Model-Based Oversampling for Imbalanced Sequence
Classification

*
Zhichen Gong, Huanhuan Chen
University of Science and Technology of China, Hefei, China

zcgong @ mail.ustc.edu.cn, hchen@ustc.edu.cn

ABSTRACT

Sequence classification is critical in the data mining commu-
nities. It becomes more challenging when the class distribu-
tion is imbalanced, which occurs in many real-world applica-
tions. Oversampling algorithms try to re-balance the skewed
class by generating synthetic data for minority classes, but
most of existing oversampling approaches could not consider
the temporal structure of sequences, or handle multivariate
and long sequences. To address these problems, this pa-
per proposes a novel oversampling algorithm based on the
‘generative’ models of sequences. In particular, a recurrent
neural network was employed to learn the generative me-
chanics for sequences as representations for the correspond-
ing sequences. These generative models are then utilized
to form a kernel to capture the similarity between different
sequences. Finally, oversampling is performed in the kernel
feature space to generate synthetic data. The proposed ap-
proach can handle highly imbalanced sequential data and is
robust to noise. The competitiveness of the proposed ap-
proach is demonstrated by experiments on both synthetic
data and benchmark data, including univariate and multi-
variate sequences.

Keywords

Imbalanced learning; Model space; Oversampling; Sequence
classification

1. INTRODUCTION

Imbalanced learning aims to tackle the adverse influence
on learning algorithms raised by the (relative or absolute)
bias of the size of different classes [1, 2, 3]. Imbalanced
dataset has at least one class where the number of examples
is far less than others so that the traditional classifiers usual-
ly favor the majority, ignoring the rare yet interesting target
class. With the increasing requirements of big data appli-

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM’16 , October 24 - 28, 2016, Indianapolis, IN, USA

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4073-1/16/10. .. $15.00

DOI: http://dx.doi.org/10.1145/2983323.2983784

1009

cations, this problem has been becoming more challenging

[3].

Roughly speaking, the approaches to imbalanced learn-
ing can be divided into two main streams, i.e., cost sensitive
learning [2] and resampling [4, 1]. Cost sensitive learning as-
signs different penalties for the misclassification of different
classes so that more penalties will be given if points in minor-
ity classes are misclassified to majority classes. Resampling
based learning methods are to oversample the minority and
undersample the majority [4], which can be further divid-
ed into random oversampling/undersampling [3], synthetic
oversampling/undersampling [4] and other variants, e.g. da-
ta cleaning approaches [3]. Oversampling has the advantage
of more flexibility [4], since it alleviates the problem from the
data level. This paper will investigate oversampling methods
for binary sequence classification. Without loss of generality,
we assume that the positive class is the minority class.

A sequence is a series of observations from a certain dy-
namical process. Sequence learning is ubiquitous in the field
of health care [5, 6], genetics [7], engineering control [8], mu-
sic [9], video prediction [10] etc. Sequences may be of high
dimensionality and varying lengths. Sequences differ from
normal vectorial data because they usually contain temporal
dynamics over time.

When sequence classification meets imbalanced classifica-
tion, it becomes more challenging for traditional classifica-
tion algorithms to handle. For example, in medical diagno-
sis, the DNA sequence of patients with a particular disease
is much more rare than that of the healthy controls [5, 6].

To re-balance the class distribution, classical interpolation-
based oversampling methods are in the danger of generating
synthetic minority samples in improper regions, e.g. the
region of the majority class(es). This may damage the o-
riginal data distribution and cause over-fitting [3]. Besides,
existing oversampling approaches usually ignore the tempo-
ral information of sequences, which limits their capability in
real-world applications.

The most widely used oversampling algorithms include
random repetition [3], SMOTE [4], BorderSMOTE [11], AD-
ASYN [12] and INOS [13] etc. Random repetition simply
replicates the minority data points to enrich the minority
class, which might lead to over-fitting [3]. SMOTE gener-
ates new samples evenly in the minority region [4]. Bor-
derSMOTE gives more emphasis to points near the class
border [11]. ADASYN makes use of the proportion of ma-
jority points in the K nearest neighbors of a minority point
as its sampling probability [12]. However, these methods do
not match the temporal dynamics of sequences.

INOS re-scales the original sequences in each time step to
prevent the synthetic data from damaging the original co-
variance structure [13]. To calculate the covariance among
different time steps, INOS requires that the sequences be u-
nivariate and of equal length, which might be hard to satisfy
in most real-world applications. Besides, the high computa-
tional complexity of the covariance limits the scalability of
INOS to long sequences.

A sequence is generally generated from a generative mod-
el. It is un-intuitive to directly sample synthetic data in the
data space. This paper considers generating new synthetic
data according to the generative models of sequences. Our
work is motivated by representation learning [10, 8] and ker-
nel learning [14, 15]. In this paper, we propose an algorithm
that generates new synthetic data in a model-spanned repre-
sentation space. In particular, we first learn representations
for sequences to take advantage of the sequential order in-
formation using a special kind of recurrent neural network
(RNN). Then the sequence representations are utilized to
compute a kernel to preserve the similarity constraints. The
representations and kernel parameter are tuned iteratively
for better representation and discrimination. Finally, in the
learned kernel feature space, oversampling is performed.

The rest of this paper is organized as follows. Section 2
introduces the background. Section 3 details the proposed
algorithm. In Section 4, experiments are performed using
both synthetic data and benchmark data. Section 5 con-
cludes the paper.

2. BACKGROUND

Traditional classification algorithms usually have difficul-
ty in dealing with imbalanced sequence datasets. They po-
tentially assume that the class distributions are balanced.
However, in imbalanced scenarios, the majority class bene-
fits more than the minority class. It overwhelms the minor-
ity class and pushes the classifier boundary to the minority
region. This results in high false negative rate and low recall.
Oversampling gives a solution by generating new synthetic
data for minority class to re-balance the class distribution.
Existing oversampling approaches mainly sample the origi-
nal signal space of sequences [3].

