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binding protein prediction directly from sequence
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ARTICLE INFO ABSTRACT

RNA binding proteins (RBPs) determine RNA process from synthesis to decay, which play a key role in RNA
transport, translation and degradation. Therefore, exploring RBPs’ function from the amino acid sequence using
computational methods has become one of the momentous topics in genome annotation. However, there still
have some challenges: (1) shallow feature: Although the sequence determines structure is self-evident, it is
difficult to analyze the essential features from simple sequence. (2) Poorly understand: feature-based prediction
methods mainly emphasize feature extraction, while in-depth understanding of protein mysteries limits the
application of feature engineering. (3) Feature fusion: multi-feature fusion is often used, but the features are not
well integrated. In view of these challenges, we propose a novel ensemble convolutional neural network
(econvRBP) to predict RBPs. In order to capture the local and global features of RNA binding proteins si-
multaneously, first of all, One Hot and Conjoint Triad encoding methods are used to transform amino acid
sequence into local and global features, respectively. After that the local and global features are combined for
further high-level feature extraction using convolutional neural networks. Some experiments are constructed to
evaluate our method with 10-fold cross validation and the results show that it has achieved the best performance
among all the predictors so far. We correctly predicted 99% of 2875 RBPs and 99% of 6782 non-RBPs with
accuracy of 0.99. In addition, the datasets provided by RBPPred are also used to validate our models with an
accuracy of 0.87. These results indicate that the econvRBP is the most excellent method at present, and will
provide reliable guidance for the detection of RBPs. econvRBP is available at http://47.100.203.218:3389/
home.html/.
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1. Introduction solve physiology and disease.

Unfortunately, RBPs prediction is far from enough so far. RBPs in all

RNA binding proteins (RBPs) are a general term for a class of pro-
teins that bind to mRNA or non-coding RNA. These RBPs are involved
in the regulation and metabolism of RNA and participate in all aspects
of RNA processing, and control the life cycle of RNA from synthesis to
degradation [10]. Without RBPs, it is not an exaggeration to say, RNA
can’t do anything. As we know, RBPs account for 5-10% of eukaryotic
proteomes and are important in post-transcriptional biological pro-
cesses such as gene regulation, alternative splicing and translation [1].
From neurological disorders to cancer, RBPs participate in many human
diseases [20]. For example, TDP-43 is an RBP that can cause amyo-
trophic lateral sclerosis when it is mutated [22]. And the expression of
Sam68 will lead to further proliferation of prostate cancer cells and
survival of cytotoxic substances [3]. Therefore, the recognition of RBPs
and the understanding of their regulatory mechanisms are crucial to

