
SEA: Semantic Aligned Code Summary Generation with
Contrastive Learning Framework

Anonymous ACL submission

Abstract

Code summary aims to generate a natural lan-001
guage description of a piece of code, which002
can help understand the program and increase003
development productivity. Although the perfor-004
mance of previous works has greatly improved,005
the in-depth exploration of inherent gaps be-006
tween code semantics and natural language se-007
mantics still needs to be developed. To this end,008
we explore the role of data flow and summary009
in code semantics. In this paper, we propose the010
SEmantic-Aligned code summary generation011
framework (SEA), a semantic-aware method012
that conducts in-depth research into code se-013
mantics and converges on alignment with natu-014
ral language semantics. Specifically, we use the015
data-flow-guided walking algorithm to capture016
co-occurrence nodes and utilize destruction-017
construction ideas to represent code semantics.018
We also design a semantic alignment loss to019
align code and natural language semantics in020
the same space. Extensive experiments on Java021
and Python datasets show the effectiveness and022
generalization of our SEA.023

1 Introduction024

Code summary has been acknowledged as a criti-025

cal issue in software development and maintenance,026

which aims to generate intelligible natural language027

descriptions for source code segments. As shown028

in Figure 1(a), given a piece of code, the summary029

describes its main goal of “array calculation”. A030

good summary can facilitate program comprehen-031

sion and support various programming applications032

(e.g., code search), potentially increasing develop-033

ers’ productivity and significantly reducing their034

tedious workload (Ahmad et al., 2020; Lu et al.,035

2021; Wang et al., 2022).036

The core problem of code summary is to under-037

stand and align both semantics. Along this line,038

several strategies have been investigated to model039

the codes using language models (Iyer et al., 2016;040

Allamanis et al., 2017; Hu et al., 2018a; Alon et al.,041

module

func_def

def sum_func params :

control node

token node

AST edge

dataflow edge

sum = 0 for value in array : block return sum

expr_stmt for_stmt return_stmt

block

(array)

expr_stmt

 agrmt_asgmt

sum += value

 Code:

 def sum_func(array): �
 sum = 0�
 for value in array: �

� sum += value�
 return sum

 Summary:

Calculate the sum of�
an array.

(a)

(b)

Figure 1: (a) An example of a code and summary. (b)
The abstract syntax tree (AST) and data flow correspond
to the code.