It is notable to point out that existing approaches in this
line do not concern modeling the true generative mechanis-
m of the original data [3, 4]. By contrast, the proposed
approach in this work is to learn generative models for se-
quential data. Then it samples the model-spanned space
[8], which is safer for simple yet efficient interpolation based
oversampling techniques, such as SMOTE. Because our ap-
proach is based on RNN and kernel learning, we will discuss
the background on these two topics.

2.1 Recurrent Neural Network and Reservoir
Computing

A recurrent neural network (RNN) takes account of the
combinational influence of the past input history and the
current input for each time step [9]. The autocorrelation
of the sequence can be effectively preserved in this manner.
In contrast to Markov process [16], which assumes a hard
forgetting point for the past history, RNN does not specify
an explicit memory length. This implicit memory ability
enables RNN a powerful tool in text processing [17], music
data mining [9], video analysis [10] and speech processing
[16] ete.

1010

Reservoir model [18] is a kind of RNN. It has a nonlinear
sparse recurrent network, called reservoir, which offers ver-
satile dynamical features for the input sequence if designed
properly. For more details about the reservoir model, please
refer to [18].

Learning in the model space [8, 19] tries to use the gen-
erative mechanism of data to build a model for each data
item. Learning algorithms are then performed in the space
spanned by these models. Distance between model functions
is treated as the distance of original data [8]. Our work is
similar to model-based kernel [19] in terms of taking advan-
tage of kernel learning techniques, but differs from that in
the way we learn the generative model and kernel [19].

2.2 Kernel Target Alignment

Kernel learning is important in support vector machine
[20, 21]. A kernel function K : R” x R® — R implicitly
transforms the data into the infinite dimensional Hilbert s-
pace, encapsulating more nonlinearity and separability. There
are a set of possible kernel functions available, such as Gaus-
sian kernel, polynomial kernel etc. However, to determine
a proper kernel function and its parameters for a task is
not easy. Instead of trying different kernel functions, di-
rectly learning a kernel has been actively invested recently
[14, 15]. Kernel target alignment learns a kernel by defining
a similarity between kernel matrices [22]. Centered kernel
target alignment [15] has been shown to be independent of
data distribution, which makes it extremely suitable for im-
balanced learning.

Previous oversampling approaches in imbalanced data clas-
sification usually ignore the generative mechanism of da-
ta. So the generated synthetic data may be not consistent
with the true data dynamics. As a remedy, we propose to
learn generative models for sequential data as representa-
tions. Oversampling is performed in the model space instead
of the original signal space.

3. LEARNING REPRESENTATIONS AND K-
ERNEL

3.1 Learning Generative Models for Sequences

Representation learning uses a generative model, such as
a neural network, to learn representations for images, text
[10] etc. In this work, we choose the reservoir model as the
base model because it enables the proposed approach: 1) to
learn parsimonious representations for sequences. 2) to take
advantage of the structure information of sequences using
the relative sequential order. 3) to perform learning with
fewer parameters.

Echo state network [18] (ESN) is a kind of reservoir mod-
el, which constitutes an un-trainable recurrently connected
dynamical reservoir and a trainable linear readout mapping.
The reservoir is specified randomly but s.t. the maximum
eigenvalue of reservoir weight matrix is less than 1. For a
given task, the reservoir is usually selected by restarting and
cross-validation. The readout mapping is learned by linear
regression, trying to approximate the target sequence.

Assume the generative mechanism of sequences is time
invariant, the fading memory of an echo state network is
competent to capture this generative distribution.

To justify the randomness of ESN, Rodan et al. [23] pro-
posed a deterministically built alternative, i.e. cycle reser-

Faithful sequence modeling

/

Signal space

5\

Different for

Same for all sequences

= Readout ,
__ mapping-

each

sequence

Space for

oversampling
:
E—— Kernel o ’
- DK
Kernel feature space

K(x.x)=exp{~{(x,—-x,)Qx —x)} O A synthetic point
XA true point

Similarity capturing X A true point

Figure 1: The graph demonstration of oversampling in the generative model-spanned space.

voir with jumps (CRJ). Different from ESN, the neurons
in CRJ reservoir are uni-directional connected, forming a
circle; and bi-directional connected, forming jumps on the
circle. The input connections share the same weight r; > 0.
The sign is determined randomly [23]. All the cycle connec-
tions share a same value r. > 0. Jump connections share the
same weight r; > 0. By constraining the network structure,
the number of parameters is significantly reduced. Figure 1
demonstrates the key steps of this work.
The form of CRJ is generalized as:

{

where S(t) € R" is the reservoir state, N is the number
of neurons in the reservoir; X(t) € R™! is the input with
an additional bias term, ¢t € {1,2,--- ,T}, T is the length
of the sequence, n is the number of variates; R € RV*V
is the reservoir weight matrix, V.€ RY*+1 ig the input
weight, W € RO is the output weights, O is the number of
output neurons; g is the state transition function, which is a
nonlinear function and usually taken as tanh or the sigmoid
function.

Given a sequence X = {X(1),X(2),---,X(T)} as the in-
put, where T is the length of the sequence, the reservoir
neurons take account of the input memory to collect the se-
quential order information and convert the input into the
reservoir state space. The reservoir state not only offers the
current input information but also remembers the cumula-
tive correlation along the temporal axis. Denote the col-
lection of target output items as Y and the reservoir state
as S. The readout mapping is trained by one-step-forward
prediction. Thus Y (¢) = X(¢ + 1) in this scenario. Then

S(t+ 1) = g(RS(t) + VX(t + 1))

£(t) = WS(1) M

T—1
2
_ ; _ : Py 2
W = arg min B(W) = arg min }H: Hf(t) Y(t)H W2,

where f(t) is the prediction function (Equation 1). By tak-
ing advantage of ridge regression, W can be calculated as:

(2)

where I is the identity matrix, 7 > 0 is the regularization
parameter. The reservoir network (Equation 1) provides ap-
proximations for the given sequences and the readout map-
pings f = WS are models of the original sequences.