kinds of species cannot be fully detected. It has been an important
challenge in the field of genomic annotation. In recent years, some
high-throughput experimental techniques have been developed to de-
tect RBPs. The proteome-wide identification of RBPs, especially the
RNA interactome capture (RIC) and its modifications have become
powerful tools for RBPs identification. For instance, Kwon et al. suc-
cessfully detected 555 mRNA binding proteins in mouse embryonic
stem cells by combining UV cross-linking of RBPs to RNA in living cells
[16]. Although RIC has been successfully applied to detect RBPs, ex-
perimental variability and technical noise limit its utility. Perez-Perri
et al. proposed an improved method, enhanced RIC (eRIC), which sig-
nificantly improved specificity and increased signal-to-noise ratio by
using a locked nucleic acid (LNA)-modified capture probe, and opti-
mized washing conditions, so as to enhance the detection capability of
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RBPs [25]. Determining the function of a large number of proteins
experimentally, however, is a nearly impossible task [23]. This gives
birth to a series of computational methods based on machine learning
algorithms, such as Random Forest (RF) and Support Vector Machine
(SVM). BindN + proposed a method based on homologous sequence
alignment [30]. It effectively improved the evolution information de-
scriptor and experimental results showed that the improved descriptor
better reflects the evolution information of proteins, and yielded MCC
of 0.440. Zhao et al. were inspired by the previous successful prediction
of RNA-binding domains and RNA-binding sites (SPOT-stru) [9], they
developed SPOT-seq with structure and sequence. This method broke
the traditional computational method based on sequence homology or
evolutionary information between characterized and un-characterized
proteins, and yielded a MCC of 0.61 [33]. Kumar et al. took the lead in
proposing PPRINT to predict the protein binding residues [14]. If the
percentage of protein binding residues exceeds a certain threshold, it
will be directly determined as RBPs; otherwise, the amino acid se-
quence will be encoded using PSSM-400 and classified by SVM [15].
This hybrid approach yielded a MCC of 0.62. RNABindRPlus combined
homologous sequence alignment method HomPRIP and machine
learning method RNABindRPlus to study RNA-binding residues [29].
HomPRIP and RNABindRPlus achieved an MCC of 0.83 and 0.37 on
RB111. Ma et al. put forward a new method to predict RBPs directly
from the amino acid sequence, PRBP. They combined evolutionary in-
formation with six physicochemical properties including the pKa value
of the amino group, the pKa value of the carboxyl group, the molecular
mass, the electron-ion interaction potential (EIIP), the number of lone
pairs, and the Wiener index, and then used the RF classifier to identify
RBPs with the MCC of 0.66 [21]. Shazman et al. studied the structure
and electrostatic properties of proteins and classified them using SVM,
called NAbind algorithm [26,24]. And then they developed the web
server called BindUP based on NAbind algorithm. In order to further
improve the performance, Zhang et al. proposed SVM-based method,
called RBPPred. In their method, amino acid was encoded according to
hydrophobicity, polarity, normalized van der Waals volume, polariz-
ability, predicted secondary structure, predicted solvent accessibility,
charge and polarity of side chain, Position Specific Scoring Matrix
(PSSM) profile. Then the combined features were sent to the SVM for
prediction and yielded a MCC of 0.808 [32]. However, all of the above
methods have obvious problems: traditional machine learning algo-
rithms often require complex feature engineering, which usually in-
clude the following steps: (1) perform a deep exploratory data analysis
on the dataset. (2) Do a simple dimensionality reduction process. (3)
Feature selection. The emergence of deep learning provides a new way
to predict RBPs. Feature engineering is not necessary when using deep
learning. Deep learning forms a more abstract high-level representation
by combining low-level features to discover distributed feature re-
presentations of data [17]. It has beaten machine learning in many
areas such as natural language processing [28], computer vision
[12,13], and drug discovery [11]. In addition, deep learning techniques
have been applied in many aspects of bioinformatics [2,31] and proven
to be a powerful tool. For example, Deep-RBPPred introduced deep
learning technology into the prediction of RBPs for the first time [34].
Compared with RBPPred, this method only adopt six properties in-
cluding hydrophobicity, polarity, normalized van der Waals volume,
polarizability, charge and polarity of side chain. These physicochemical
properties are fed into CNN to train its weights. However, in the 160
dimensional feature vector of Deep-RBPPred, 84 dimensional is its
physicochemical properties, 64 dimensional is its global properties, 12
dimensional zero-padding. Hence, its physicochemical properties are
preferred and the global properties are ignored. And its features are just
simple stacked. Furthermore, Du et al. fused the protein features from
multi-view and used deep belief networks (DBN) to predict RBPs,
DeepMVF-RBP, and yielded a MCC of 0.818 [6]. Taking Deep-RBPPred
and DeepMVF-RBP as examples, these methods still need to extract
complicate features. In fact, it is not necessary to extract many
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physicochemical properties mentioned above, only to carry out com-
position-transition-distribution (C-T-D) transformation [7]. To avoid
complicated feature engineering and feature stacking, we propose en-
semble deep learning method. Ensemble deep learning can make a
comprehensive measurement of the features extracted by deep learning,
and result that the model more generalizable. Therefore, we only need
to provide comprehensive and basic features to our model. All remains
are to focus on the design of model structure, which will undoubtedly
make the prediction faster and more effective.

In this paper, we present RBPs prediction method, namely
econvRBP. This method combines local features with global features
and adopts different CNN structures for each feature. Different en-
coding methods and structures give the model different perspectives.
Model analyzes the amino acid sequence, and finally output the pre-
diction probability. Compared with the previous methods, econvRBP
has the following advantages:

1. econvRBP adopts ensemble deep learning to integrate weak models
to build strong predictors. Therefore, it is more robust and better
performance than a single model.

2. econvRBP only uses a simple Conjoint Triad encoding to express its
global features, without additional manual feature extraction steps.

3. Taking into account the global-local features of the amino acid se-
quence, the two kinds of feature complement each other when the
individual feature is not good. According to different features, CNNs
with different structures are designed for feature extraction, so that
CNN can analyze the input data from different perspectives

4. A friendly web server is provided for biological researchers, and has
guiding significance for experimental methods. econvRBP are
available at http://47.100.203.218:3389/home.html/.

