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In this paper we study the general electron hopping hamihonian in a magnetic field 
tl = )2t, jc~c luij using topological methods. We find that the energy spectrum E(k~, k~ ) of the 
hamiltonian always has at least p isolated zeros if the magnetic flux through each plaquctte is 
q~ = 27rq/p with p even. In general each zero corresponds to a (1 + 2) dimensional Dirac fermion 
in the continuum limit. Thus H has at least p families of Dirac fermions in the continuum limit. 
For the nearest neighbor hopping hamiltonian we are able to show (in a certain gauge) that the 
zeroes appear at ak=(~r/2+ 2~rnl/p,~/2 + 27rn2/p). We also discussed the relation of our 
problem to Berry's phase and supersymmetry. 

1. Introduction 

In  this paper,  we study the electron hopping hami l ton ian  in a uniform magnet ic  

field 

H = t Z c~cjuil (1.1) 
(0) 

on a two-dimens ional  square lattice, where u,j represent complex numbers  with unit  

modu lus  and  (0')  are nearest neighbors. The product  of the four u~j's a round  a 

p laquet te  e ~ =  u12u23u34H41 gives the flux <b through the plaquette,  where the sites 

1, 2, 3, 4 lie on the corners of the plaquette. We show that when the flux is equal to 

27rq/p with p even, the energy dispersion relation of the electron E ( k x ,  ky)  has 

(some n u m b e r  of) isolated zeroes a round which the electron behaves like Dirac 

fermions.  To  show the existence of these zeroes, we find it useful to introduce some 

topological  methods.  Mathematical ly this problem is closely related to the index 

theorem and  the family index theorem of Dirac operators [1]. In  that case, one has a 

family of Dirac  operators D(a) ,  where the parameter  a spans a manifold  M. For  

a general  po in t  in M, D ( a )  has no zeroes. But sometimes, the Dirac operators as a 
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family have some topological structures which enable one to prove that the Dirac 
operators must have zeroes at certain points in M. A standard technique to 
determine whether a region P c M contains zeroes or not is to construct a winding 
number on the boundary of P. The winding number is defined in such a way that a 

nonzero winding number on the boundary P implies the existence of the zeroes of 
D(a)  inside P. In this paper we will follow a similar approach. We will introduce 

some winding numbers relevant to the zeroes of H and show the existence of the 
zero energy states by showing that the relevant winding numbers are nonzero. 

The hamiltonian (1.1) and its relatives has been studied by many people. Re- 
cently, the hamiltonian has attracted considerable attention because its relevance to 
the quantum Hall effect [2] and the mean field theory of the RVB (resonating 

valence bond) model [3]. Let us discuss the mean field theory of RVB theory in 
more detail. One may use fermion operator c~, a = + ,  - to rewrite the Heisenberg 

model 

H = EJi jSi .  Sj (1.2) 

a s  

( 1 . 3 )  

with a constraint E~,c*,c,~ = 1. In a mean field approach to the Heisenberg model one 

usually choses the order parameter to be 

and finds that the mean field ground state is an anti-ferromagnetic state 

,,,, = ( -  )'m 

if J,j > 0. RVB theory of the Heisenberg model intends to describe a spin liquid 

state without any long range order. To develop the mean field theory of this RVB 

state, one rewrites eq. (1.3) as 

and chooses 

H =  -½ ~_, Jij(c~,~cj,~)(c~ac,/~) + const 

(c oc,o) = - 

as the RBV mean field order parameter. The mean field effective hamiltonian reads 

I L ,  = E n4ju, 
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If  we only have the nearest neighbor coupling the above effective hamiltonian is 
equivalent to the hopping hamiltonian in eq. (1.1) with the spin index suppressed. 
The phases of uij = exp iOij are dynamical variables and correspond to an effective 
lattice U(1) gauge theory. In a more careful treatment of the Heisenberg model, one 

finds the RVB mean field theory actually contains a SU(2) gauge structure [3]. In 
the presence of an external magnetic field, the electron orbital coupling to the 
magnetic field can be absorbed in uij. Therefore the net effect of the magnetic field 
is only to shift the relative chemical potentials of spin-up electrons and spin-down 
electrons. As we will see, by introducing a "spinor" formalism we can describe the 
physics of our problem by an equation of the form 

0 
i -~' t ' (k ,  t) = ~ / ' ( k ,  t ) ,  (1.4) 

where ~ is a p × p matrix hamiltonian. In momentum space, the eigenvalues of 9/P 
have isolated zeroes. Around these zeroes, we can expand eq. (1.4) as 

0 
i-~t ~/, -- (qxax + qya~,) ~/", 

where (qx, qy) represents some suitable momentum coordinates around the zero. 
From general arguments, we can show that the matrices a~ and a y are Dirac 
matrices. 

This paper  is arranged as follows. In sect. 2, we Fourier transform the hamilto- 
nian and reduce the problem to a p × p matrix problem. In sect. 3 we evaluate the 
energy eigenvalues explicitly for p = 2, 3 and 4. We find there are 2 and 4 families 
of Dirac fermions in the continuum limit for p = 2 and 4, respectively. In sect. 4 we 
summarize some general properties of the hopping hamiltonian. In sect. 5, we 
introduce some winding numbers and discuss some of their properties, especially 
their topological invariance and their relations to the zero modes. We argue that the 
zeroes of the hamiltonian with winding number _+ 1, in general, correspond to Dirac 
fermions in the continuum limit. In sect. 6, we show that for even p, the hopping 
hamiltonian eq. (1.1) has at least p zeroes. Actually this is even true for more 
general hamiltonians 

H = E tifticjuij, (1.5) 

where i, j may not be the nearest neighbor. We also introduce the concept of stable 
values of winding number; and demonstrate that for a generic hamiltonian the 
winding numbers  only take their stable values. The winding numbers have zero 
probabil i ty of taking other unstable values. In our case, we show that for even p the 
hamiltonian always has a zero at ak = (~r/2 + 2¢rnl/p, ~r/2 + 2~rnz/p) with the 
stable value of the winding number equal to _+ 1. Therefore we conclude that 
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the hopping  hamil tonian in general contains at least p families of Dirac fermions if 

p is even. In  sect. 7 we evaluate the winding number  explicitly for the following 

hamil tonian  

H -~- EtxC~i+~ciui+~,i ~- lyC!+~ciui+~,i ~- h.c. 
i 

where ty  = t,  t x = "rt and • << 1. When ~" = 1 the above hamiltonian reduces to our 
previous hopping  hamiltonian. In sect. 8 we discuss the relation between the 

winding numbers  and Berry's phase. In sect. 9 we collect some of our observations 

and conjectures. 