We take the model parameters as representations. The
representations are used to compute a kernel matrix. The

W =vYSs"(ss” + 1),

1011

benefit of using kernel techniques here is two-fold: 1) It pro-
vides a training approach that is not sensitive to imbalanced
data distribution (See the following subsection). 2) It incor-
porates the desired similarity constraints into the training
process. We consider a Gaussian kernel in this paper:

K(i, ;) = exp{—(z: — 2;)" Qzs — 2;)} (3)

where Q is the mahananobis distance metric. The kernel
parameters are optimized to encourage the representations
in the same class to stay closely and the representations in
different classes to stay apart. By doing so, the data becomes
more separated, and more likely to be linearly separable
in the kernel feature space. Note that interpolation based
oversampling algorithms potentially assume that the class
distribution is linearly separable. Otherwise, the synthetic
data may lie in the region of the opposite class.

3.2 Learning the Kernel

The goal is to minimize the difference between the em-
pirical kernel matrix and an ideal kernel matrix. The ideal
kernel [15] matrix is defined as:

1
0 otherwise

if z;,x; are in the same class

K*(l’ivl’j)I{

Therefore, the ideal kernel provides desired similarity con-
straints of representations. Kernel target alignment learns a
kernel by approximating the ideal kernel.

Centered kernel target alignment is proved to be not sen-
sitive to class distribution [15], which makes it competent for
imbalanced learning problems. In contrast to kernel target
alignment [22], which only considers preserving the general
similarity of classes, centered kernel target alignment weighs
different classes and takes into account if a class is under-
represented in a kernel. Let R = th,.I%” X 1/N¢r be a
square matrix of size Ny X Ny, where each entry is 1/Ny,
and N, is the size of training set. In particular, centering
process is formed as [15]:

Kc=K—-KR—- RK+ RKR.

The similarity of representation formed kernel matrix and
the ideal kernel matrix are defined in [15]:

(Kc, KE)F
\/(K07 KC)F(KEW KE‘)F

where (K¢, K&)r = Tr(KE&KE). Tt enhances the discrim-
ination of data to the requirement of the ideal kernel by

A(Kc,K¢&) =

€ [_17 +1]

maximizing the similarity between the kernel matrix K and
ideal kernel K*.

The sequence representation learning and centered ker-
nel alignment is performed iteratively. The cost function is
defined as:

Ny Ty —1
C(r,0) = A(Kc, K&) =AY > (fm(®)=X"(t41)° (4)

m=1 t=1

where r = {r;,rj,r.} and § = Q are the network parame-
ters and kernel parameter respectively, X" is the training
sequence indexed by m, T, is the length of the sequence in-
dexed by m, Ny is the size of the training set, A > 0 is the
combinational coefficient; the first term on the right-hand
side is the alignment between the representation formed k-
ernel matrix and the ideal kernel matrix, the second term
is the difference between the output of learned models and
the desired output. In doing so, we take a trade-off of the
representations and the alignment into consideration.

3.3 Parameter Learning

To align the representation formed kernel matrix with the
desired kernel matrix, we learn the representations and tune
the kernel parameter iteratively.

To learn faithful representations of sequences, the kernel
parameter (Q) is initialized as an identity matrix and kept
fixed. The representations learned by the reservoir model
should approximate the sequence well.

The network weights are tuned to learn representations
using gradient-based optimization:

oC A AR - 7 0fm (t)
= = szxmzil ;(fm(t)fx (t+1) =5 =
_ 04 0Kc OW
~ 0Kc OW or
o et 2fm(t)
22 D0 (Umt) = X"+ 1) =22 ()
m=1 t=1

where r € {r;,r,7;} is the connection weights of CRJ.
In particular, the first term in the above equation is com-
puted as

Tr(KEKG)
(Tr(KEKe))

A K&
OKc \/Tr(KIKc)

6Kc(i,])
oW,

©)

=2Kc(i,5)(W; — W) (M)

st
Y or

98" ot -1 T qQT -1
S o oS 1 T -1
(ms +8(37))(ss +)

oW

ST A(SST + 1)t
or

T —1
(SS”T 4+ Y o

(8)

28

where 32 is computed at each time step using real time
recurrent training:

9S(t)
or

sech® (RS(t — 1) + VX(t))

(RELD)

9)

or or

1012

where .x is the elementwise production. Then, using the
above equations (Equation 8 and 9), we have

oS OW

Ofm(t) _ 98 | OW
or or + or S

By using Equation 6,7,8,9 and 10, the overall cost function
(Equation 5) can be optimized. The reservoir network is
trained to fit the data.

Then the representations are fixed. As a valid mahananobis
distance, Q must be symmetric positive semi-definite ma-
trix. By making use of the fact Q = UTU, we instead
optimize U. Denote the kernel parameter as 6. 6 is learned
by gradient ascent:

(10)

Tr(9 KE)

Tr(Kco,Kco)
Tr(K,KL)Tr(Kc, 25)

Tr(Kc,Kc)?

OA(K,K*) 1
00 T Tr(KE, KY)

(11)

The derivative of the kernel matrix with respect to the
kernel parameter is then:

9K (i,])

ou

= *K(i,j) X 2U(:EZ — :E])(:EZ — l’j)T

To this end, we can optimize the objective function by
alternating between Equation 5 and Equation 11 to find a
compromise between the modeling and kernel learning.