2. Method

The model is shown in Fig. 1. Protein sequences are separately en-
coded by One Hot method and Conjoint Triad method. The One Hot
encoding mainly focuses on the local features of the amino acid se-
quence. First of all, the sequence is analyzed by a convolution kernel,
then feature’s dimension is reduced by pooling, which facilitates a more
global analysis of the next convolution kernel. Finally, the dimension is
further reduced by pooling. The Conjoint Triad encoding mainly fo-
cuses on the electrostatic and global properties of amino acid sequence.
We used 3-layers with 3 X 3 X 3 convolution kernel to extract the fea-
tures, replacing a single 7 X 7 X 7 convolution kernel. Without chan-
ging receptive field, econvRBP can capture more nonlinear features and
reduce number of parameters. We also establish a direct mapping from
input to output for 3-layers convolution, called the residual block. At
last, majority vote method is used to integrate two models and output
the finally probability. The detail of the model will be introduced
below.

2.1. Sequence encoding

Feature engineering is an old-fashioned problem in RBPs prediction.
However, it is no longer a decisive step in deep learning. Therefore, in
this paper, we prefer to call sequence encoding instead of feature ex-
traction. We mainly focus on the integrated convolutional neural net-
work, and sequence encoding only serves this model. Hence, we use
some simple encoding methods to obtain shallow features, and the real
correlation features are analyzed by CNN. The powerful ensemble
convolutional neural networks learn the essential and effective features
of RBPs from simple features.

The dipoles and volumes of the amino acid side chain have an im-
pact on the electrostatic (including hydrogen bonding) and hydro-
phobic interactions, which in turn determine the RBPs. Hence, we di-
vided 20 amino acids into 7 categories based on dipole and volume.
Based on the density-functional theory method B3LYP/6-31G* and
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Fig. 1. The flowchart of econvRBP. As we can see, different encoding methods are sent to different network architectures. On the right side of the model, outlined by

a dotted line, is the residual block.

Table 1

Classification of amino acids.
Class No. Dipolescale” Volumescale” Class
1 - - Ala, Gly, Val
2 — + Ile, Leu, Phe, Pro
3 + + Tyr, Met, Thr, Ser
4 ++ + His, Asn, Gln, Tpr
5 +++ + Arg, Lys
6 LY + Asp, Glu
7 +¢ + Cys

@ Dipole scale (Debye): —, dipole < 1.0; +, 1.0 < Dipole < 2.0; + +,
2.0 < Dipole < 3.0; + + +, Dipole > 3.0;

> yolume Scale (A%): —, Volume < 50; +, Volume > 50;

¢ Cys is separated from class 3 because of its ability to form disulfide bonds.

molecular modeling approach, these two parameters were calculated
[27]. The twenty essential amino acids are divided into the following
seven clusters (Table 1):[A, G, V], [I, L, F, P], [Y, M, T, S, [H, N, Q, W],
[R, K1, [D, E, [C].

2.1.1. One hot encoding

In order to reveal the local features of the amino acid sequence, we
carry out the One Hot encoding. One Hot encoding is also called a bit
effective encoding. The method uses K bits to encode K states, each state
has its own bit, and at any time, only one bit is effective. Given an
amino acid sequence P = (P, P,---,B,) with length of n and seven
clusters C = (clustern, clusten, ---,cluster;) , One Hot encoding converts
an amino acid sequence into a matrix M of n X 7 dimensions, i.e.:
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@

For CNN, the dimensions of the input matrix are fixed, but the
length after the One Hot encoding depends on the length of the se-
quence itself. Therefore, this paper uses the fixed-length amino acid
sequence for One Hot encoding as an input to CNN. We work out the
average length of all samples, and then cut off the amino acid sequences
from the start location whose length is greater than the average. We
will add zero if the sequence length less than the average. As thus, we
can get the One Hot encoding matrixes of the same length.

In fact, in order to capture the local features of protein sequence, we
break the sequence (length = n) into multiple subsequences with
window size of W (Fig. 2). Meanwhile, there is overlap of length S
between two adjacent subsequences. And the number of subsequences
is (n — W)/(W — S). Through this method, each subsequence will con-
tain local information of protein sequence. In the experiment, we use
the category of each amino acid as the input channel, the length and
quantity of the subsequence as height and weight of the feature map,
respectively.