2. The matrix hamiltonian 

We work in a gauge in which ui+~, / = 1. Here ~ and )3 are unit vectors in the x 
and y directions. To maintain translation invariance, we are then forced to have 
ui+~,i = (ai~) (and thus ui_~,  i = (ai~) * as required by the hermiticity of H )  so that 

the flux through each plaquette is given by e/~--  a. The integer iv is defined by 
writ ing the site vector as i - ( i~,  i y ) a .  For u~j to be periodic, we require a p = 1 for 
some integer p and thus we can have a = e -i2~rq/p with q and p incommensurate  

integers. 
Transforming  to momentum space we find that 

H = t ~ _ , ( c t k + w C k e  ikxa '+ c k+ _ w C k  e - i k  . a - - ±  2 c ~ c k c o s k y a )  ' 
k 

(2.1) 

where w = - ( 0 , 2 ~ r q / p a ) .  The appearance of w reflects the periodic structure in 
coordinate  space• Here k ranges over the Brillouin zone - f r / a  <~ k x ,  k y  <~ ~r /a .  

We can introduce a p -component  spinor 

= 

Ck+w 

Ck+2w 
Ck+3w 

Ck+pw 

(2.2) 

The terminology "sp inor"  is of course purely formal and notational. In  terms of the 
spinor  'P we have the hamiltonian 

H = t • '  ~[,kf~k~k, (2.3) 
k 
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Fig. 1. T he  square  is the first Brillouin zone, ~r/a <~ k , ,  k ,  <~ ¢;/a. The shaded area is the reduced 

zone, - qr/a <~ k x <~ ~r/a and ~ /pa  ~ k~ ~ ¢'/pa. 

where  the p X p matr ix  • is given by 

/ cos(ky  + w )a 0 

cos (k  + 2w)ya 

0 cos( k + pw)ya 

+ 

0 Z* Z 

z 0 z* 0 
Z 

z* 0 

• - . 0 Z ~ 

z 0 

(2.4) 

t 
and 52 k is the summat ion  over the reduced zone - ~ r / a  < k x < ~r/a, -er /pa  < k v < 
¢r/pa (fig. 1). We have z = e ikxa. More  specifically we have 

~ ,  = 26JF) cos( k.v + 2~rjq/p)a + 6~,~)+ 1 Z* -~- ~(P) , (2.5) 

with x<p) = 1. In what  follows, we will set the lattice spacing a to unity. Our  task Vl, p + l  

is to s tudy the propert ies  of the matr ix  hamil tonian . g '  as a function of k. The  
co r respond ing  eigenvalue equat ion is given by 

Eq, y = 2 c o s ( k y  + 2~rjq/p)~y + z*~j 1 nt- Z ~ j + I "  (2.6) 
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Fig. 2. The hamiltonian ,,~ (for fixed k) can be thought of as describing a particle hopping among p 
sites around a ring. 

The problem of an electron moving on a lattice in a magnetic field has been studied 
extensively of course [4]. Eq. (2.6) is known as Harper 's  equation and has been 
studied most notably by Hofstadter [4] who found the range of E for which 
solutions exists as k x and ky range over the Brillouin zone. We expect that some of 
the results to be given here would be known, but hopefully, our topological 
approach and emphasis on Dirac modes may be new, We are interested here in the 
zeroes of E ( k x ,  ky).  As we will see, around an isolated zero, the theory can be 
described in terms of Dirac fermions. The hamiltonian Jg' can be thought of as 
describing a particle hopping among p sites arranged on a ring. (See fig. 2.) The 
hopping amplitude is z clockwise and z* anticlockwise. There is a site energy given 
by 2 c o s ( k v +  2~rjq/p)  at the j t h  site. The problem has an interesting duality 
property. Were the site energies absent, then the hopping matrix can be readily 
diagonalized. But this diagonalization would turn the diagonal site energy matrix 
into a matrix of hopping form. 

3. Evaluation of energy eigenvalues 

To orient ourselves, we consider the problem for some small values of p. For 
p = 2 (q = 1) we have 

- c o s k v  cos kx) 
J~= 2 " (3.1) 

cos k x c o s  k y  " 

(The p = 2 case is actually special: in eq. (2.6) z and z* "collide." However, we can 
readily show that ,,~ has the form given here.) Thus, 

E ( k , , , k y )  = _+ 2~/cos 2 k x + cos 2 k u (3.2) 
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1 1 ~ )  1 and  there are two isolated zeroes at (k x, ky) equal to (~Tr, and (~r ,  - ½~r). At  

each of  these two nodes, there is a doubly degenerate set of  states. Expand-  

ing a round  these isolated points k x 1 , = 1 t = U r + 5qx ,  k y  + ~qr + 5qy, w e  find . ~ -  