In each iteration the time complexity of our method is
O(NZn? + NynT), where Ny, is the size of the training
set, n is the dimensionality of a sequence, T is the length
of sequences. This relatively high computation cost is due
to the training of the CRJ network and kernel. Compared
with oversampling algorithms directly operating on the sig-
nal space, our method pays additional cost on the learning
process. However, our method has better performance (Sec-
tion 4) and is able to deal with multivariate and varying
length sequences.

3.4 Oversampling

Denote the learned kernel matrix as K € R™*". Eigen-
value decomposition is performed as K = VDVT, where
D = diag([d1,d1, - ,dr]) has r nonzero eigenvalues on the
main diagonal, V' is the corresponding eigenvector matrix.
We project the data into a kernel feature space spanned by

eigenvectors: D 2VTK [20] as final representations. The
kernel feature space preserves the distance relationships of
patterns in the infinite Hilbert space. New synthetic data
are obtained in this kernel feature space.

There are two variants of our method:

1) Model-kernel: The neural network is optimized to learn
models for sequences and the kernel parameter is omitted.
Oversampling is performed in the representation formed k-
ernel feature space [8].

2) Data-kernel: The kernel parameter is optimized. In-
stead of learning representations for original data, we feed
the data directly to the system. Oversampling is performed
in the original data formed kernel feature space.

Assume the models and kernel fit the data properly, the
data are hypothesized more likely to be linearly separable’ in

"However, being linearly separable is the ideal case, which
may not be guaranteed in most datasets.

10 order

20 order

Figure 2: Illustration of the imbalanced NARMA sequences in the signal space.

the kernel feature space. This serves as a necessary condition
for interpolation based oversampling.

We postulate by learning representations for sequences as
well as making use of the kernel nonlinearity, the generative
mechanism and similarity structure are pursued. Therefore,
interpolation based oversampling can be performed more ef-
fectively in the representation induced kernel feature space.
In this case, simple yet efficient oversampling approaches can
be employed safely. In this paper, we use SMOTE to gen-
erate synthetic data. The whole algorithm is demonstrated
in Algorithm 1.

Algorithm 1 Model-based oversampling
1: Input: Training set 7 = {X* X2 ... XNtr}. dneu-
rons of the reservoir; jump size of reservoir; regression

parameter n; trade-off \; initial parameters for network
({ri,re,7;}) and kernel (U).

2: Output: A balanced Synthetic dataset.

3: repeat

4: Use the CRJ network to fit models for sequences in
T.

5: Compute empirical kernel according to Equation 3.

6: Tune network parameters according to Equation 5.

7: Tune kernel parameter according to Equation 11.

8: until Maximum number of iterations is reached or the

variation of the objective value falls below a threshold.
: Project the data into kernel feature space as final repre-
sentations.
Perform SMOTE in the kernel feature space to enrich
the minority class.

©

10:

4. EXPERIMENTS

In this Section, we first evaluate the proposed approach
on synthetic datasets. Then we compare the proposed ap-
proach with state-of-the-art oversampling approaches for im-
balanced sequence classification on benchmark datasets. We
have tested the proposed method on both univariate and
multivariate sequences. Before that, we first detail our ex-
periment settings.

4.1 Experiment Settings
We compare our approach with the majority rule (MjR),
SVM without taking account of any synthetic data (SVM),

DTW with the nearest neighbor classifier [24], simple repli-
cation (Rep) [3], SMOTE [4], ADASYN [12], BorderSMOTE

1013

[11] and INOS [13]. DTW computes a distance between t-
wo sequences by aligning them over temporal axis [24]. It
is widely used in sequence processing. The two variants
of our method, i.e. Model-kernel (learning models alone)
and Data-kernel (learning the kernel alone) are considered
as well. This comparison aims to show that the distance
between representations approximates the underlying simi-
larity structure well. Euclidean distance applied directly to
sequences may yield suboptimal performance. In all experi-
ments, the number of neighbors for oversampling algorithms
are set to be 5 (for AUS dataset it is set 3 because the minor-
ity is too rare). The division point of reliable and unreliable
subspaces in INOS is determined by 2-fold cross-validation
[13].

The kernel we used is a generalized Gaussian kernel with
the mahananobis distance metric. The size of reservoir net-
work is fixed to be 100. The jump length of CRJ is set
as b without further optimization. The network parame-
ters are initialized randomly within the interval [0,1]. The
combinational trade-off and ridge regression parameter are
tuned by 5-fold cross-validation. We use SVM as the classi-
fier and employ a widely acknowledged implementation Lib-
svm [25]. The parameters of SVM, such as the slack weight
regularization parameter C € {1075, 1074, ... ,105}, the k-
ernel width v € {107°,107%,--. , 10} are selected by 5-fold
cross-validation maximizing gmeans on the training set. The
classifier is trained again on the total training set after the
parameters are determined by cross-validation.

We employ four univariate datasets from UCR time series
repository [26] — Adiac, SLeaf, FaceAll and wafer?. These
datasets have already been divided into training and test
set. We process the datasets by selecting one class as the
minority class, and grouping the rest of the classes as major-
ity class. We also evaluate our method on three multivariate
sequence datasets. They are processed to be binary classes
as well. The datasets also contain varying length sequences.
Existing oversampling approaches cannot handle this kind
of sequences, which prevents us from comparing our method
with others on these datasets.

For the performance evaluation metric, we use fmeasure,
gmeans and AUC. These evaluation criteria is widely em-
ployed in imbalanced learning. Given the confusion matrix:

2These datasets are chosen because they have many classes
originally, which can be conveniently converted to binary
imbalanced datasets.

Original

SMOTE

ADASYN

0

Data-kernel
0.3

0.2
0.1 .
. g@.
L 9, 00-880 -
oLt o
Yo

oy
.+'

ol
eo 250
06 * . 08&@89 g
0000 280 8 Pt
o o ge]

[e]

400 Lgo.

-0.1

-0.2

2
Model-kernel

0 [2

hY
f © Majority points \»\
+ Minority points :
O Synthetic points ’

-0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 -20

Figure 3: The original synthetic dataset and oversampling results of different algorithms.