2.1.2. Conjoint Triad encoding

The Conjoint Triad encoding was originally used in the prediction of
protein-protein interactions proposed by Shen et al. [27]. The same
method is also used herein to encode the amino acid sequences. Fig. 3
shows the detail encoding process. This encoding method takes into
account the position of an amino acid and its two adjacent amino acids,
and then three amino acids as the whole. Thus, each of three amino
acids belongs to one of the seven clusters mentioned above, with a total
of 7 X 7 X 7 = 343. We count all occurrences of triples and then perform
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Fig. 2. Flowchart to extract local information. The sliding window slides over the sequence with the size of w, and finally we break the sequence into subsequence
bag, where the length of each subsequence is length w and (n — W)/(W — S) subsequences in it.

a Min-Max normalization operation. For example, assuming that pro-
tein sequence has been mapped to a 7 X 7 X 7 dimensional feature
vector V = (W, V5, -+, Va43) , after Min-Max normalization we can get the
frequency vector F = (Fy, F,, -+, Fs43), which are defined by formula (2):

F = (Vi — min{W, V5, -+, Vag3})/(max{Vi, V3, -+, Vaas} — min{Vj, V3,---, Va43})
(2)

Thus, we mapped an amino acid sequence with arbitrary length into a
7 X 7 X 7 dimensional feature vector.

2.2. Ensemble convolutional neural network

2.2.1. Convolutional neural networks
CNN, which have been widely used in fields such as image and
natural language processing, were raised in 1998 [18]. CNN consists of

HEN - Hl

VI7I7I5]
VI71[7]L6]
V777
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VI1][][2]
V1][1][3]

convolutional layers, pooling layers and fully connected layers. A
convolutional layer, which may be composed of multiple convolution
kernels, is used to extract high dimensional non-liner features. And the
size of the convolution kernel determines the “field of view” of a con-
volutional layer, namely the receptive field. It is precisely because the
multi-layer convolution kernel has different “field of view”. Because
CNN is mainly a network for images, we need to make some mod-
ifications in our research. Just like the previous encoding method (One
Hot and Conjoint Triad), before a protein sequence is sent to CNN, we
transform it into a matrix by encoding. This matrix takes into account
both the global characteristics of the protein sequence (Conjoint Triad)
and the global characteristics of the protein sequence (One Hot). In fact,
after we get a matrix through encoding; it is actually equivalent to an
image. We now apply CNN on the prediction of RBPs, and we also use a
different “field of view” to analyze the amino acid sequence. However,

V[l][l][Z]-.. vI[IEs] ={C}

. =(DE}
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. ={YMTS}

={HN.Q.W}

V77T

Fig. 3. Detailed process of Conjoint Triad encoding. We counted the frequency of all Conjoint Triads across the sequence.
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the features directly from matrix do not contain entire effective in-
formation; we also need to “tell” CNN some high-level local and global
information. In this way we analyzed sequence from different per-
spectives and different receptive fields. Based on different encoding
methods, we respectively used two dimensional convolution structure
and three dimensional convolution structure. In two dimensional con-
volutions, supposed that a sequence has broken into n subsequences
with length w of each subsequence. We took 7 of the n X w x 7 One Hot
encoding matrix as 7 channels, and the n X w matrix was carried out
with two dimensional convolution. Formally, the features before and
after convolution are denoted as P! and P*'. The convolution kernel
scans input features in the receptive field regularly. We call it Two
Dimensional Local Convolution (2DLC), which can be formulated by

3):

nk

=2

L w
PHI(x, y) = (P'®@ wH(x, y) D> D [PlGsox +Jj, siy + kow (x, )]
Jj=1 k=1

3)

where, (x, y) are pixels of the feature map, w is the parameter of the
convolution kernel, nk is the number of the feature channels, L and W
are the length and width of the input feature matrix, sy and s; are sliding
stride of the convolution kernel on the feature map to the right and
down, respectively.

In 2DLC, the first layer adopts 3 X 5 X 7@7 (motif detector) con-
volution to extract features (called motif in biology), and uses the
maximum pooling of 5 X 1 to reduce the dimensions of features. The
second layer adopts 5 X 5 x 7@7 convolution is adopted to extract
higher-dimensional features, and the maximum pooling of 5 X 1 is
adopted to further reduce dimensions.

In three dimensional convolution, we transformed the 7 X 7 X 7
dimensional feature vector into a feature cubic matrix of 7 X 7 X 7
according to the encoding characteristics of the Conjoint Triad en-
coding, and then three dimensional convolution was applied to the
feature, which is called the Three Dimensional Global Convolution
(3DGCQC):

P*(x,y,2) = wh(x,

x, y, z)]

¥, 2)
D
Z
m=1

[P (sox + J, 51y + k, $22 + m)w]

||M= =

(4

where, (x, y, 2), w, nk, L, w, s, and s; have the same meaning as above,
D is the depth of the cubic matrix, and s, is the backward sliding stride
of the convolution kernel.

In 3DGC, we use 3 X 3 X 3 X 1@1 convolution of 3 layers to extract
global features.