2018, 2019), including learning the sequential se- 042

mantics by treating the code token-by-token and 043

learning the topological semantics via establishing 044

its abstract syntax tree (AST) (Figure 1(b) shows 045

one AST example). Despite their success, most 046

of them are still far from a comprehensive code 047

understanding, since the following two key aspects 048

are underexplored. First, they overlook the deep 049

analysis of data flow. Specifically, the data flow of 050

the code generally reflects the relation the of vari- 051

able where-the-value-comes-from. In Figure 1(b), 052

we can understand the loop statement “for value ...” 053

by analyzing its dataflow edges: the element value 054

is taken from the input array, and then the value 055

is added by sum, and finally, the sum is returned. 056

Though some work considers it as auxiliary infor- 057

mation (Wu et al., 2020; Guo et al., 2020), they fail 058

to extract sufficient semantics from the whole code 059

process of “input-computation-return” reflected by 060

the data flow from a dynamic perspective. Second, 061

they generally follow a standard encoder-decoder 062

framework, where the summary only works in the 063

decoding stage. Therefore, they often suffer from 064

the exposure bias problem (Ahmad et al., 2020; 065

Wu et al., 2020) because the code and summary 066

1

follow different grammar and exist in inconsistent067

semantic space. Thus, how to align both code and068

summary into consistency is important.069

In this paper, we deeply focus on code summary070

from the above aspects. However, it is always chal-071

lenging. First, how to exploit code intermediate072

forms like abstract syntax tree (AST) and data flow073

to explore code semantics has yet to be deeply074

explored. Sequentially modeling code lacks struc-075

tural information (e.g., topology information in076

Figure 1(b)), while graph representation methods077

fail to capture the long-distance dependencies that078

often exist in code (e.g., the input "array" and the079

output "sum" distance is 5-hops in Figure 1(b)).080

Second, since both the code and summary follow081

different grammars, which have different inherent082

properties, it is difficult to align them. For exam-083

ple, in Figure 1(a), if we replace the word "array"084

with the word "var_1" in summary, the meaning085

of the sentence changes dramatically. In contrast,086

nothing has changed if we arbitrarily replace the087

variable names in the code (e.g., replacing "array"088

with the word "var_1"). We make deeper data anal-089

ysis in Figure 6 to demonstrate such differences.090

Specifically, the token imbalance issue in code is091

more severe than it is in summary, i.e., fewer token092

categories (20 words) occupy a higher proportion093

(38.4%) of the code corpus, making code repre-094

sentations more ambiguous. Thus, how to mine095

code semantics from the data flow and align it with096

the summary semantics has become a problem that097

needs to be solved.098

To meet the above challenges, we propose a099

novel SEmantic Aligned code summary generation100

framework (SEA). The whole model includes two101

modules: Semantic Extraction Module (SEM) and102

Semantic Align Module (SAM). In the SEM, we try103

to model the structured long-distance dependencies104

to mine semantic information. Based on the source105

code, we build AST with data flow edges like Fig-106

ure 1(b). Then, for each token node, we apply107

a novel data-flow-guided walking method to cap-108

ture the semantically related nodes (see Figure 3).109

Next, we use a model inspired by the destruction-110

reconstruction process to depict the co-occurrence111

correlation in the walking path. In the SAM, the112

use of Bi-GRU first ensures that code and natural113

language are projected into the same space. After114

that, to get the semantic representation of code115

as close as feasible to that of natural language,116

while keeping the various meanings as far away117

as possible inside the same space, we build on 118

the promising results of bilinear contrastive learn- 119

ing (Kong et al., 2019; Clark et al., 2020). After 120

constructing negative samples with convex inter- 121

polation, contrastive learning not only optimizes 122

semantic similarity function but also guides the 123

subsequent decoding stage. In the decode stage, 124

we integrate the semantic representation into the 125

code representation and use the trained semantic 126

similarity function to guide the generation process. 127

We conduct extensive experiments on real-world 128

datasets. The experimental results fully validate 129

the effectiveness of SEA in semantic representation 130

and semantic alignment. 131

2 Related Works 132

2.1 Code Summary 133

Based on the ways of source code representations, 134

generally, we divide the previous work into three 135

categories. The most basic is the linearization 136

method. The general approach is to take the code 137

sequence directly as input (Iyer et al., 2016; Hu 138

et al., 2018b; Feng et al., 2020; Ahmad et al., 2020; 139

Parvez et al., 2021; Wei et al., 2019). Some other 140

methods consider that AST has rich structural in- 141

formation, and traverse the AST to get the lin- 142

earized input, such as, Pre-Order Traversal (Guo 143

et al., 2022; Tang et al., 2022) and Structure-Based 144

Traversal (Hu et al., 2018a, 2020). Simply enter- 145

ing a sequence cannot capture the hierarchical re- 146

lationship and structural information of the code. 147

Whereas path-aware methods focus more on mod- 148

eling paths in the AST. It regards AST as the back- 149

bone, which represents the code by integrating path 150

information (Alon et al., 2018, 2019). Despite the 151

strong interpretability, the rigid way of path se- 152

lection leads to its poor performance. The graph 153

representation method comprehensively considers 154

the topological structure of the code graph. Most 155

of the early works rely on convolutional neural net- 156

work (CNN) to carry out convolution operations on 157

AST (Mou et al., 2016) or rely on recurrent neural 158

network (RNN) to represent the entire AST bottom- 159

up (Wan et al., 2018; Zhang et al., 2019). Although 160

the above approaches have achieved considerable 161

success, AST is typical non-Euclidean data, which 162

contains complex structural information. The emer- 163

gence of graph representation algorithms such as 164

graph convolutional networks (GCN) has effec- 165

tively filled this gap (Kipf and Welling, 2016). The 166

graph representation method is applied on the code 167

2

Parser

Code

Summary

Destruction and Reconstruction

Beam Search

def sum_func (array):

 sum = 0

 for value in array:

 sum += value

 return sum

Calculate the sum of

an array.

code

semantic

summary

semantic

SummarySummary

(b) Semantic Align Module

A
v
erag

e P
o
o
lin

g
A

v
erag

e P
o
o
lin

g
A

v
erag

e P
o
o
lin

g

(a) Semantic Extraction Module

Similarity

Score

 AST with data flow AST with data flow Walking AlgorithmWalking Algorithm

…

Path

…

Path

A
v
erag

e P
o
o
lin

g
A

v
erag

e P
o
o
lin

g
A

v
erag

e P
o
o
lin

g

M
u
lti-H

ead

A
tte

n
tio

n

A
d

d
 &

 N
o

rm

In
p

u
t

E
m

b
e
d
d
in

g

F
eed

F
o

rw
a
rd

A
d
d
 &

 N
o
rm

M
ask

e
d

M
u

lti-H
e
a
d

A
ttentio

n

A
d

d
 &

 N
o

rm

O
u

tp
u

t

E
m

b
ed

d
ing

M
u

lti-H
e
a
d

A
tten

tio
n

A
d
d
 &

 N
o
rm

F
eed

F
o

rw
a
rd

A
d
d
 &

 N
o
rm

L
in

ear

S
o

ftm
a
x

Figure 2: The overview of our proposed model SEA. The architecture of SEA is based on the Transformer as the
backbone. We design a data flow-guided walk algorithm to capture the co-occurrence relationships of key variables.
SEM and SAM are designed for semantic extraction and semantic alignment, respectively.

