt Pyt

We define the orthogonal group O(p, q) to be the set of n x n real
matrices T' that preserve g, that is, such that

9(Tv, Tw) = g(v,w)

for all v,w € IR". The special orthogonal group, SO(p,q), is set
of matrices in O(p, q) that also have determinant 1. If p = n, so that
g is the usual Euclidean metric, we simply call these groups O(n) and
SO(n). Thus SO(3) is the official name for the group of all rotations in
3-dimensional Euclidean space. Note that parity, the linear transfor-
mation
P: (:E,y, Z) - (—:E, -, _Z)

of IR?, lies in O(3) but not SO(3), because it has determinant —1.

The group SO(3, 1) does for Minkowski spacetime more or less what
SO(3) does for Euclidean space. It is called the Lorentz group. (More
generally, we can think of any group SO(n,1) as a Lorentz group.) We
prefer to think of it as the group of 4 X 4 matrices preserving the
standard Minkowski metric

n(v,w) = %00 + viw! + vPw? + viuwd.

It contains the spatial rotations in an obvious way, but also contains
the Lorentz transformations that mix up space and time coordinates:
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Exercise 1. Show that SO(3,1) contains the Lorentz transform mizing up
the t and z coordinates:

cosh¢ —sinhg 0 O
—sinh¢ cosh¢ 0 O
0 0 10

0 0 01

as well as Lorentz transformations mizing up t and y, or t and z coordinates.

Exercise 2. Show that SO(3,1) contains neither parity,
P:(t,z,y,2)— (¢, —z,—y,—2),
nor time-reversal,
T:(t,z,y,2) — (—t,z,y,2),

but that these lie in O(3,1). Show that the product PT lies in SO(3,1).

A very important Lie group in particle physics is the Poincaré group.
This is the group of symmetries of Minkowski space, that is, the group
of all diffeomorphisms of Minkowski space that preserve spacetime in-
tervals. It turns out that any such diffeomorphism is a product of a
translation, a Lorentz transformation, and possibly parity and/or time
reversal.

The orthogonal groups have complex analogs. The most important
is U(n), the unitary group, consisting of all unitary n x n complex
matrices, that is, those that preserve the usual inner product on €"
given by

n
(v,w) = Zﬁ’iwi.
i=1
Finally, SU(n), the special unitary group, denotes the subgroup of
U(n) consisting of matrices that have determinant 1. Of course, one

should check the following:

Exercise 3. Show that SL(n,RR), SL(n,C), O(p,q), SO(p,q), U(n) and
SU(n) are really matriz groups, that is, that they are closed under matriz
multiplication, inverses, and contain the identity matriz.
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The matrix groups we have listed above happen to be submanifolds
of the the vector space of n X n matrices. Moreover, the product and
inverse operations can be shown to be smooth maps, using the explicit
formulas for them. Groups of this type turn out to be the most im-
portant ones in physics. We say a group G is a Lie group if it is a
manifold, and the product and inverse operations -: G x G — G and
~1:G — G are smooth maps. These are named after Sophus Lie, who
began their study in the 1880s; however, the modern definition came
much later.

Exercise 4. Show that the groups GL(n,R), GL(n, C), SL(n,IR), SL(n,C)
O(p, 9), SO(p,q), U(n) and SU(n) are Lie groups. (Hint: the hardest part
is to show that they are submanifolds of the space of matrices.)

Exercise 5. Given a Lie group G, define its identity component Gy to
be the connected component containing the identity element. Show that the
identity component of any Lie group is a subgroup, and a Lie group in its
own right.

Exercise 6. Show that every element of O(3) is either a rotation about
some azis or a rotation about some azis followed by a reflection through
some plane. Show that the former class of elements are all in the identity
component of O(3), while the latter are not. Conclude that the identily
component of O(3) is SO(3).

Exercise 7. Show that there is no path from the identity to the element
PT in SO(3,1). Show that SO(3,1) has two connected components. The
identity component is written SOq(3,1); we warn the reader that sometimes
this group is called the Lorentz group. We prefer to call it the connected
Lorentz group.