- - (qxOl  + qyO 3). This has the Dirac form 

E T o  - qxz~ - qv'~v = 0 (3.3) 

with the identification Y0 = °2, Yx = io3, Ty = +-iol. The two sets of ,/-matrices are 
related by the t ransformation y, ~ yxt~,~-/~. Thus, the Dirac fermions around the two 
isolated zeroes are parity reflections of  each other. For  p = 3 and q = 1, we find the 
remarkably  simple cubic equation for the eigenvalues of  off 

E 3 - 6 E  - 2(cos 3k~ + cos3ky)  = 0 .  (3.4) 

As k ranges over the Brillouin zone this equation has 3 real roots given by 

E 1 = 2v~- cos 0, E 2 = 2V~- cos(0 + 2~r), and E 3 = 2v~ cos(0 - 3~r) ~ with 0 = 

~arccos[(cos 3k x + cos 3k.~)/2v~-]. Thus, there are three bands. There are four zero- 
energy lines defined by k~ = + ( k . v +  ~ r )  (with uncorrelated + signs). For  p = 4 

and q = 1 we can write 

.~,0= (cos k y  - sin ky)  0 3 ® 1 × (cos ky + sin k v ) 0 3 ® 0 3 

+ c o s k ~ ( 1  + Ol) ® o 1 + sin kx(1 - or) ® 0 2 . (3.5) 

In general i tS(k)  with different k will generate an S U ( p )  algebra. Here we note 

that  if k satisfies sin k~ = 0, ~,~(k) in fact only generates the subalgebra S O ( 4 ) =  

SU(2) × SU(2) of  SU(4). (To see this in a somewhat  more symmetrical basis, we can 
rotate  the Pauli matrices to the left of the direct product  ® by 0 a -~ 0 3, 0 3 ~ -0~ ,  

and note  that (0~ ® 1, 0 3 ® 0~, 0 3 ® 0~) and (1 ® oa, o~ ® 0 3, o I ® o3) generate two 
commut ing  SU(2) algebras.) This implies that the energy has the "factor ized" form 

E ( k ~ =  0, ky)  = _+~/2 + s in2ky + ~ 2 -  s in2kv (3.6) 

(_+ signs not  correlated). The solutions E++, E+ , E +, and E , define four 
branches.  Not ice  that the branches E+ and E_+ ( =  - E+_)  vanish and cross over 
when s i n 2 k  v = 0. Under  the shift k~ k~. + ~ 57r, E+ and E + go over into each 
other. For  general k~ and k y  we have to work out the eigenvalue equation. We find 
the remarkably  simple form 

with the solution 

E 4 - 8 E  2 + 4 - 2 ( cos4k  x + cos4kv  ) = 0,  

= _+ (4 _+ + tco 4 x + co 4 , 11 

(3.7) 

(3.8) 
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E.+ E+_ E+_ 

E__ 

Fig. 3. The electron energy E(k  x = O, kv) as a function of k~. for p = 4. (a) The two branches E ÷ 
E+_ given by eq. (3.6). (b) The two branches E 4 and E given by eq. (3.8). 

v 

ky 

and 

(Again, the + signs are not correlated.) Thus, there are zeroes at (k x, k y ) =  (0,0), 
(0, + (+  _ ~vr), _ ½~r,0), and (__+15~r,~). Again, four branches are defined by 
E++,E+ , E  + , E  according to the four choices of sign in eq. (3.8). (Thus 
E+ = + {4 - 2[3 + ~(cos4k~ + cos4ky)]l /2}l /2.)  We can verify that for sin k,. = 0 

the four branches defined here indeed coincide with the four branches defined in eq. 
(3.6). However, they are not labeled in the same way. Evidently, as defined here, 
E+_ is always positive while E _ is always negative. They never cross zero. But 
when sin kx = 0, E+_ and E touches zero (at ky = ~Tr) with a cusp. (See fig. 3.) 

4.  G e n e r a l  p r o p e r t i e s  

In this section, we summarize some general properties of Jg~, most of which are 
already known in the literature [5]. Inspection of the eigenvalue equation (2.8) 
suggests that we define +j = z-J~b~. The factor of z apparently disappears from the 
equation, but it doesn't quite and reappears in the boundary conditions. In eq. (2.8), 
we had to define ~b0=~b p and ~bp+l=~b t, these now become ~k6=z*p~k'p and 
+'p + a = zP~P'v In other words, when the eigenvalue equation is written in terms of ~b', 
the two equations "a t  the end" depend on z p. This shows that E is invariant under 
the shift k x ~ k x + 2~r/p. By reflection, E is also invariant under the shift ky--* 
ky + 2~r/p. Alternatively, we can write E as a function of e ipk~ and e ipk, so 
E(eiPkx, eipko. Thus, we can restrict our attention to the square 0 <~kx~ 2Trip, 
0 ~ ky ~ 27r/p. We see that this shift invariance is manifest in the explicit solutions 
given in sect. 3. Indeed, the energy spectrum depends only on cos pk~ + cos pky  for 
the cases we have examined (p  = 2, 3 and 4). It is tempting to think that this may be 
true in general. Note that one must take care in verifying that this property is 
satisfied particularly when ~ is diagonalized only for special values of k x or k,,, as 
is evidenced by the potential confusion in our discussion of the p = 4 case. The 
forms given in eq. (3.6) are evidently not shift invariant. But one can easily check 
the energy spectrum, i.e. the whole set of eigenvalues is indeed shift invariant. To 
have shift invariance for each eigenvalue, we must follow the branches with the 
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cusps (eq. (3.8)). We see that for p even, the cases p = 4k and p = 4k + 2 are 
different. For  p = 4k, e ~e~/2 = 1, thus if E has a zero at (17r, t 5~z), then it has a zero 
at (0,0), (0, 2~r/p),  (2~r/p,0) and (2~r/p,2~r/p). For  p = 4k + 2, however, if E has a 

I 1 zero at ( u r ,  u r ) ,  then it has a zero at (Tr/p, ~r/p) but not  necessarily at (0,0). 
These shifts can be explicitly formulated. Define the matrix A and B by 