20 30 -0.4 -0.2 0 0.2 0.4 0.6 0.8

We first samples

new synthetic data and then project both original data and synthetic data into 2D space for visualization.
The comparative algorithms are performed in the signal space. The bottom row presents the results of our
method. Data-kernel and Model-kernel are two variants of our method. Data-kernel optimizes the empirical

kernel by learning the kernel parameter without learning the representations.
empirical kernel by learning the representations without learning the kernel parameter.

Model-kernel optimizes the
Our method is a

combination of the two cases. It learns the representations as well as the kernel parameter.

Table 1: Confusion Matrix
Predictive positive | Predictive negative

TP FN
FP TN

True positive
True negative

Then
recall TPR=TP/(TP+ FN)
precision TP/(TP+ FP)
fmeasure = 2recall x precision/(recall + precision)
TNR = TN/(TN+ FP)
Gmeans = VIPRxTNR

fmeasure considers recall and precision simultaneously. gmeans
value is determined by the product of correct classified pro-
portion of each class. This value is large only when the
classifier performs well on each class. AUC measures the d-
ifference between the predictive distribution between classes.
The larger the difference, the better the learning algorithm.

4.2 Synthetic Sequence
We generate a series of 10 order and 20 order NARMA

1014

sequences:
9
s(t+1) = 0.3s(t) + 0.05s(¢ Zs (t—1)
=0
L.5u(t — 9)u(t) + 0.1
s(t+1) = tanh(0.3y(t) + 0.05y(t Zy (t—1)

L5u(t — 19)u(t) + 0.01) + 0.2

where s(t) is the output sequence, u(t) is the input sequence,
u(t) is independently and identically generated in the range
[0,0.5] according to uniform distribution. These two kinds
of sequences are generated using the same input sequence.
The 10 order and 20 order NARMA sequences are treated
as the positive and negative class respectively.

We generate 10 order NARMA sequence of 9000 length
and 20 order NARMA sequence of 90000 length. These
sequences are then partitioned into non-overlapping subse-
quences. Each subsequence is of 300 length. In this way, the
positive class have 30 items and the negative class have 300
items. We randomly select 10 and 100 items from each class
as a training set, and the others are used a test set. The
imbalance ratio is 10:1 in this scenario. Figure 2 illustrates
the synthetic sequences in the original signal space. It is
imbalanced and hard to separate the two classes from their
signal characteristics using our eyes.

4.2.1 Visualization

Figure 3 demonstrates the generated synthetic dataset

F-measure
G-means

—&— Our method

@ M-kernel
D-kernel

= ¥ = Border

—#— ADASYN

=-+=Rep

~4+ SMOTE
INOS

—»—DTW

—v¥—SVM

4.5 5 55 6

1 L5 2 25 3 35 4 4.5 25

Noise Level

3003s
Noise Level

115 2 25 3 35 4
Noise Level

4 4.5 5

Figure 4: Illustration of the performance evolution of different oversampling algorithms. D-kernel and M-
kernel are abbreviations for Data-kernel and Model-kernel.

and sampling results of different algorithms. The sequences
and samples are projected to 2 dimensional space for visual-
ization using principle component analysis®. It is clear that
the positive and negative class severely overlapped in the
signal space.

SMOTE uses each minority point with equal probability
in generating new synthetic data. It is observed that S-
MOTE samples evenly in the region of minority class. Bor-
derSMOTE puts more stress on the border points near the
majority class. ADASYN assigns soft weights to each mi-
nority point and it samples with different probability. The
border points are assigned larger probability and points in
the inner region of minority class obtains smaller probabili-
ty. Replication randomly repeat the minority class. It avoids
generating samples in the region of the opposite class. How-
ever, it may easily cause over-fitting. INOS spreads in the
positive region trying to be consistent with the covariance
of original minority data. It is clear that oversampling in
the signal space using interpolation strategy works poorly
in this case, because the minority and majority class over-
lapped. Learning only the kernel does not perform well. We
attribute this result to the fact that directly applying Eu-
clidean distance to high dimensional sequential data may
not approximate the underlying similarity structure well. In
contrast, our strategy is to transform the original data into
the generative model space. The models are hypothesized
to be endowed with the ability to preserve the correlated
features of sequences along temporal axis. Sampling is per-
formed in the model space. It is observed that learning
models alone can yield good performance. The distance be-
tween representations approximates the underlying similar-
ity structure well.

4.2.2 Noise Robustness

Oversampling techniques have problems when noise or
outliers exist in the dataset. To test the robustness of differ-
ent oversampling algorithms, we also corrupt the synthetic
sequences with Gaussian noise of zero mean and standard
deviation varying in the interval [0,0.5]. For each noise lev-
el, we randomly generated 5 datasets. On each dataset, we
repeat each sampling algorithm 10 times. Then the algo-
rithm performance is the average of the 50 runs. Figure 4

*http://www.cad.zju.edu.cn/home/dengcai/Data/code/PCA.m

1015

illustrates the performance of different oversampling algo-
rithms when facing different levels of noises. It is clear that
our method is more robust to noise than other oversampling
algorithms. We take the mahananobis distance metric in-
to consideration in the kernel learning. The distance metric
encourages the sequences in the same class stay closely while
the sequences in different classes stay apart. Therefore, the
sequence representations are more probable to be linearly
separable, which is a necessary condition for oversampling
based on convex combination to be safe.