Just as the notion of a vector space would be of little use without
the notion of a linear map, and the notion of a manifold would be
worthless without the notion of a smooth map, playing around with
groups requires the idea of a ‘homomorphism’. Given two groups G
and H, we say a function p: G — H is a homomorphism if

p(gh) = p(g)p(h).

As it turns out, this automatically implies some other good things.
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Exercise 8. Show that if p:G — H is a homomorphism of groups, then

p(1) =1

and
plg™") = p(g)".
(Hint: first prove that a group only has one element with the properties of

the identity element, and for each group element g there is only one element
with the properties of g=*.)

A homomorphism that is one-to-one and onto is called an isomor-
phism. Generally speaking one can get away with being sloppy and
regarding isomorphic groups as ‘the same’. For example:

Exercise 9. A 1 X 1 matriz is just a number, so show that
U(1) = {e*: 6 e R}.

In physics, an element of U(1) is called a phase. Show that U(1) is isomor-
phic to SO(2), with an isomorphism being given by

p(eig) _ ( cosf sind )

—siné cosé

(Hint: rotations of the 2-dimensional real vector space IR? are the same as
rotations of the complez plane, C.)

We have said that groups describe symmetries, and given one ex-
ample: SO(3) describes the rotational symmetries of 3-dimensional Eu-
clidean space. In other words, SO(3) ‘acts’ on IR?, meaning that any
element of SO(3) defines a linear transformation of IR®. More generally,
we say a group (@ acts on a vector space V if there is a map p from G
to linear transformations of V such that

p(gh)v = p(g)p(h)v

for all v € V. We also say that p is a representation of G on V.
A representation is really just a special kind of homomorphism. If
we define the general linear group GL(V) to be the group of all
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invertible linear transformations of V', a representation of G on V is
nothing but a homomorphism

p:G — GL(V).

Henceforth, when G is a Lie group, we will restrict attention to repre-
sentations p: G — GL(V') where V is finite-dimensional and p is smooth
as a map between manifolds, so that we can apply the tools of differ-
ential geometry.

The beautiful fact, which will take a while to fully explain, is that
different Lie groups give different equations, called Yang-Mills equa-
tions, which describe various forces in the standard model. The group
is called the ‘symmetry group’ or ‘gauge group’ of the force in ques-
tion. As we will see, electromagnetism has U(1) as its gauge group.
In other words, the Yang-Mills equations with gauge group U(1) are
simply Maxwell’s equations. What makes this case so special is that
U(1) is commutative, or ‘abelian’ — where we say that a group G is
abelian if

gh = hg

for all g,h € G. The Yang-Mills equations are linear precisely when
the gauge group is abelian! In the standard model the strong nuclear
force has as its gauge group the group SU(3), which is nonabelian. This
makes the strong force behave in a nonlinear manner that is far more
subtle than electromagnetism. Furthermore, for any two groups G and
H there is a way to cook up a group G x H called the ‘direct product’
of G and H, and in the standard model the electromagnetic and weak
forces are treated in a unified manner, with the so-called electroweak
force having gauge group SU(2) x U(1). This group is also nonabelian.

Exercise 10. Given groups G and H, let G X H denote the set of ordered
pairs (g,h) with g € G, h € H. Show that G x H becomes a group with
product

(g,h)(gl, hl) = (ggla hh,)a

identity element
1=(1,1),

and inverse
(9,B) "t =(g71, B 7).
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The group G x H 1is called the direct product or direct sum of G and
H, depending on who you talk to. (When called the direct sum, it is written
G® H.) Show that if G and H are Lie groups so is G x H. Show that G x H
s abelian if and only if G and H are abelian.

The gauge group of the entire standard model is SU(3) x SU(2) x
U(1). This is a rather funny group, so there has been much work on
grand unified theories or ‘GUTS’, in which this group is treated as
a subgroup of a nicer group. The simplest choice is SU(5). Gravity
is not described by quite the same sort of ‘gauge theory’ as the other
forces, but as we will see, there is a sense in which it can be construed
as a theory with gauge group SO¢(3,1) or SL(2,C).