( A ~  )j = e-iZ~rq/P+j and ( B~/ )j = }j+t .  Then 

A g f ' ( k ~ , k . v ) A - l = g f ' ( k ~  + 2~rq/p, ky) ,  (4.1) 

B ~ ( k x ,  k y ) B - l = ~ ( k ~ , k y +  2~rq/p). (4.2) 

Fur thermore ,  we find that 

and that 

AB = BA e i2"~q/p (4.3) 

ovg= e-~kvA + e+ik~B + h.c. .  (4.4) 

Eqs. (4.3) and (4.4) evidently imply eqs. (4.1) and (4.2). Since q and p are 

incommensura te ,  there exists an integer n such that 

nq/p = 1/p + integer, (4.5) 

n and p are incommensurate.  Introducing A = A" and /~ = B ' ,  one readily shows 
that  

A~X,°(kx, k y ) A  -a = ~ ( k x  + 2~r/p, k.v), (4.6) 

B ~ ( k x ,  kv)[~ l = ~ ( k x ,  k v+21r/p ). (4.7) 

Therefore  A and /} generate the shift transformation. They also satisfy an algebra 

A B  = B A e  i2Èq'2/p. ( 4 . 8 )  

Next,  we note that, regardless of whether p is even or odd, under  k x --* k x + ~r 
and ky--) ky + 7r, ~'~'---, -Jr" and E--* - E .  For  p even, we know in addit ion that 

because of  shift invariance (k  x, k v ) and (k x + ~r, k,. + ~r) are the same point  in the 
sense that the spectrum at (k x, k),) is the same as the spectrum at (k x + ~r, ky + ~r). 
This implies that for p even the spectrum is such that for each state with energy E 
there is a state with energy - E .  This reflection proper ty  may be expressed 
algebraically by saying that for p even, there exists a matrix F such that 

{ r ,  J g }  = 0 ,  r 2 = 1 .  (4.9) 
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Indeed,  it is easy to verify that  explicitly F is given by  

(Ft~ ) j = ( -  )J(i)P/2~j+p/?. (4.10) 

F plays  the role of the "/5 matr ix  in field theory discussions of  the anomaly  and 
index theorems.  We note that  the existence of F insures that  the eigenvalue 
equat ion  for  p even is effectively only of order p /2 .  In fact, we also have 

(C,A} =0, {F,B} =0; {r, ~i) = o, ( c , h }  =0,  (4.11,4.12) 

since eq. (4.5) holds for arbi trary k x and ky and n is an odd integer. Finally, we 
men t ion  the propert ies  of ~ under  reflections of k x and ky. F rom eqs. (2.4) we see 

that  if ~k is a solution of (k  x, ky), then ~b* is a solution for ( - k x ,  kv) with the same 
E.  Also, @ _ j  is a solution for (kx, -ky) with the same E. We also know that  for 
each state with energy E there is a state with energy - E .  Thus, for p even, we 
conclude that  E(kx,  ky) is either even or odd under  k x ~ -k~, or k v--, - k y .  

We see f rom eq. (2.1) that  under  spatial par i ty  x ~ - x ,  a -+ a*, that  is, the flux 

flips sign. Similarly, under  y ~ - y ,  we have a --* a*. 

5. Topological approaches 

We now come  to the main results of this paper,  namely  that topological methods  

m a y  be appl ied to determining the zeroes of  J~'. F r o m  the explicit examples  for 
p = 2 and 4, we suspect that  the energy spectrum has zeroes at k* = ( k * ,  k~*)=  

1 1 ( u r ,  5¢r) and at the points connected to it by shift invariance. We have verified by 
b ru te  force that  this is indeed the case for p = 6 and 8. However,  we would like to 
demons t r a t e  the existence of zeroes for arbi trary even p.  Our  approach  is based on 
the existence of a F such that ( F, oW } = 0. Since F is hermit ian and F 2 = 1, we can 

go to a basis in which 

I _0/)  (5.1) F=(0 
The  matr ix  blocks here are p / 2  by p /2 .  { F, J g  } = 0 implies that  ) f '  has the form 

in this basis, h is not necessarily hermitian.  We have det H = - d e t  h*h. In a region 
where  ~ has no zero mode,  J 'F-1 exists and we can define the line integral 

1 
v = 4 ~ i  d~ Tr  F ° W J ' C  ld ' )~ (5.3) 



X.G. Wen, A. Zee / Winding nurnber 

over a closed loop C in parameter  space, i.e. k-space. The 1-form 

651 

z ~ C _ = T r F ~ - t d j d ' - t r ( h  t d h _ h t  l d h t  ) (5.4) 

is closed (but  not  in general exact), since d tr(h -1 dh)  = - t r ( h  1 d h ) 2 =  0. Thus, u 

is a homotop ic  invariant: within the region where z~' is defined, the loop C may be 
dis tor ted and v remains unchanged.  It also follows that v is invariant under  

variations in ~ as long as u continues to be defined. We can parameterize the 
change in ~ by a parameter  ~', for example, we can take the specific form 