For the signal space, it is observed that SMOTE in the sig-
nal space usually yields quite good performance, despite its
simplicity. Replication most time yields the poorest results.
However, when facing extreme noisy scenarios, it shows a lit-
tle performance improvement compared to other algorithms.
It is presumed that this observation is the result of the strat-
egy of these algorithms. Because of the large noise in the
dataset, interpolation based strategy may capture the noise
and result in generating improper synthetic data. These
“wrong” samples do not contribute much to the overall per-
formance. By contrast, the samples of replication strategy
does not fall into this problem. We also observe that INOS
performs well when noise is small. However, when facing
large noise, it leads to poor results. It is not surprising for
this observation because INOS heavily counts on the covari-
ance of the original data. Therefore, it is more sensitive to
noise.

4.3 Univariate Sequence

The dataset information of univariate sequences is sum-
marized in Table 2. The original datasets have multiple
classes, e.g. Adiac has 37 classes, SLeaf has 15 and FaceAll
has 14. Wafer is imbalanced itself. We select class 2 in Adiac
dataset, class 1 in SLeaf and FaceAll datasets respectively
as the minority class [13], and group the rest as the negative
class. The processed datasets are highly imbalanced.

We present the results on imbalanced univariate sequence
classification in Table 3. The reported results are average of
10 runs. Each time the oversampling algorithms are restart-
ed. We perform t-test between our method and the oth-
er oversampling algorithms. The significance level is set as
0.05.

From Table 3, we can make four main observations:

1) It is observed that sampling using the generative models

Table 2: Summarization of univariate sequence datasets.

Dataset | length ZPost tizzamglérélliega Tive | ZPosi tiveTeS;ENega e Positive class | Imbalance ratio
Adiac 176 10 350 13 408 2 35:1
SLeaf 128 30 500 45 550 1 16.7:1
FaceAll 131 40 400 72 1738 1 10:1

wafer 152 50 3000 712 3402 1 60:1

Table 3: Classification results on univariate sequence. D-kernel and M-kernel denote Data-kernel and Model-
kernel. The best results are boldfaced. The superscript * indicates the difference between the algorithm and

our method is statistically significant.

fmeasure
Dataset | MjR SVM | DTW Rep | SMOTE | ADASYN | Border | INOS | D-kernel | M-kernel | Our method
Adiac - 0.655™ | 0.727* | 0.663" | 0.732" 0.733" 0.718" | 0.800" | 0.800" 0.920" 0.963
SLeaf - 0.485" | 0.364" | 0.706" 0.764 0.712* 0.724 | 0.731 0.716 0.731 0.762
FaceAll - 0.824* | 0.802" | 0.899" 0.903 0.904 0.904 | 0.936 0.906 0.926 0.929
wafer - 0.866" | 0.922* | 0.958" 0.965 0.966 0.964 | 0.981 0.969 0.969 0.975
Jmeans
Dataset | MjR SVM | DTW Rep | SMOTE | ADASYN | Border | INOS | D-kernel | M-kernel | Our method
Adiac 0* 0.703" | 0.783" | 0.730" | 0.807" 0.809" 0.794" | 0.882" | 0.904" 0.907* 0.999
SLeaf 0* 0.588" | 0.507" | 0.800" 0.861 0.849" 0.861 0.853 0.816" 0.853 0.873
FaceAll 0* 0.930" | 0.933" | 0.903" | 0.907" 0.913" 0.910" | 0.936 0.922 0.933 0.962
wafer 0* 0.935" | 0.937" | 0.958" | 0.965" 0.966" 0.964" | 0.985 0.935" 0.962 0.985
AUC
Dataset | MjR SVM | DTW Rep | SMOTE | ADASYN | Border | INOS | D-kernel | M-kernel | Our method
Adiac | 0.500" | 0.863" | 0.806™ | 0.87" 0.926" 0.933" 0.918" | 0.938" | 0.943" 0.948" 1.000
SLeaf [0.500" | 0.894" | 0.624" | 0.897" | 0.890" 0.893" 0.894" | 0.904" | 0.885" 0.910 0.945
FaceAll | 0.500" | 0.985" | 0.983" | 0.970" | 0.981" 0.986" 0.985" | 0.984" | 0.981" 0.988 0.994
wafer [0.500" | 0.984" | 0.939" | 0.984" | 0.965" 0.966" 0.964" | 0.985" | 0.989" 0.987* 0.999

is indeed useful. Our method achieves competitive perfor-
mance on all 3 evaluation metrics. In detail, INOS achieves
2 wins in freasure and 1 tie in gmeans. Our method performs
slightly inferior in fieqasure 3 times, but wins in gmeans and
AUC in all datasets. As expected, the memory of dynamical
reservoir is helpful given the input sequences have sequen-
tial order information. The learned generative model for a
sequence encodes the correlation over temporal axis to help
preserve the structure information. Therefore, the model
space provides more flexible representations than signal s-
pace for oversampling. This makes our method superior to
state-of-the-art methods.

2) It is obvious that Model-kernel achieves better perfor-
mance on fmeasure, gmeans and AUC than Data-kernel on
almost all datasets. We attribute this result to the effective-
ness of making use of sequential order in learning sequence
representations. By doing so, the learned representations
may fit the underlying data manifold well, which explains
the better performance of Model-kernel.

3) There seems to be no clear winner in performance a-
mong the five oversampling algorithms when they sample in
the signal space. This is consistent with previous studies.
Different dataset characteristics warrant different treatment
[27].

4) Based on the experiment results, it is observed that the
success of our method is largely due to high recall.

The inferior results of our method with fieqsure is be-
cause the inferior precision performance. This observation
indicates that our method can recognizes most of positive

1016

examples at the cost of misclassifying some negative exam-
ples. It is important in applications where predicting the
rare but interesting positive class is given more priority. Be-
sides, our method shows superior performance on AUC. This
result means that the predictive distribution of learning in
the model-spanned space is more separated than that in the
original sequence (signal) space.

4.4 Multivariate Sequence

Our method is evaluated on three different multivariate se-
quence datasets selected from UCI Machine Learning Repos-
itory*. The dataset information of multivariate sequences is
given in Table 4.