In the standard model every particle has a charge, and by this we
mean not only the usual electric charge but also charges that determine
how the particle interacts with the weak and strong nuclear forces. (The
strong force charge is usually called ‘color’.) The wonderful connection
between group theory and charge is that the charge of a particle really
just amounts to a choice of a representation for the gauge group in ques-
tion. This is one of many reasons why group representations have been
extensively studied and, for some groups, completely classified. The
Notes contain some basic references on Lie groups and their represen-
tations; here we will only scratch the surface of this beautiful subject,
concentrating on the simplest examples, namely U(1) and SU(2).

In order to classify group representations we need to know two rep-
resentations are essentially ‘the same’. In other words, we need a notion
of ‘equivalence’ of representations. Say we have two representations

p:G — GL(V), p':G — GL(V).

Then we say they are equivalent if there is a one-to-one and onto
linear map T:V — V' with

p(9)T = Tp'(g)

forall g € G.

The next thing to do is find some representations! Of course, since
every matrix group is already sitting inside GL(V'), where V is IR"
or €™, matrix groups come pre-equipped with a special representation
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called the fundamental representation. However, a group typically
has lots of different representations. There are, for example, various
ways to get new representations from old ones. The simplest is called
taking a ‘direct sum’. Let G be a group and let p be a representation
of G on V and p' be a representation of G on V'. Let p ® p’, the direct
sum of the representations p and p’, be the representation of G on the
direct sum V @ V' given by

(p @ P )g)(v,v") = (p(g)v, p'(g)v")
for all v € V, v’ € V. (Recall that the direct sum V @ V' is the space
of all pairs (v,v') withv € V, v € V')

Exercise 11. Show that direct sum of representations is really a represen-
tation.

A subtler way to form new representations is by taking the ‘tensor
product’ of old ones. First let us recall the notion of the tensor product
of vector spaces. A quick and dirty way to define it is as follows. Let
V and V' be vector spaces. Pick a basis {e;} for V and a basis {e/} for
V'. Then the tensor product V ® V' is the vector space whose basis
is given by all expressions of the form e; ® e;. Thus, the dimension
of V ® V' is the dimension of V times the dimension of V'. Given
v =1v'e; €V and v’ = v’je;- € V', we define the tensor product of v and
v', written v ® v’, by

v ®v' = viv'jei & e;.
The problem with this definition is that it depends on an arbitrary
choice of basis for V and V'. The remedy is to realize that the tensor

product has a certain basis-independent ‘universal property’. Namely,
given any bilinear function

fVxV - W

to some other vector space W — that is, a function f(-,-) that is linear
in each slot — there is a unique linear function

F:veV - W

such that
flw,v") = F(v®v').
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Exercise 12. Prove that the above is true.

The slick definition of tensor product of V' and V"' is that it is any vector
space having this universal property.

Now suppose that p is a representation of G on V and p’ is a rep-
resentation of G on V'. Then the tensor product p ® p’ of the repre-
sentations p and p’ is the representation of G on V ® V' given by

(P& P )g)v®v') = p(g)v ® p'(g)v"
Exercise 13. Show that this is well-defined and indeed a representation.

The direct sum and tensor product are both recipes for making
big representations out of smaller ones. Alternatively, one can look
for a small representation in a big one. Namely, suppose that p is a
representation of a group G on the vector space V. Suppose that V' is
an invariant subspace of V| that is, if v € V' then p(g)v € V' for all
g € G. Then we can define a representation p’ of G on V' by setting

P9 = p(g)
for all v € V'. We call p’ a subrepresentation of p.

Exercise 14. Given two representations p and p’ of G, show that p and
p' are both subrepresentations of p @ p'.

A representation p of a group G on a vector space V always has the
subspaces {0} and V itself as invariant subspaces. If p has no other in-
variant subspaces we say it is irreducible. Irreducible representations
are like the elementary building blocks from which one can build up
other representations. More precisely, if G is compact, every represen-
tation of G is equivalent to a direct sum of irreducible ones. In fact, the
gauge groups appearing in physics are usually compact — with general
relativity being an exception! — and elementary particles typically do
correspond to irreducible representations of these groups.

To get a little feeling for this sort of thing, let us take a good look at
the groups U(1) and SU(2). We begin with U(1), which is just the unit
circle in the complex plane with multiplication as the group operation.
Note that for any integer n, U(1) has a representation p, on € given

by
inf

pn(€®)v = emu.