~ f f ( k , ' r ) = ~ ( k ) + ' r & ~ ( k )  and extend the definition of d to be in terms of 
~ ( k ,  ~-). Since dz~¢ still vanishes with the exterior derivative extended over the 

parameter  ~', u is invariant under  distortion in ~ .  Therefore v is a topological 

invariant.  To  see how v counts the zero modes of  ~ ,  let us first show that a 

nonzero  winding number  v along the loop C implies that Jff must  have zeroes at 

certain points  of  the region M enclosed by the loop C. Otherwise, d would be well 

defined over M. Shrinking C to zero, we find that v vanishes. Therefore a nonzero v 

implies the existence of zero modes. For  simplicity we may assume that ~ has zero 
mode  only at a single point  k 0 in M. In general, if there is no accidental degeneracy, 

the zero energy states of J~F(k0) are doubly degenerate. Near  ko, ~ ( k )  takes the 
following form 

in the subspace of  nearly zero energies, where f ( k )  satisfies f ( ko )=  O. One finds 

that  the winding number  v is determined by f ( k )  

u = 2~ri 

in this case. We will be mainly interested in the property of f when v = 1. Assuming 

f ( k )  an analytic function, we can write f ( k )  for u = 1 as 

f ( k )  = lI 1 • ( k  - k o )  + in 2 . ( k  - k o )  + O ( k  - k o )  

near k0, where n~ are two component  real vectors and are linearly independent.  
Choos ing  a proper  coordinate qi = a~j(k - k0) j, we may rewrite 

f ( k ( q ) )  = qx + iqy + O ( q 2 ) .  

One  can easily check f ( k )  indeed gives v = 1. In terms of  q, ~ in the nearly zero 
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energy subspace near k 0 takes the s tandard Dirac form 

f*(k)) 
° eff = f ( k ) qxa x + q YO Y " 

Therefore  a zero of  ~ with winding number  u = 1 in general corresponds to a 
(2 + 1)-dimensional Dirac fermion in the cont inuum limit. (One may object that for 

f ( k )  = r3e  i~', where ( r , ¢ )  represents polar coordinates centered at k 0, ~ is also 1 

and such f ( k )  does not correspond to a Dirac fermion. However,  in general 

I f (k ) l  -- a l k  - k01 + b l k  - k0l 3 + . . . .  The term I k - k0l 2 does not appear  because 
= 1 and f ( k )  is analytic. The situation with a = 0 is accidental and for real 

systems has zero probabili ty of happening. For  a generic hamiltonian a Dirac 

fermion will appear  for each zero of  Jt ~ with ~ = 1.) Since in the preceding 

discussion only  the phase of f ( k )  enters, this indicates that it is more direct to 
consider  an alternative winding number  defined by 

1 1 
u =  (~D d D  (5.6) 

2~ri ac 

where D - det h. We can show the equivalence of the two definitions (5.3) and (5.6) 
by defining h = D/~ with det/~ = 1. Then tr/~ 1 d/~ = d tr log/~ = d log det/~ = 0 and 

thus tr h - 1 d h oc D -  1 d D. In fact we have / ,  = v. The discussion above is in a specific 

basis. In  general, we may wish to t ransform to another basis F---, U F U  -~ and 

Je °--+ U.WU -1 via a unitary transformation U. In the new basis 

d =  T r / ~ -  1 D ~  (5.7) 

is defined in terms of the covariant derivative D ~ - d ~ + [ U - l d U , . ~ f  ~] if U 
depends  on the parameters. In  many cases, however, U does not depend on the 
parameters ,  for instance, the t ransformation from the basis given by (4.10) to the 

one given by  (5.1) is independent  of k. Incidentally we note that in general we can 
define 

d , ,  = Tr F(  ~ - 1  d.~,~) m (5.8) 

for any odd m. A¢,, is closed since d t r ( h - l d h ) m o c t r ( h  l d h ) m + l = 0  by the 

cyclicity of  the trace. In our specific problem, however, the parameter  space (k  x, k~) 
is only  two dimensional and the acre's all vanish identically for m > 1. 

6. Existence  of zero modes  

We are now finally ready to show that ~ has isolated zero modes as suggested 
by the explicit examples for p = 2 and 4. In fact, using the topological approaches,  
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we only need to invoke the general properties given in eqs. (4.6)-(4.9) and (4.12) 
rather than the specific form of ,,~. 

From eqs. (4.12)we learned that in the basis where F =  ,v(/ °l) 'j  ~ and /} have 

( 0  A'I) and ( 0 Ol)respectively. Eq. (4.8) may then be restated as the form A, 2 0 B2 0 ' 

A1/~2 = / ~ l A 2  e i2~rqn2 /p , (6.1) 

t:12/~ 1 = /~2~Zll ei2Crqn2/p (6.2) 

thus implying that 

det .41-1.42 det/}lJ~21 = e i~qn2 = -- 1. (6.3) 

since both n and q are odd integers. Eqs. (4.6) and (4.7) may be rewritten as 

Alh(kx ,  k v ) A ;  1 = ht(k~ + 27r/p, ky),  (6.4) 

B l h ( k x ,  k y ) B 2  1 = h t ( k x ,  ky-[- 2~r/p). (6.5) 

It is convenient to perform a unitary transformation on all the operators here 
A" ~ ei°rAe ior, ~ ~ eiOr~ e-iOr, etc. so that det AlXA2 = 1. Then det/}1B21 = _ 1. 
We then have 

D(kx ,  k y ) =  D*(kx + 2~r/p,k~.), (6.6) 

D(kx ,  k v ) = - D * ( k x ,  ky + 27r/p ). (6.7) 

Consider then the square with corners on (kx, ky), (kx+27r/p ,  kv) , (k,:+ 
2~r/p, k v + 2¢;/p) and (k x, ky + 2¢r/p). (See fig. 4.) Let us call the path by which 
we go around the square anticlockwise passing through these four corners C. As we 
follow the path C, D traces out a closed path in the complex plane. The index /z 
measures the number of times the complex number D winds around the origin. In 
fact, eqs. (6.6) and (6.7) imply that the index is not zero. This is most easily seen 
pictorially. Since we have D(kx, k v ) = - D * ( k  x + 2~r/p, ky) = - D ( k  x + 2~r/p, 
ky + 2~r/p) = D*(kx, kv + 27r/p), the path traced out by D has a certain symmetry, 
namely that opposite sides are related by reflections in the real and imaginary axis, 
respectively. (See fig. 5.) In fig. 5a we depict a situation in which ~ = + 1, while in 
fig. 5b we have/z = - 1 .  In general, as indicated in fig. 5c, the index /~ can be any 
odd integer. In other words, /~(mod2)=l .  It follows that D has to vanish 
somewhere inside the loop and ~ has zero modes at certain k. The advantage of 
this topological argument is of course that it shows that the existence of zeroes is 
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kx, ky + v  k x +v, ky +v  
,ll 

I, 

kx, ky kx +v, ky 

Fig. 4. The contour C in k-space along which the winding number  ~ (eq. (5.6)) is evaluated (wherc 
v = 2~r /p ) .  