graph to get the code representation (Allamanis168

et al., 2017; Xu et al., 2018b; LeClair et al., 2020;169

Fernandes et al., 2018; Guo et al., 2020; Liu et al.,170

2020). The core idea of graph representation is the171

propagation and aggregation of neighbor informa-172

tion, which is difficult to capture the dependencies173

between multi-hop neighbors (Xu et al., 2018a) that174

exist in code graphs (e.g., the input "array" and the175

output "sum" distance is 5-hops in Figure 1(b)). For176

the reasons outlined above, prior arts can’t fully ex-177

ploit the data flow and disregard the gap between178

code and natural language.179

2.2 Contrastive Learning180

Contrastive learning, as one of the self-supervised181

learning methods, has the characteristics of obtain-182

ing prior knowledge distribution between sample183

pairs without relying on labeled data, which has184

been well received since it was proposed. Con-185

trastive learning has gradually become the new186

paradigm in the CV and NLP field (Chen et al.,187

2020; He et al., 2020; Kong et al., 2019; Clark188

et al., 2020; Gao et al., 2021). Contrastive learning189

has also attracted increasing attention in the field190

of code. (Bui et al., 2021) uses five operations (e.g.,191

Variable Renaming) to construct positive samples192

from the original code. The code representation193

is optimized by contrastive learning, which mini-194

mizes the distance between positive samples while195

maximizing the distance between negative sam-196

ples. In our article, we draw on the experience197

of contrastive learning to pull code semantics and198

summary semantics closer.199

3 Preliminary 200

3.1 Abstract Syntax Tree and Data Flow 201

In this section, we will introduce abstract syntax 202

tree (AST) and data flow. A typical AST and data 203

flow are shown in Figure 1. AST consists of two 204

kinds of nodes including control nodes Vc and to- 205

ken nodes Vt. Control nodes represent certain con- 206

struction (e.g., for_statement and block), while 207

token nodes are composed of the lexical token, 208

such as identifiers (array), keywords (def), num- 209

bers(0), etc. AST edges Ea reflect the topology 210

structure between nodes and data flow edges Ed re- 211

flect the transfer of information between variables. 212

For example, if there is an assignment statement 213

sum=0, then a one-way edge is drawn from token 214

node 0 to sum. Therefore we define a code graph as 215

G(Vc, Vt, Ea, Ed,We), where Vc, Vt, Ea, Ed repre- 216

sent the sets of the control node, token node, AST 217

edge, and data flow edge. In addition, AST edges 218

and data flow both affect the preference of the fol- 219

lowing walking algorithm. To emphasize the data 220

flow guidance, we define the weights of the two 221

types of edges We are inversely proportional to 222

their numbers: 223

wij =

{
1 if ei,j ∈ Ea,
|Ea|
|Ed| if ei,j ∈ Ed,

(1) 224

where ei,j means edge between node i and j. 225

3.2 Problem Definition 226

We denote (x,y) ∈ (X ,Y) as a pair of 227

(code, summary), where x = {x1, x2, ..., xN} 228

3

is a source code with N tokens (e.g., "int sum229

= 0"), y = {y1, y2, ..., yN ′} is a target summary230

with N
′

tokens. Code summary usually employs a231

sequence-to-sequence model of which the purpose232

is to learn the transformation from the source space233

to the target space, that is X → Y : f(y | x; Θ).234

Formally, given a set of k observed (code, sum-235

mary) pairs, S = {(x,y)1, (x,y)2, ..., (x,y)k},236

the training objective is to minimize the following237

log-likelihood:238

Lmle(Θ) = E(x,y)∼S(− logP (y | x; Θ))