The Libras Movement Dataset (Libras) contains 15 hand
movement patterns of Brazilian signal language. Each pat-
tern has 24 instances. The movements are video-recorded
and pre-processed. In each video, 45 frames are selected
evenly. Then the centroid pixels of the hand are found. The
discrete version of the movement curve has 45 points, each of
which represents the coordinates of a movement. The label
is the hand movement types.

The Character Trajectories Dataset (Hand) comprises 2858
character trajectories written by one person. The trajecto-
ries are represented as sequences of 3 variables: 2-dimensional
coordinates and pen tip force. The characters are treated as
the label.

The Australian Sign Language Dataset (AUS) consists of
95 video-recorded sign language signs from a native sign-

“http://archive.ics.uci.edu/ml/datasets.html

Table 4: Summarization of multivariate sequence datasets.

Length
Dataset | Dimensions | #Class | #Sample | Positive class | Imbalance ratio | min | max
Libras 2 15 360 1 12.3:1 45 45
Hand 3 20 2858 1 13.6:1 60 182
AUS 22 95 2565 1 99:1 45 136

Table 5: The performance of our method on Libras dataset. D-kernel and M-kernel denote Data-kernel and
Model-kernel. The superscript * indicates the difference between the algorithm and our method is statistically

significant.
MjR [SVM | DTW Rep | SMOTE | ADASYN | Border | INOS | D-kernel | M-kernel | Our method
fmeasure | 0% | 0.921" | 0.919" | 0.939" 0.971 0.961 0.971 0.954 0.971 0.974 0.976
Jmeans - 0.938" | 0.968" | 0.969" | 0.971" 0.971" 0.971* | 0.961" | 0.962* 0.971" 0.988
AUC 0.5" [0.952* | 0.962" | 0.946" | 0.960" 0.953" 0.963" | 0.961" | 0.959" 0.981" 0.999

er, 27 samples per sign. The signs are represented by 22
channels of features. Each class is one type of signs.

We have selected the class 1 of all datasets to be the pos-
itive class. Note that the Hand and AUS datasets are also
of variable length. Existing oversampling methods cannot
directly apply to variable length sequences, which prevents
the comparison of our method with the other approaches.

Because the sequences in Libras dataset does not have
varying length, we have transformed the multivariate se-
quences into univariate ones by concatenating different chan-
nels. In this way, we can perform experiments using other
oversampling algorithms on it.

We randomly partition the dataset and use 70% of data
for training and 30% for test. Table 5 reports the generaliza-
tion results of our method and other sampling algorithms on
Libras dataset. Table 6 illustrates the classification results
of our approach on Hand and AUS dataset. The results are
averaged over 10 runs.

It is clear that our method achieves statistically significant
better performance on multivariate sequence datasets than
comparative methods. Libras dataset contains the discrete
position coordinates of the movements of a hand. It is nat-
ural to believe that the two dimensions must be interactive
when presenting specific patterns. Converting the original
multivariate sequences into vectorial data for sampling not
only loss the temporal contextual information, but also ig-
nores the interaction of two variables. Our model is based
on RNN and can handle multivariate and varying length
sequences naturally. Thus it is not surprising to observe
better performance of oversampling using the model space
than other algorithms that sample in the signal space. On
AUS and Hand datasets, we also achieve nearly perfect per-
formance.

To this end, our method performs favorably on both syn-
thetic and benchmark datasets. Two reasons may be in-
volved.

1) We have learned a generative model for each sequence,

which encourages sequence modeling and similarity constraints.

The learned representations and similarity are presumed to
follow the data manifold. Oversampling in the model space
avoids the adverse influence of sampling in the signal space.

2) The nonlinearity and separation of kernel learning en-
capsulates more flexibility. The memory ability of reservoir
model also plays a key role, which contributes in maintaining
the correlation of sequential data over time.

1017

Table 6: The performance of our method on mul-
tivariate sequence datasets. D-kernel and M-kernel
denote Data-kernel and Model-kernel. The super-

script * indicates the difference between the algo-
rithm and our method is statistically significant.
fmeasure
Dataset | DTW | D-kernel | M-kernel | Our method
AUS 0.793" 0.791" 0.880" 0.976
Hand 0.835" 0.824" 0.915* 0.996
Jmeans
Dataset | DTW | D-kernel | M-kernel | Our method
AUS 0.872" 0.900" 0.922* 0.976
Hand 0.877 0.878" 0.912% 1.000
AUC
Dataset | DTW | D-kernel | M-kernel | Our method
AUS 0.933" 0.944™ 0.951 0.976
Hand 0.951" 0.981" 0.995 1.000

5. CONCLUSION

This paper proposes to oversample imbalanced sequence
dataset in the generative model space. For each sequence, a
generative model is learned as a representation®. The rep-
resentations of sequences are used to define a kernel matrix.
Alignment to desired kernel matrix is optimized by tuning
the generalized Gaussian kernel parameter. In doing so, sim-
ilarity constraints are also pursued. The model and kernel
are learned iteratively. The proposed method has advan-
tages in handling highly imbalanced, noisy, varying length
and multivariate sequential data. Experiments on synthet-
ic, univariate and multivariate sequences datasets show that
our method can achieves competitive performance in terms
of fmeasurey Gmeans and AUC.

The time complexity of our method is O(NZ2.n? + Ny-nT),
where N, is the size of the training set, n is the dimensional-
ity of a sequence, T is the length of sequences. This tolerable
cost is balanced by the better performance and the ability to
deal with multivariate and varying length sequences of our
method. It is acceptable in applications where good perfor-
mance is more important. Future work would be to reduce

®Strictly speaking, we have used the model as an interme-
diate representation.

the time complexity of our method and apply our method
to more datasets.

6.

ACKNOWLEDGMENTS

This work is supported by the National Key Research and
Development Program of China with grant number 2016 YF-
B1000905, the National Science Foundation of China with
grant numbers 91546116, 61511130083, 61503357 and the
Fundamental Research Funds for the Central Universities
with grant number WK2150110001.