(a) 
X 

X 

Y 

(c) 

Y 

X 

Fig. 5. The closed path traced out by D ( k  X, k y )  in complex plane when k goes around the square in 
fig. 4. (a) The winding number t~ = 1, (b) ~ = 1, (c) I x = 3. 
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kx, ky +v  k x +v,  ky +v  

/ ~- ImD=O 

r ~ o 

kx, ky k x +v,  ky 

Fig. 6. The lines on which Re D or Im D vanish. The intersection of the two lines gives the locations of 
zeroes of .~(k). 

robust. Thus, we may consider an arbitrary hamiltonian on the square lattice. The 
zeroes and the resulting Dirac modes will persist as long as the general properties 
(eqs. (4.6)-(4.9), (4.12)) needed for this discussion hold. An alternative argument 
can be constructed by looking at the real and imaginary parts of D. Eq. (6.6) tells us 
that the imaginary part of D reverses sign going from the k x side of the square to 
the k x + 2er/p  side of the square. Thus, we know that there is, running across the 
square from the kv side to the kv + 2vr/p side, a curve on which Im D vanishes. 
Similarly, f rom eq. (6.7), we conclude that there is, running across the square from 
the kx side to the k x + 2~r/p side, a curve on which Re D vanishes. The intersec- 
tions of these two curves give the location of the zeroes of a'F at which both Re D 
and Im D vanish. There must be an odd number of such zeroes. (See fig. 6.) 

Since ~ has many additional symmetries, we can give another proof of the 
existence of the zeroes by using those symmetries. (Our previous proof only requires 
the shift invariance of ~ ( p ) . )  This proof is closely related to the index theorem [1], 
and may provide information about the location of some zeroes. 

It  is convenient to introduce q = k - (~r ,  ½or) and rewrite ~ in eq. (4.4) as 

9f°( k ) = ~ ( q )  = - i e i q , A  + i eiq~B + h.c..  (6.8) 

Defining an operator P by (P~b)j = ~bp j we find 

p2 = 1, P A P  = A t, P B P  = B*, [P,  r ]  = 0. (6.9) 

Therefore 

P,J:(q)P = -14(-q). (6.10) 

In particular for q = 0, P ~ ( O ) P  = -~7~(0). Now, zero-energy eigenstates of ~g~(0) 
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can be chosen  to be the eigenstates of  P.  Assume n+ ( n )  are the numbers  of 

ze ro-energy  eigenstates  of ~,~(0) with P = + 1 ( P  = - 1 ) ,  we may  def ine an index I 

by  

I = n + - n  = T r E =  0 P ,  (6.11) 

where  TrE= 0 is the trace in zero-energy subspace.  Due  to eq. (6.10), P maps  an 

e igens ta te  of  ~,~(0) with a nonzero  energy E to a di f ferent  state with energy - E .  

The re fo re  P has  no diagonal  terms in the subspace  of nonzero  energy states, hence 

TrE ~ o P = 0. W e  obta in  

I =  TrE= o P  + T r E .  o P  = T r P  = 2.  (6.12) 

As  long as a~(0)  satisfies eq. (6.10), its index is two and it has at  least  two 

zero-eigensta tes .  Thus we show that  the hami l ton ian  must  have zeroes at  q = 0, or 

equ iva len t ly  at  k* = 

Using  the proper t ies  of Yd under  reflections a n d / o r  P given at end of sect. 4 and  

the above  pa ragraph ,  we may  in t roduce  local winding numbers  and reach the same 

resul ts  as we ob ta ined  before.  F i rs t  we define a local winding  number  at  k = 0 by  

1 
- - ~  T r F ~  l d ~ ,  

v° = 4qri c0 
(6.13) 

where  C o is a small  circle centered at  k = 0. To show % is a topologica l  invar iant ,  

we not ice  tha t  if W has a zero at  k 1 4: 0, it also has a zero at - k ~ ,  with the same 

wind ing  number .  This is because ~ satisfies 

p w ( l , ) P  = (6.14) 

There fo re  when we deform Yf, zeroes of aug always enter  or  leave the circle C O in 

pairs ,  as long as the de fo rmat ion  does not  violate eq. (6.14). This can only change % 

by  an  even number .  Therefore  v 0 mod  Z2, or equivalent ly,  e i~0 is topologica l ly  

invar iant .  S imi lar ly  one may  def ine a winding  number  at k* (i.e. at q = 0) 

1 ~ T r F ~  l d , ~  
~1 = ~ /  Cl 

(6.15) 

where  C x is a small  circle centered at k*. Using 

k*)P  = - w ( - k  + * * )  (6.16) 

one  can  easi ly  show v~ mod  Z 2 or  e i ~ '  is a topological  invar iant  for the hami l ton i -  
ans  sa t is fying eq. (6.10). In  sect. 7 we will show e i . . . . .  1, e i~0 = 1 for p = 4k  + 2, 

and  e i~"' = - 1, e i . . . . .  1 for p = 4k.  Before ending this section, we would  like to 
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in t roduce  a concept  of stable value of the winding number ,  n is called a stable value 
of  the winding number  of J~F, if all the slightly deformed hamil tonians  Y +  8 ~  (the 
de fo rma t ions  may  be required to respect some symmetries)  have the same value of 
the winding number .  In our case v 1 = + 1, v 0 = 0 for p = 4k + 2, and iv 1 = + 1, 
~o = -+ 1 for p = 4k  are stable values of the winding numbers .  Let us illustrate this 
po in t  by  considering some examples.  Assume ~,~(q = 0) has two zero-energy states 
with v I = 1. N e a r  q = 0 and in the subspace of the two nearly zero-energy states, we 
have  