= E(x,y)∼S

N′∑
t=1

− logP (yt | y<t,x; Θ) ,
(2)239

where y<t is sequence of summary before time t240

and Θ is a trainable set of model parameters.241

4 The Proposed Model242

The overall architecture of SEA is shown in Fig-243

ure 2. Specifically, we separate the code semantics244

into two phases and design two modules to corre-245

spond to the two phases. At first step, we create a246

novel Semantic Extraction Module (SEM), which247

aims to mine code semantics guided by the data248

flow. In the meantime, a Semantic Align Mod-249

ule (SAM) is proposed to solve the semantic gap250

between code and summary. The following two251

sections will describe these modules in detail.252

4.1 Semantic Extraction Module253

To extract specific semantic information from the254

code, we design a data flow-guided walking algo-255

rithm. To be specific, given a certain source code256

x = {x1, x2, ..., xN}, we output the semantic rep-257

resentation pra through SEM. To this end, we first258

extract the walking paths p from the code graph G,259

and then obtain the code semantic representation260

pra through the walking paths p.261

Unlike the previous path-aware method (Alon262

et al., 2018, 2019), we do not take a mandatory263

path from token to token but adopt a data flow-264

guided random walk strategy. Inspired by previous265

work (Perozzi et al., 2014; Tang et al., 2015; Grover266

and Leskovec, 2016), the walking process we take267

starts from all token nodes Vt and walks along the268

edges (i.e., the AST edges Ea and data flow edges269

Ed). Specifically, given a start token node v ∈ Vt,270

we simulate a path of fixed length l. We donate ci271

is the i-th node in the path, starting with c0 = v.272

The probability of accessing the node ci from the273

former node ci−1 is: 274

P (ci |ci−1)=

{
ei−1,i

z if (ci−1, ci) ∈ Ea∪Ed,

0 otherwise ,
(3) 275

where z is the normalizing constant. We show the 276

detailed walking algorithm in Appendix A.3. 277

The introduction of data flow edges makes it 278

more likely that semantically related nodes will 279

occur together, and this walking algorithm cap- 280

tures the relationship between semantically related 281

nodes. Taking Figure 1 as an example, we calcu- 282

late the expected hitting time (time to first reach 283

the destination node) between the input parameters 284

array and the final result sum (green node). How- 285

ever, if we remove data flow edges, the expected 286

hitting time will rise significantly from 9.9 to 135. 287

This indicates that the existence of data flow edges 288

provides a shortcut to capture the co-occurrence 289

relationship between variables. The existence of 290

this shortcut ensures that the algorithm can capture 291

nodes with close semantics with a small path length 292

l, which improves efficiency and avoids noises. The 293

details of the calculation of hitting time will be pre- 294

sented in Appendix A.2. 295

Figure 3 shows the specific walking process. We 296

take node "array" as the starting point and use 297

the walk algorithm above to capture co-occurrence 298

nodes with close semantics. First we calculate the 299

transition probability distribution, and transfer to 300

node "array" with high probability (0.89). This 301

step reflects that "array" is inherited from the input 302

"array". Likewise, node "array" transfers to nodes 303

"value" and "sum", reflecting the value of "value" 304

being taken from "array" and flowing out to "sum". 305

In this way, we get paths of fixed length p = 306

{p1, p2, .., pN} for each start node v ∈ Vt, where 307

pi = {pi1, pi2, ..., pil} (e.g., array->array->value- 308

>value->sum) and l is a small path length. It should 309

be noted that the sequence obtained by arrang- 310

ing the token nodes Vt in a pre-order traversal of 311

the AST is exactly the input sequence x, that is 312

x = {x1, x2, ..., xN} = {p11, p21, ..., pN1}. To 313

better represent the path, we adopt the idea of de- 314

struction and reconstruction (Mikolov et al., 2013; 315

Devlin et al., 2018). In the destruction step, we use 316

average pooling at each path to destruct the rep- 317

resentation of each token pra = {p1, p2, ..., pN}. 318

Then, we reconstruct the corrupted token using 319

the input tokens in the reconstruction step by op- 320

timizing the loss function. This process can be 321

4

start and current
P = 0.89

v
P = 0.11

start

currentP = 0.89

P = 0.11

start

current

P = 0.89

P = 0.11

array -> array array -> value value -> value

Figure 3: The process diagram of the walking algorithm. The example comes from Figure 1. We omit some nodes
for clarity. Guided by data flow, the walking algorithm automatically captures co-occurrence relationships. Since
the number of data flow edges is 7 (unidirectional) and the number of AST edges is 56 (bidirectional), the weights
of the edge are 8 and 1. The starting point is array, and after being guided by the data flow, it reaches the sum node
through the node array and value respectively.