In practical applications, we employ multi-layer convolution and
then the fully connected is used for prediction. The purpose of multi-
layer convolution is that the features learned by single layer convolu-
tion are local. The more layers, the more global features are learned.
Different CNN structures are applied for different encoding methods,
and the outputs of different structures are combined. For 2DLC, we use
a two-layer convolution for feature extraction. For 3DGC, three-layer
convolution is applied for feature extraction.

2.2.2. Residual block applied on 3DGC

The learning ability of model continues to increase as the deeper of
layers. In practice, it is counterproductive. One of the reasons is that the
deeper of layer leads to the problem of gradient vanishing. The reg-
ularization initialization and batch normalization can solve this pro-
blem. However, with the further deeper of the layer, the accuracy of
training set will continue to decline, which is called degradation pro-
blem [8]. The model degradation problem is due to the fact that with
the deepening of the neural network layer, the low dimensional feature
has been sufficiently fitted by shallow layers, while the deeper layers
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simply become an identity mapping without learning the high dimen-
sional features. The network degradation problem indicates that the
deep model is not easy to train. So we introduce the residual block,
which allows the original input information to be transmitted directly
to the later layers. Assuming that the input of a deep neural network is x
and the expected output is H (x), the target of the deep neural network
is H (x) before the introduction of the residual block. After introducing
the residual block, the expected output of the neural network is
H(x) = F(x) + x, so the learning target of the deep neural network at
this layer turns into F(x) = H(x) —x. H(x) and F(x) are original
system function and new system function, respectively. In the case of an
identity map, H(x) = x, F(x) = 0. Obviously, learning new system
function F (x) is much simpler than original system function H (x). We
observed that after the introduction of the residual block the difficulty
of fitting is greatly reduced. The direct mapping from input to output
makes the model have stronger learning ability and faster convergence
speed.

2.2.3. Ensemble deep learning

Many studies have demonstrated that ensemble learning is often
superior to the individual classifier, which enhances not only the per-
formance of the classification, but also the confidence of the results.
Therefore, in this study, the deep learning-based ensemble method is
used to further improve the performance. Ensemble learning uses a
series of learners to learn and a certain rule (majority vote) is used to
integrate individual learning result to achieve better outcomes than a
single learner. In general, multiple learners in ensemble learning are
homogeneous “weak learners”. Common machine-learning-based en-
semble methods mainly include: Boosting, Bagging, Random Forest, etc.
Due to the neural network model is nonlinear and has high variance,
which can be frustrating when preparing a final model to make pre-
dictions. A successful way to reduce the variance of neural network
models is to train multiple models rather than individual models and to
combine the predictions of these models. This is called ensemble deep
learning, which not only reduces the variance of the prediction, but also
produces predictions that are better than any single model. Simple
features turn into abstract and high dimensional complex features after
feature extraction by 2DLC and 3DGC, then the fully connected layer
serves as the classifier and outputs probability. Finally, we average the
probabilities of the two models to get the result by majority vote.

2.3. Performance evaluation

Our model is trained on tensorflow 1.9.0 ( https://github.com/
tensorflow/tensorflow), which supports GPU-accelerated calculation.
The number of iterations is set to be 2000, the batch size is 966, and the
probability of dropout is 0.5 during the train and we turn the dropout
layer off in test. The learning rate is set to be 0.0001 using Adam op-
timizer. The loss function uses the cross-entropy function.10-fold cross
validation is employed on our model. We randomly divide the datasets
into ten parts, took out nine subsets for training and the remaining one
is for verification, and took turns to perform ten times, ensure that each
subsample can be tested once. Finally we averaged all these test results
to get the final result. The final results are shown in Table 2. We cal-
culated accuracy (ACC), precision (PRE), Matthews correlation coeffi-
cient (MCQC), sensitivity (SN), and specificity (SP). They are respectively
defined as follows:

ACC = (TP + TN)/(TP + TN + FP + FN) 5)

PRE = TP/(TP + FP) (6)
MCC

= (TP*TN — FP*EN)/./(TP + FN)*(TP + FP)*(TN + FP)*(TN + FN)

@

SN = TP/(TP + FN) 8
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Table 2
The comparison of results from different models. We can see that the perfor-
mance of econvRBP is the best in all models.

Feature group ACC PRE SN SP AUC MCC
econvRBP 0.998 0.993 0.999 0.997 0.999 0.995
2DLO 0.954 0.846 0.999 0.939 0.969 0.890
3DGO 0.991 0.972 0.998 0.988 0.985 0.979
econv-20 0.937 0.790 0.998 0.918 0.943 0.851
econvWR 0.969 0.900 0.994 0.959 0.992 0.925

The significance of bold values denote the best result.