9~7,(q) = (0  z t 
O)  p = ( 1  1 ) '  F = (  1 ) (6.17) 

2 ' --] ' 

where  z = qx + iG.  We verify that  eq. (6.10) is indeed satisfied. Now let us deform 
~ ( q )  to ~7~(q) + 3j¢7,(q), where 

( f l l ( q )  f12 (q ) )  

8 ~ ( q ) = c ~ f 2 1 ( q )  f22(q) ' 

Due  to eq. (6.10) f ~ j ( q ) = - f , v ( - q ) -  F rom eq. (4.9) we find f l l = f 2 2 = 0 .  If 
f l z (q )  = f2~'(q) is analytic, we have f12(q) -- aqx + bqy + O(q 3) near  q = 0. For  small 
~, it is obvious  that  the winding number  is not  changed 

1 d(z + ffl2) 1 dz  

= c - f c  - - = 1 .  1 Z + of12 27ri ~ z 

There fore  u I = 1 is a stable value of the winding number .  If  Pl = 3, the si tuation is 
very different.  N o w  ~ in the small energy subspace (again assuming the zero- 
energy states of  ~ (q = 0) is two fold degenerate) may  take the form 

0 z t3 ) 

" ~ ( q ) =  z 3 0 " 

After  an arb i t ra ry  small deformat ion  

the winding n u m b e r  becomes 

! r d(z  3 + ~z) 

Pl 27ri Cl z 3 + c z  

where  C 1 is an infinitesimal loop around q = 0. However ,  the winding number  



658 X.G. Wen, A. Zee / Winding number 

before the deformat ion is 

1 d z  3 

Ul= 2eri ~ z3 = 3 .  

This demonstra tes  that Pl = 3 is an unstable value of the winding number.  In  fact 
only v a = + 1 are the stable values of the winding number.  Similarly one can 
demons t ra te  that for p = 4k + 2, % = 0 is the only stable value of winding number  

at k = 0 .  
For  a generic hamiltonian, a winding number  only takes its stable values. In our  

case, if ~ f ' ( k )  satisfies eq. (6.14), in general we have Pa = " t - 1 ,  P0  = 0 for p = 4k + 2 
or  Pl = +-1, % = +_ 1 for p = 4k. The winding numbers  have a zero probabil i ty of 

taking other  unstable values. F rom the argument  in sect. 5 we find that the zeroes at 
k = (~r ,  l~r) and its equivalent points under the shift t ransformation,  in general, 

give rise to a total of p families of Dirac fermions. The zeroes of o~ at other points 
may  also give rise to Dirac fermions. The Hamil tonian ~,~ in general contains at 

least p families of Dirac fermions arising from k = (~r ,  ~2~r) and its shift equiva- 

lences. 

7. Evaluation of the winding number 

One advantage  of introducing topological invariant is that we may be able to 
exploit  our  freedom to distort the hamiltonian J~F. As given in eq. (2.4), ~ has the 

form ~ff=~Wy + ~ where ov~y and ~ x  depends only on k v and kx respectively. A 
" n a t u r a l "  distort ion is to consider J'f~(k, ~ - ) = ~ . +  TJ'f' x. (This distortion can be 
realized physically by allowing for different hopping constants t x and ty along the x 
and y directions.) ~ ( k ,  r )  obviously satisfies eq. (6.14) for arbitrary ~. We can now 
treat rJffx as a perturbat ion on )fly by taking r ---, 0. Notice that we cannot  simply 

set ~- = 0: since OF v does not depend on k x, it has lines of zeroes. 
For  k y ~- l ur ,  )fly has two nearly zero eigenvalues, cos ky  and cos(k + ½pw)v and 

thus we should do perturbation theory in this nearly-degenerate two-dimensional 

subspace. (We are considering p even as always.) Referring to fig. 2, we see that 
these two nearly degenerate states are connected by p / 2  hops through ( p / 2  - 1) 
intermediate  states with energies not equal to zero, all clockwise or all anticlockwise. 
Since the ampli tude for each hop is ~-z or ~-z* according to whether the hop is 
clockwise or  anticlockwise, the net amplitude linking the two states is proport ional  
to either "rP/2(zp/2-b Z *p/2) o r  TP/2(Z p/2-  z'P~2). It turns out that the former 

corresponds  to p = 4k + 2, the latter to p = 4k. Thus, in the subspace we have the 

effective two-dimensional  hamiltonians as ~" --* 0 

o ~ e f  f = COS kyo 3 + K e cos½pkxo 1, p = 4k + 2 
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o r  

5~ef f = COS kyo 3 + gp sin½Pkxo 1, p = 4 k ,  

where  Kp are real numbers .  
N o w  we can evaluate the winding number  at k * =  1 (2Tr, u r )  by  considering a 

small  loop C 1 a round  k*. One finds immediate ly  

1 d(cos  k v - iKp cos~pkx)  

P l :  2'/r-----i~l"C cosky-iKecos½pkx = 1 m o d Z  2. (7.1) 

Fo r  k near  k k = 0, ~ ( k ,  ~-) has no zero for small ~" if p = 4k  + 2. If  p = 4k,  
k = ( 0 , 0 )  and k =  1 1 (7~r, ~ r )  are equivalent under  the shift t ransformation.  Therefore  

0, p = 4k  + 2 (7.2) 
u°=  l m o d Z  2, p = 4 k .  