formalized as follows:322

x
′
= f(pra), (4)323

Ldrc(Θ) = E(x,y)∼S(− logP (x | x′
; Θ)), (5)324

f represents the fitting function, such as a neural325

network. x
′

is the reconstructed token. We opti-326

mize the semantic representation pra by optimizing327

the loss function Ldrc. Finally, we incorporate pra328

into the vanilla Transformer’s representation as:329

xr = λ · Transformer(x) + (1− λ)pra, (6)330

where λ is a trainable parameter controlling the331

weights of the representation.332

4.2 Semantic Align Module333

To alleviate the semantic gap between code and334

summary, we try to put forward the SAM using bi-335

linear contrastive learning to align code semantics336

with summary semantics. Therefore in SAM, given337

a code semantic representation pra and summary338

y = {y1, y2, ..., yN ′}, our goal is to train a seman-339

tic similarity function sω(·, ·) that makes positive340

samples as close as possible and negative samples341

as far apart as possible. During this process, we342

mainly focus on three points: the projection of se-343

mantic representation, the construction of negative344

samples, and the use of contrastive learning.345

The first is the projection of semantic represen-346

tation. For natural language, we don’t put much347

focus on the issue of how to represent its semantics,348

as this is not a simple problem and still merits more349

study. Therefore, we only use mean-pooled word350

embeddings as semantic representations for natural351

language yr = 1
N ′
∑N

′

i=1 yi. For code, a Bi-GRU352

encoder is applied to the semantic representation353

pra to project it into a vectorized semantic repre-354

sentation prg: 355

prg =
1

N

N∑
i=1

FC (Bi-GRU(pra)) , (7) 356

where FC (·) is the fully connected layer. 357

The second is the construction of negative sam- 358

ples. Instead of sampling directly from a mini- 359

batch, we use convex interpolation to construct 360

negative samples from other samples in a mini- 361

batch (Wei et al., 2022). Specifically, we construct 362

negative samples in the following way: 363

p′(j)
rg = p(i)

rg + λp

(
p(j)
rg − p(i)

rg

)
, λp ∈

(
d

d′p
, 1

]
,

y′(j)
r = y(i)

r + λy

(
y(j)
r − y(i)

r

)
, λy ∈

(
d

d′y
, 1

]
,

(8) 364

where d = ||p(i)
rg −y

(i)
r ||2, d′p = ||p(i)

rg −p
(j)
rg ||2 and 365

d′y = ||y(i)
r − y

(j)
r ||2. The existence of λp ensures 366

that once the distance between the positive sample 367

pair (prg,yr) is larger than the negative sample 368

pair (p(i)
rg ,p

(j)
rg), the constructed interpolated nega- 369

tive sample semantics will not be too far from the 370

original sample semantics. The same goes for the 371

existence of λy. 372

Finally, we apply bilinear contrastive learning 373

(Hou et al., 2022) to align the code semantic rep- 374

resentation and natural language semantic repre- 375

sentation. All samples are combined to optimize 376

semantic similarity function sω(·, ·) through mini- 377

mizing contrastive learning loss: 378

Lclt(Θ) = E(
p
(i)
rg ,y

(i)
r

)
∼B

− log
e
sω

(
p
(i)
rg ,y

(i)
r

)

e
sω

(
p
(i)
rg ,y

(i)
r

)
+ ξ

 ,

ξ =

|B|∑
j&j ̸=i

(
e
sω

(
y
(i)
r ,y

′(j)
r

)
+ e

sω

(
p
(i)
rg ,p

′(j)
rg

))
,

(9) 379

5

where B is a mini-batch sampled from training set380

S and sω(·, ·) is the similarity function parameter-381

ized by ω, we define it in the form of bilinear:382

sω

(
p(i)
rg ,y

(i)
r

)
= p(i)