SP = TN/(TN + FP) ()]

We also used Conjoint Triad encoding to compare the performance
of traditional machine learning algorithms such as SVM and RF, and
made their ROC curve and calculated the Area Under Curve (AUC)
(Fig. 5).

3. Results
3.1. Datasets

Although the prediction methods of RBPs are various, un-
fortunately, there are still no unified public datasets so far. Cai et al.
proposed a scientific method to obtain protein data. We followed the
same method as Cai et al. [4] and Ma et al. [21] to obtain RBPs (Fig. 4).
We use the keyword “RNA-binding” to search Uniprot database and
downloaded 60048 protein sequences [5], as a rough positive sample.
Then the rough positive datasets is removed ambiguous proteins, such
as sequences with the length more than 6000 or less than 50. Besides,
sequences containing illegal amino acids were deleted (X’ and ‘Z’).
Finally, 59660 positive samples are obtained. For comparison, the list of
keyword “tDNA binding — DNA binding — core protein” with logical
“or” is used to search from Uniport with a logical “or”, we obtain a total
of 48,528 rough negative samples and perform the same preliminary
screening. Then the positive and negative samples are mixed, and the
CD-HIT program [19]is used to remove the homologous sequences with
identity cutoff >25%. In this way, a total of 9657 mixed samples are
obtained, we call it Mix9657.

In order to correctly separate positive and negative samples, all of
the reviewed proteins that “GO: Molecular Function” section contains
“RNA-binding protein” are downloaded. These reviewed proteins
functions are all annotated as RNA-binding, we call it ALLRBP. We only
select positive samples that both belong to 59660 samples and exist in
ALLRBP as positive samples, with the rest as negative samples. This
verified separation yield 2875 positive samples and 6782 negative
samples named BP2875 and nBP6782, respectively.

At the same time, we download protein seqeuence provided by
RBPPred for verification and comparison. For the training set of
RBPPred, we call it Comparison train (Cmptrain). Similarly we call its
test set as Comparison test (Cmptest).

59660
positive
samples

RNA-binding

Preliminary

Uniprot "
screening

48528
negative
samples

tDNA binding | DNA binding | core prote; ]
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Fig. 5. ROC curves for SVM, RF and econvRBP. Where the parameter of RF is
set to n_estimators = 460, min_samples_split = 2 and (C, y) = (110, 0.1) of SVM
using grid search strategy.

3.2. Performance comparison of different network structures

Different models were designed to compare the influences of dif-
ferent structures and features on the original model. We separately
designed one model called Two Dimensional Local Only (2DLO) which
removed 3DGC from the origin model, and the other removed 2DLC,
called Three Dimensional Global Only (3DGO). To verify the effect of
residual block on the model, we also analyzed the model removing
residual block, called econvWR. We compared the impact of using 20
kinds of amino acids on the model as well. It is worth noting that the
use of 20 kinds of amino acids will expand the number of channels to 20
for One Hot matrix, and expand the Conjoint Triad cubic matrix to
20 X 20 X 20 = 8000. If the original design were followed, neurons in
fully connected will be excessively preferred to its global features.
Therefore, we added max pooling with 2 X 2 x 2 filter and 2 X 2 X 2
step in the first two layers of convolution in order to reduce dimension
of features, and balance global-local features, we call that econv-20.
The results of different structures are shown in Table 2. From the results
Table 2, we made the following two assumptions: (1) it is necessary to
establish a mapping from input to output. Although deep CNNs can
extract high dimensional and abstract features, these complex features
make it more difficult for the next layer to learn. The residual block
combines the features of the deep CNNs output with low dimensional,
simple features that are easier to understand for the next layer. The
experimental process also validated it: during the training process, the
model with the residual block will converge faster and predict better.
(2) It is a good choice to classify 20 kinds of amino acids into seven
categories. The dipoles and volumes can reflect the properties of RBPs,
so they can be an essential feature of RBPs prediction. In this way, the
noise is reduced and the overfitting is prevented. It is obvious from the

BP2875

Mix9657

nBP6782

Fig. 4. The flowchart of sample acquisition. The keywords “RNA binding” and “tDNA binding — DNA binding — core protein” are used to retrieve positive and
negative samples, respectively. Then the mixed data was used together with CD-HIT program to remove homologous sequences at a threshold of 25%. Finally, the
intersection of ALLRBP and Mix9657 is taken as the final positive sample BP2875 and the rest as the final negative sample nBP6782.
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Table 3

Performance comparison with traditional learning algorithm (SVM and RF)
using Conjoint Triad encoding. One Hot encoding is difficult to use in machine
learning and is not listed here.