7.
[1]

2]

8]

[4]

[5]

[6]

8]

[9]

(10]

(11]

REFERENCES

S. Wang, L. L. Minku, and X. Yao, “Resampling-based
ensemble methods for online class imbalance learning,”
IEEFE Transactions on Knowledge and Data
Engineering, vol. 27, no. 5, pp. 13561368, 2015.

Y. H. Zhou and Z. H. Zhou, “Large margin
distribution learning with cost interval and unlabeled
data,” IEEE Transactions on Knowledge and Data
Engineering, vol. PP, no. 99, pp. 1-1, 2016.

H. He and E. A. Garcia, “Learning from imbalanced
data,” IEEE Transactions on Knowledge and Data
Engineering, vol. 21, no. 9, pp. 1263-1284, 2009.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer, “Smote: synthetic minority over-sampling
technique,” Journal of Artificial Intelligence Research,
pp- 321-357, 2002.

Y. Jo, N. Loghmanpour, and C. P. Rosé, “Time series
analysis of nursing notes for mortality prediction via a
state transition topic model,” in Proceedings of the
2/th ACM International on Conference on
Information and Knowledge Management,

pp. 1171-1180, ACM, 2015.

K. H. Brodersen, T. M. Schofield, A. P. Leff, C. S.
Ong, E. I. Lomakina, J. M. Buhmann, and K. E.
Stephan, “Generative embedding for model-based
classification of fmri data,” PLoS Comput Biol, vol. 7,
no. 6, p. €1002079, 2011.

J.-S. Wu and Z.-H. Zhou, “Sequence-based prediction
of microrna-binding residues in proteins using
cost-sensitive laplacian support vector machines,”
IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. 10, no. 3, pp. 752-759, 2013.
H. Chen, P. Tino, A. Rodan, and X. Yao, “Learning in
the model space for cognitive fault diagnosis,” IEFEE
Transactions on Neural Networks and Learning
Systems, vol. 25, no. 1, pp. 124-136, 2014.

Y. Bengio, N. Boulanger-Lewandowski, and

R. Pascanu, “Advances in optimizing recurrent
networks,” in IEEFE International Conference on
Acoustics, Speech and Signal Processing,

pp. 8624-8628, IEEE, 2013.

R. Goroshin, J. Bruna, J. Tompson, D. Eigen, and

Y. LeCun, “Unsupervised learning of spatiotemporally
coherent metrics,” in Proceedings of the IEEE
International Conference on Computer Vision,

pp. 4086-4093, 2015.

H. Han, W.-Y. Wang, and B.-H. Mao,
“Borderline-smote: a new over-sampling method in
imbalanced data sets learning,” in Advances in
Intelligent Computing, pp. 878-887, Springer, 2005.

1018

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]
21]

(22]

23]

[26]

27]

H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn:
Adaptive synthetic sampling approach for imbalanced
learning,” in IEEFE International Joint Conference on
Neural Networks, pp. 1322-1328, IEEE, 2008.

H. Cao, X.-L. Li, D. Y.-K. Woon, and S.-K. Ng,
“Integrated oversampling for imbalanced time series
classification,” IEEE Transactions on Knowledge and
Data Engineering, vol. 25, no. 12, pp. 2809-2822, 2013.
M. Génen and E. Alpaydin, “Multiple kernel learning
algorithms,” The Journal of Machine Learning
Research, vol. 12, pp. 2211-2268, 2011.

C. Cortes, M. Mohri, and A. Rostamizadeh,
“Algorithms for learning kernels based on centered
alignment,” The Journal of Machine Learning
Research, vol. 13, no. 1, pp. 795-828, 2012.

L. R. Rabiner, “A tutorial on hidden markov models
and selected applications in speech recognition,”
Proceedings of the IEEE, vol. 77, no. 2, pp. 257-286,
1989.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean, “Distributed representations of words and
phrases and their compositionality,” in Advances in
Neural Information Processing Systems,

pp. 3111-3119, 2013.

H. Jaeger, “The “echo state” approach to analysing
and training recurrent neural networks-with an
erratum note,” Bonn, Germany: German National
Research Center for Information Technology GMD
Technical Report, vol. 148, p. 34, 2001.

H. Chen, F. Tang, P. Tino, and X. Yao, “Model-based
kernel for efficient time series analysis,” in Proceedings
of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 392-400,
ACM, 2013.

V. N. Vapnik and V. Vapnik, Statistical learning
theory, vol. 1. Wiley New York, 1998.

J. Shawe-Taylor and N. Cristianini, Kernel methods
for pattern analysis. Cambridge university press, 2004.
N. ello Cristianini, A. Elisseeff, J. Shawe-Taylor, and
J. Kandola, “On kernel-target alignment,” in Advances
in Neural Information Processing Systems, 2001.

A. Rodan and P. Tino, “Simple deterministically
constructed cycle reservoirs with regular jumps,”
Neural computation, vol. 24, no. 7, pp. 1822-1852,
2012.

E. J. Keogh and M. J. Pazzani, “Derivative dynamic
time warping.,” in Sdm, vol. 1, pp. 5-7, STAM, 2001.
C.-C. Chang and C.-J. Lin, “LIBSVM: A library for
support vector machines,” ACM Transactions on
Intelligent Systems and Technology, vol. 2,

pp. 27:1-27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall,

A. Mueen, and G. Batista, “The ucr time series
classification archive,” July 2015.

www.cs.ucr.edu/ eamonn/time_series_data/.

G. E. Batista, R. C. Prati, and M. C. Monard, “A
study of the behavior of several methods for balancing
machine learning training data,” ACM Sigkdd
Ezplorations Newsletter, vol. 6, no. 1, pp. 20-29, 2004.