rg

⊤ ·W · y(i)
r , (10)383

where W ∈ Rdmodel ×dmodel is a trainable matrix. The384

final training objective is:385

L = Lmle(Θ) + Ldrc(Θ) + Lclt(Θ). (11)386

4.3 Generation with Similarity Function387

Contrasted with previous generate tasks, we in-388

corporate the semantic similarity function learned389

in Eq. 10 into the decoding stage to guide the390

generated results. Given the code x, we aim to391

generate optimal target y∗. We first utilize beam392

search to autoregressively generate k candidates393

ŷ = {y1,y2, ...,yk}. Then, we employ the trained394

similarity function to evaluate the semantic similar-395

ity between the candidates and the code. Finally,396

we combine the likelihood and similarity scores to397

find the target sequence y∗:398

y∗ =argmax
ŷ

{α · sω (prg, ŷr)+

(1− α)
∏
t=0

P (ŷt | ŷ<t,x)}.
(12)399

5 Experiments400

5.1 Dataset401

We conduct our experiments on two commonly402

used code summary generation datasets. One is403

Java (Hu et al., 2018b) and the other is Python404

(Wan et al., 2018). We filter summaries that are405

less than four characters to ensure quality. We give406

statistics of these two datasets in Appendix 4. We407

split CamelCase and snake_case, such as splitting408

sum_func into sum and func, which can greatly409

alleviate the Out-Of-Vocabulary problem.410

5.2 Evaluation Metrics411

We evaluate the performance with BLEU (Papineni412

et al., 2002), METEOR (Banerjee and Lavie, 2005),413

and ROUGE-L (Lin, 2004). BLUE compares the414

result of the summary with its corresponding refer-415

ence and calculates a composite score. The higher416

the score, the better the machine translates. Here,417

we use smoothed BLEU-4 as an evaluation metric418

and report the overall score. METEOR consid-419

ers the accuracy rate and recall rate based on the420

whole corpus, sentence fluency, and the influence 421

of synonyms on semantics. ROUGE-L computes 422

the longest common subsequence used by summary 423

and reference 424

5.3 Baselines 425

To fully prove the validity of our model, we com- 426

pared SEA to nine different baseline models. As 427

(Shi et al., 2022) mentioned, the metric varies with 428

different BLEU calculation methods. Therefore 429

for a fair comparison, in our experiment, we re- 430

run the two best-performing baselines and use the 431

same method to calculate BLEU scores. In gen- 432

eral, we divide baselines into three categories: 1) 433

Linearization Methods: CODE-NN (Iyer et al., 434

2016), DeepCom (Hu et al., 2018a), API+CODE 435

(Hu et al., 2018b), Dual Model (Wei et al., 2019), 436

TransBase (Ahmad et al., 2020); 2) Path-Aware 437

Methods: Code2Seq (Alon et al., 2018), SiT 438

(Wu et al., 2020); 3) Graph Methods Tree2Seq 439

(Eriguchi et al., 2016), RL+Hybird2Seq (Wan et al., 440

2018). 441

5.4 Main Results 442

Our model results on Java and Python datasets are 443

shown in Table 1, the following conclusions can be 444

drawn from the results: 1) Our model outperforms 445

all baseline models on the Java dataset. Specif- 446

ically, our model outperforms the best baseline 447

model by 28.3% in METEOR. Since we augment 448

token nodes with co-occurrence nodes to enrich 449

semantics, our model generates more synonyms. 450

Therefore, as a metric for accurate measurement of 451

each word, BLEU does not improve significantly, 452

but METEOR comprehensively considers all syn- 453

onyms, so it received a huge boost. 2) On the 454

Python dataset, the improvement of BLEU value is 455

relatively limited (although there is still a huge 456

performance boost over the BaseTrans (Ahmad 457

et al., 2020)), but METEOR and ROUGE-L have 458

achieved 3.04 and 5.19 improvements respectively. 459

Experimental results demonstrate the effectiveness 460

of our model. 461

5.5 Ablation Study 462

Ablation on the Semantic Extraction Module. 463

We introduce a variant of the model by removing 464

the SEM. This variant directly uses the unmodi- 465

fied transformer encoder output as the input of the 466

decoder. We named this variant as SEA_w/o_SEM. 467

Ablation on the Semantic Align Module. Like- 468

wise, a variant of the model is introduced by remov- 469

6

Category Methods
Java Python

BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

Linearization

CODE-NN (Iyer et al., 2016) 27.60 12.61 41.10 17.36 09.29 37.81
DeepCom (Hu et al., 2018a) 39.75 23.06 52.67 20.78 09.98 37.35
API+CODE (Hu et al., 2018b) 41.31 23.73 52.25 15.36 08.57 33.65
Dual Model (Wei et al., 2019) 42.39 25.77 53.61 21.80 11.14 39.45
BaseTrans∗ (Ahmad et al., 2020) 44.58 29.12 53.63 25.77 16.33 38.95

Graph
Tree2Seq (Eriguchi et al., 2016) 37.88 22.55 51.50 20.07 08.96 35.64
RL+Hybrid2Seq (Wan et al., 2018) 38.22 22.75 51.91 19.28 09.75 39.34

Path-Aware
Code2Seq (Alon et al., 2018) 24.42 15.35 33.95 17.54 08.49 20.93
SiT∗ (Wu et al., 2020) 44.98 26.97 55.18 33.84 20.94 48.26

Ours SEA(our) 45.23 37.37 56.01 30.30 23.98 53.45

Table 1: Comparison of SEA with the baseline methods. ∗ means we re-run and use a consistent BLEU calculation
method. Bold means state of the art on this metric. Some results of the baseline methods are directly reported from
(Ahmad et al., 2020).

(a) Java
Methods BLEU ∆(%) METEOR ∆(%) ROUGE-L ∆(%)

SEA 45.23 - 37.37 - 56.01 -
SEA_w/o_SEM 44.97 -0.26 37.30 -0.07 54.45 -1.56
SEA_w/o_SAM 44.26 -0.97 37.33 -0.04 54.06 -1.95
SEA_w/o_dfg 44.41 -0.82 36.95 -0.42 54.37 -1.95
SEA_random 44.26 -0.97 37.02 -0.35 54.35 -1.66

(b) Python
Methods BLEU ∆(%) METEOR ∆(%) ROUGE-L ∆(%)