Learning algorithm ACC PRE SN SP AUC MCC
SVM 0.713 0.632 0.104 0.971 0.686 0.155
RF 0.654 0.673 0.598 0.710 0.662 0.310

The significance of bold values denote the best result.

comparison among econvRBP, 2DLO and 3DGO that simply using the
local or global sequence purely cannot make the right judgment.
However, after combining with the global or local features, the classi-
fier improves powerful performance.

3.3. Comparison with conventional machine learning algorithm

Traditional machine learning algorithms have been frequently used
in the field of bioinformatics, such as SVM, RF, etc. We used the grid
search strategy to find the optimal super parameters of SVM and RF.
Researchers have proposed a large number of complex methods in
feature engineering and have achieved relatively good results.
However, because of its own characteristics, CNN does not require a lot
of time and efforts for feature engineering. We can make good predic-
tion by designing model structures and adjusting parameters.
Therefore, this study compares the performance of the deep learning
method with the machine learning method (Table 3) using the same
encoding. It can be seen that CNN is far better than the machine
learning using the same Conjoint Triad encoding as the input feature,
and shows that the CNN is a powerful tool.

3.4. Comparison with other existing methods

3.4.1. Compared with existing machine learning methods

Mix9657 is an obviously unbalanced dataset. There have 6782 ne-
gative samples in Mix9657, accounting for about 70%. Therefore,
Mix9657 causes the classifier to have additional preferences for nega-
tive samples. From the result of cross validation, the classifier misjudges
some positive samples as negative samples, which is caused by the
imbalance. Similarly, it also will cause great trouble to the other
models. Although there are many prediction methods of RBPs, few RBPs
prediction web server are available online. Kumar et al. provided a web
server called RNApred for RBPs prediction [15]. RNApred provides
three alternative methods: Amino acid composition, PSSM, and Hybrid,
the latter two cannot produce results in tolerable time. Here, we just
picked the Amino acid composition method. And the SVM threshold is
constantly adjusted for the best performance. From the results of
RNApred (Table 4), we can see that a large number of errors are mainly
concentrated in negative samples.

3.4.2. Compared with existing deep learning methods

In order to further evaluate the validity of the model, we reproduced
the same CNN-based method Deep-RBPPred proposed by Zheng et al.
and applied this model on MIX9657 (Table 5). Unfortunately, due to the
different dataset, gradient explosion problem occurred in the training
process, so we appropriately reduced the learning rate and increased
the training steps compared with the original model. Deep-RBPPred
was trained 18,000 steps with 0.000001 learning rate and got the final
result. We believed that the stacking of features as machine learning is
no longer suitable for deep neural networks represented by CNN. The
convolution kernel regularly scanned on the feature map. When the
kernel scanned to the junction of different features, the convolution
results will mislead the next layer that the adjacent features have strong
correlation (actually they are just being stacked together).
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Table 4

Comparison of confusion matrix between RNApred and econvRBP on Mix9657.
For RNApred, we adjusted the SVM threshold to —0.2, so that it has a pre-
ference for negative samples to deal with the unbalanced dataset. It can be seen
from the results that the imbalance of the sample will lead to a significant in-
crease in False Positive. Both RNApred and econvRBP show different degrees of
misjudgment on positive samples.

Method: RNApred Prediction
Positive Negative
Real True 2410 465
False 1770 5012
Method: econvRBP Prediction
Positive Negative
Real True 2859 16
False 1 6781
Table 5

Comparison of confusion matrix between Deep-RBPPred and econvRBP on
Mix9657. Deep-RBPPred and econvRBP are both CNN-based models. The fea-
ture encoding of Deep-RBPPred is more complicated than econvRBP, con-
sidering more physical and chemical properties of proteins. However,
econvRBP considers the essential properties of protein sequence to construct
model according to objective laws, thus achieving better results.