Al though (7.1) and (7.2) are derived for small ~-, they are valid for arbi t rary ~" since 

% and v I are topological invariant.  

8. Berry's phase 

I t  m a y  also be useful to analyze the situation here in terms of Berry's  phase. Since 
{F, . ~  } = 0, when ~ has a zero eigenvalue, it is also doubly degenerate.  Now 
Berry has taught  us that  when a hamil tonian has a double degeneracy, there is a 
gauge 1-form A such that  the phase  integral e ~a a round a closed loop encircling that  

degeneracy  m a y  have a nonzero phase. Thus, we can define A = (6 ,  d ~ )  where 6 is 
an e igenfunct ion of ~ :  J f ' ( k  x, k y ) ~ ( k  x, ky) = E(k x, k v ) 6 ( k x ,  ky). All we have to 
do is to in tegrate  fA around a closed loop in (k  x, ky) space encircling the point  in 
(k X, ky) space where we suspect the zero of energy to be. If  we find that  e ~A = ( - 1), 
then there is indeed a zero. Otherwise there is no zero or at most  an accidental  
degeneracy  at zero energy. Unfor tunate ly ,  to use this Berry's  phase approach,  we 
have  to find the eigenfunctions 6 of Y ,  which would amount  to solving the 
p rob lem.  ( In  the context  of Berry's  original problem,  this step corresponds to 
de te rmin ing  an eigenfunction of the " ins t an taneous"  hamil tonian.)  Incidentally,  this 
underl ines the difficulty in the s tandard formal ism that  to calculate Berry 's  phase  
one has to essentially solve the hamil tonian.  

9. Conclusions 

I t  m a y  be  useful to record the explicit forms of the reduced "hami l ton ian"  h. For  
p = 2 we have 

h = 2 ( c o s k  x + / c o s k y ) ,  (9.1) 
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for  p = 4 

and  for  p = 6 
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sin ky cos k x 

h = 2 - i sin k x - COS ky 

h = 

ia 1 z* z ] 

z ia 2 z* ) . 

z* z ia 3 

(9.2) 

(9.3) 

W e  have  def ined  a j  = 2[cos k y  + ( j  - 1)~vr]. 

As  the d iscuss ion in sect. 5 suggests, D = det  h should have a relat ively s imple 

form. Indeed ,  we have for p = 2 

D = 2 ( c o s k  x + / c o s  k v ) ,  

D = - 2 ( s in2ky  + i s i n 2 k x ) ,  

D = 2(cos 3k x + i c o s 3 k y ) .  

(9.4) 

(9.5) 

(9.6) 

for  p = 4 

and  for  p = 6 

It  is t e m p t i n g  to conjecture that  this pa t t e rn  holds for general  p.  W e  can now check 

the topo log ica l  a rgument  given in sect. 5 explicit ly.  Since we know the explici t  forms 

of  F and  Jf~, it is s t ra ight forward though somewhat  tedious to work  out  what  h is. 

W e  f ind tha t  for p = 4k  + 2 

(9.7) • X (p/2) ~ (p/2) ~(p/2)  ~ .  
h a B = l a 2 a _ l V a B  + a _ k , , ~ Z ' ~ v a _ k _ l , B ~  • 

(9.8) 

Here  the indices  a, fl run from 1 to p / 2  = 2k  + 1. We have def ined 

a j  = 2 cos (ky  + 2 ~ j / p ) .  

R e m a r k a b l y ,  the reduced " h a m i l t o n i a n "  h for p = 4k  + 2 has essential ly the same 

form as the or iginal  hami l ton ian  for p / 2  = 2k  + 1. (This is reminiscent  of cer ta in  

r a n d o m  systems in which a p rob l em in d d imension  can be related to a p rob l e m in 

d / 2  dimens ion . )  F o r  p = 4k  we f ind that  

h ~ # =  - 2 c o s ( k  + 2~ra / n ] 3  (p /2 ) -  ( - -  ] a3(P/2) z - -- ] a'~(P/2) "* 

-- ]k ]  ~(p/2) ,~(p/2)  Z* .  (9.9) + [ 1  q._ (__'~k]~(p/2)~(p/2),, ] 1,.B p/2,  a a -}- [1 -- ( ,/ ] 1,a ~p/2.[~ 
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One may check that for p = 4, H given by the above formula is equivalent to eq. 
(9.2). 

h = 

and 

For  p = 8 

- 2 c o s ( k y  + J~z) - z *  0 z 

z 2 sin k y z* 0 

0 - z  2 sin(kv + ¼7r) - z *  

z* 0 z 2 cos ky 

(9.10) 

D = 2(sin4k~, + i s in4kx) .  (9.11) 

We also note that the structure of the problem admits a hidden su/persymmetry. 

We can define" the supersymmetry generators Q = (h 0 ) °  0 and Q* = t~ u 1 °  ht). Then 

Q2 = Qt2 = 0. We have ~ -  Q + Q* and thus 

is a supersymmetric hamiltonian. 
Since ~ 2 Q  = Qgff2 = QQ,Q, we have [Q, ~ 2 ]  = 0. Thus, if ~ 2 ~  = E2+, Q~b is 

also an eigenvector with eigenvalue E 2. We note that if 

is a zero mode of ~ 2 ,  then h*h~l = 0 which implies h~b a = 0 since ~]hth~l = O. 
Similarly, htq~2 = 0. Thus, Q~ = Q*q~ = 0. The vacuum states (lowest energy states) 
of ~ 2  respect the supersymmetry if and only if the vacuum energy is zero. Our 
previous result can be restated as in the family of the supersymmetric hamiltonian 
~ 2 ( k )  there must exist a Hamiltonian JY~2(k0) whose vacuum states are invariant 
under the supersymmetry (the supersymmetry is not spontaneously broken). 
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