SEA 30.30 - 23.98 - 53.45 -
SEA_w/o_SEM 27.43 -2.87 19.57 -4.41 40.57 -12.88
SEA_w/o_SAM 26.93 -3.37 19.00 -4.98 40.13 -13.32
SEA_w/o_dfg 27.83 -2.47 19.13 -4.85 40.65 -12.80
SEA_random 28.28 -2.02 19.53 -4.45 41.28 -12.17

Table 2: Ablation study on the effect of the different
modules we designed.

ing SAM. We named this variant as SEA_w/o_SAM.470

SEA_w/o_SAM removes the process of using Bi-471

GRU encoding path and bilinear contrastive learn-472

ing. These components make code and natural473

language semantically close in the same space.474

Ablation on the Walking Algorithm. We de-475

sign two variants to verify the effectiveness of the476

walking algorithm. The first variant is to remove477

the guidance. Specifically, we perform the walking478

algorithm directly on AST instead of AST with data479

flow edges. We note this variant as SEA_w/o_dfg.480

The second variant is that we do not perform a481

walking algorithm to capture co-occurring nodes482

but directly use random selection. This variant is483

denoted as SEA_random.484

The results are reported in Table 2. Experimental485

results demonstrate the effectiveness of each mod-486

ule. The major results are summarized as: 1) On487

the Java dataset, the variants of the model have an488

overall performance loss relative to the full model.489

For example, the performance degradation of meth-490

ods that directly use random selection to capture491

co-occurrence nodes (such as SEA_random) is not492

particularly severe. We conjecture the reason is that493

long-distance variable dependencies exist in the494

0 1 2 3 4
Layer index

0.0

0.1

0.2

0.3

0.4

Average Cosine Similarity between Randomly Sampled Words
Base model
Our model

Figure 4: Comparison of cosine similarity between our
model and vanilla Transformer. The higher the value,
the stronger the anisotropy.

code graph, although in the absence of guidance, 495

random selection can capture some long-distance 496

dependencies. 2) Compared with the Java dataset, 497

the model variants’ performance drops significantly 498

under the Python dataset. Among them, the perfor- 499

mance drop of variant SEA_w/o_SAM is the most 500

obvious, indicating that the Semantic Align Mod- 501

ule in the Python dataset can effectively align the 502

code and the summary in the latent space, further 503

filling the gap between the two. 504

5.6 Anisotropy Study 505

Previous methods have successfully created con- 506

textualized code token representations, which are 507

sensitive to the context in which they appear (Ah- 508

mad et al., 2020; Wu et al., 2020). This kind of 509

representation has achieved success, but there are 510

also works pointing out that the context-sensitive 511

method embeds words in a narrow cone space, 512

rather than being uniform in all directions (Etha- 513

7

BLEU-J ROUGE-J METEOR-J BLEU-P ROUGE-P METEOR-P
10

15

20

25

30

35

40

45

50
Sc

or
es

Base model
Our model

Figure 5: Results comparison with vanilla Transformer
in inappropriate naming scenarios. The three columns
on the left are metrics on the Java dataset, and the three
columns on the right are metrics on the Python dataset.