Method: Deep-RBPPred Prediction
Positive Negative
Real True 2269 606
False 127 6655
Method: econvRBP Prediction
Positive Negative
Real True 2859 16
False 1 6781

3.5. Performance comparison among other datasets

We want to further test whether econvRBP could accurately identify
unlearned RBPs in a large number of negative samples. The data pro-
vided by RBPPred is downloaded for verification. For Cmptrain,
BP2875 are mixed and the homologous sequence are removed with a
threshold of 25% and fed to econvRBP for verification. For the in-
dependent testing set, we fed it to econvRBP directly with nothing
changes. One thing we have to mention is that econvRBP uses fixed-
length One Hot encoding. Therefore, the shape of input conflicts with
the data provided by RBPPred. For this case, we find that the average
length of the Cmptrain is 283, and the average length of the Cmptest is
347, far below the average length of 549 we trained, we had to pad zero
at the end of Cmptrain and Cmptest, causing data to mix in a lot of
noise. Numerous noises will make wrong distinguish. Even so,
econvRBP accurately predict 3661 of the 4,250 amino acid sequences in
Cmptrain, with an accuracy rate of 86%. In Cmptest, 5322 of the 6105
sequences were accurately predicted, and the accuracy rate reached
87%. This proves that econvRBP has strong robustness and is able to
deal with a large amount of noise.

3.6. Web Server for econvRBP

With the development of high-throughput computation methods,
more and more web servers have been applied in bioinformatics. More
practical and friendly servers are the order of the day. Therefore, we
also provide an econvRBP-based web server here. The specific steps are



Y. Zhao and X. Du

Fig. 6. Convolution kernel training results. The darker the color, the greater the
weight. We found that 3DGC automatically learns that the position in the
central of the convolution kernel is most relevant to other locations, so its
weight is the largest. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

as follows:

1. Open the urlhttp://47.100.203.218:3389/home.html/.

2. Click the ‘Submission’ button on the left to submit your jobs.

3. Protein sequences in the ‘fasta’ format will be prepared and sub-
mitted.

4. Click the ‘submit’ button and wait for the final result. The output
consists of the sequence ID and the result.

»

Discussion

As mentioned above, we divided 20 kinds of amino acids into seven
categories according to dipoles and volumes. Using conjoint triad en-
coding, an amino acid sequence is encoded as a 7 X 7 X 7 cube. The
index of the cube represents the frequency of occurrence in three
groups. The convolution kernel of 3 X 3 X 3 is scanned regularly on the
feature map of 7 X 7 X 7. Another reason we use a 3 X 3 X 3 size con-
volution kernel is that all features in the receptive field are correlated.
In the receptive field, the convolution kernel and the feature map are
multiplied and summed. The weight of the convolution kernel re-
presents the preference for the feature map in the receptive field. We
extract a convolution kernel from the trained 3DGC, as shown in Fig. 6,
this is a process of convolution kernel scanning on feature graph. Color
represents the area where the convolution kernel is located, and white
represents other unrelated areas in the feature map. The darker the
color, the greater the weight in the convolution kernel. In this case, the
index of convolution kernel in feature map is [2:4][2:4][1:3] (the index
starts at 1). The index [3][3][2] does not only mean that the frequency
of conjoint triad, and is also the center of the kernel. Other locations in
the receptive field are related to the center element. For example, the
index [3]1[2]1[2] means the transition from group 3 to group 2 of middle
amino acid in the conjoint triad. Obviously, the most important position
in the convolution kernel is the middle, which has the strongest cor-
relation with other positions. Therefore, the color in the middle position
in Fig. 5 is the darkest and the weight is the largest. This inspires us that
convolutional neural network can be well applied to bioinformatics to
analyze the proximity information of sequences. By acquiring protein
sequence encoding, we can use CNN to process RNA binding protein
just like image. The filter of convolutional neural network can scan a
motif with biological significance, i.e. feature subsequences, which are
very important to RNA binding protein. From the whole experiment, we
can see that our method is very effective.
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5. Conclusion

We compared the effects of different network structures on RBPs
prediction. The local features are separated from the global features are
not satisfactory due to the loss of some global information and fall into
local optimum during prediction; the global features that are separated
from the local features lose important local information. Some of the
details in the experiment are thought-provoking: In the early stages of
training, econvRBP, 2DLO and econvWR both simply predicts that all
samples are negative samples, and after a few steps, econvRBP first
jumps out of the local optimum, and continues to converge to the global
optimum. The combination of global information and local information
can promote each other. The global information and residual block
provide a relatively gentle gradient for the amino acid sequence, so that
the model can jump out of the local minimum value in the training
process. The classification of 20 amino acids into 7 categories is also the
key point of our model. First, the classification into 7 categories can
reduce the data dimension, effectively reduce the data quantity and
increase batch size on training. Secondly, the expression of useless
features can be reduced. All the sequence information of 20 amino acids
is often not necessary. Although econvRBP can be used to effectively
predict the RNA binding protein, further features, including those re-
lated to alternative splicing, have not yet been explored. In addition, we
will further explore the correlation between the high-level features
learned by CNN and alternative splicing in the future work, which will
further link our work with practical biological problems.
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