yarajh, 2019; Cai et al., 2020). This phenomenon514

is called anisotropy. The greater the anisotropy, the515

narrower this cone will be (Mimno and Thomp-516

son, 2017). Contrarily, isotropy often increases the517

space’s robustness and efficiency. (Cai et al., 2020).518

Note that, Isotropy has theoretical (Arora et al.,519

2017) and empirical (Mu et al., 2017) benefits. In-520

spired by the above works, we further explore the521

anisotropy of our model. We follow their proce-522

dure: uniformly randomly sample 5K words and523

calculate the average cosine similarity:524

S ≜ Ei ̸=j [cos (ϕ (ti) , ϕ (tj))] , (13)525

where ϕ (ti) is one random sample’s representation.526

The result of the cosine similarity calculation is527

shown in Figure 4. The results we observed are528

consistent with the conclusions of previous work:529

The higher the layer, the more anisotropic. But530

the difference is that our model does not signifi-531

cantly improve the anisotropy in the final output532

layer (layer index 4). This phenomenon may be533

explained by 1) In the SEM, strongly linked words534

are caught and displayed to bring similar words535

closer. 2) In the SAM, negative samples are pushed536

further apart so that representations can be evenly537

spread throughout the entire space. Based on these538

findings, it’s clear that our model successfully alle-539

viates the issue of anisotropy in representation.540

5.7 Performance in Meaningless Identifiers541

As we mentioned in Section 1, one difference be-542

tween code and natural language is that we can543

replace identifiers in code at will, but natural lan-544

guage cannot. However, previous arts utilized the545

identifiers to learn the representation of code, while546

the identifiers are not convinced, and replacing 547

them with meaningless identifiers will cause per- 548

formance reduction. Therefore, to verify the ro- 549

bustness of our model, we replace all identifiers 550

in the code with anonymous identifiers, e.g., re- 551

place sum_func with a. The result is shown in 552

Figure 5. Although the performance of both has 553

declined, our model still outperforms the vanilla 554

Transformer in all metrics. Our method outper- 555

forms vanilla Transformer due to the introduction 556

of a semantic understanding that does not vary with 557

how identifiers are named, and the introduction of 558

natural language as an additional semantic comple- 559

ment. This further proves the robustness of SEA in 560

confusing scenarios. 561

5.8 Learned Similarity Function 562

To support whether our model learns semantic 563

consistency between code and summary, we cal- 564

culate semantic similarity of positive and nega- 565

tive samples and compare it with vanilla Trans- 566

former on the testing set. Specifically, the decreas- 567

ing trend of semantic similarity is: positive sam- 568

ples of SEA (0.7463) > positive samples of the 569

base model (0.0126) > negative samples of the 570

base model (0.0125) > negative samples of SEA 571

(0.0119). Compared with the vanilla Transformer, 572

SEA learns the commonality of positive samples, 573

which is shown as the similarity between positive 574

samples is closer, and the similarity between neg- 575

ative samples is farther. This indicates that our 576

model can close the semantic distance between 577

code and summary. 578

6 Conclusion 579

In this paper, we proposed a semantically aligned 580

code summary framework with contrastive learn- 581

ing. We designed two novel modules: Semantic 582

Extraction Module and Semantic Align Module. 583

Specifically, the Semantic Extraction Module per- 584

formed a guided walking algorithm on the code 585

graph to capture co-occurrence nodes and represent 586

the code semantics. Semantic Align Module used 587

contrastive learning to align code and summary 588

semantics on the latent space. Extensive experi- 589

ments on two benchmark datasets demonstrated 590

the effectiveness of the proposed model, with good 591

semantic comprehension insights. 592

8

References593

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,594
and Kai-Wei Chang. 2020. A transformer-based595
approach for source code summarization. arXiv596
preprint arXiv:2005.00653.597

Miltiadis Allamanis, Marc Brockschmidt, and Mah-598
moud Khademi. 2017. Learning to repre-599
sent programs with graphs. arXiv preprint600
arXiv:1711.00740.601

Uri Alon, Shaked Brody, Omer Levy, and Eran Ya-602
hav. 2018. code2seq: Generating sequences from603
structured representations of code. arXiv preprint604
arXiv:1808.01400.605

Uri Alon, Meital Zilberstein, Omer Levy, and Eran606
Yahav. 2019. code2vec: Learning distributed rep-607
resentations of code. Proceedings of the ACM on608
Programming Languages, 3(POPL):1–29.609

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A610
simple but tough-to-beat baseline for sentence em-611
beddings. In International conference on learning612
representations.613

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An614
automatic metric for mt evaluation with improved cor-615
relation with human judgments. In Proceedings of616
the acl workshop on intrinsic and extrinsic evaluation617
measures for machine translation and/or summariza-618
tion, pages 65–72.619

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021. Self-620
supervised contrastive learning for code retrieval and621
summarization via semantic-preserving transforma-622
tions. In Proceedings of the 44th International ACM623
SIGIR Conference on Research and Development in624
Information Retrieval, pages 511–521.625

Xingyu Cai, Jiaji Huang, Yuchen Bian, and Kenneth626
Church. 2020. Isotropy in the contextual embedding627
space: Clusters and manifolds. In International Con-628
ference on Learning Representations.629

Ting Chen, Simon Kornblith, Mohammad Norouzi, and630
Geoffrey Hinton. 2020. A simple framework for631
contrastive learning of visual representations. In In-632
ternational conference on machine learning, pages633
1597–1607. PMLR.634

Kevin Clark, Minh-Thang Luong, Quoc V Le, and635
Christopher D Manning. 2020. Electra: Pre-training636
text encoders as discriminators rather than generators.637
arXiv preprint arXiv:2003.10555.638

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and639
Kristina Toutanova. 2018. Bert: Pre-training of deep640
bidirectional transformers for language understand-641
ing. arXiv preprint arXiv:1810.04805.642

Akiko Eriguchi, Kazuma Hashimoto, and Yoshi-643
masa Tsuruoka. 2016. Tree-to-sequence atten-644
tional neural machine translation. arXiv preprint645
arXiv:1603.06075.646

Kawin Ethayarajh. 2019. How contextual are contex- 647
tualized word representations? comparing the ge- 648
ometry of bert, elmo, and gpt-2 embeddings. arXiv 649
preprint arXiv:1909.00512. 650

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 651
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 652
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code- 653
BERT: A pre-trained model for programming and 654
natural languages. In Findings of the Association 655
for Computational Linguistics: EMNLP 2020, pages 656
1536–1547, Online. Association for Computational 657
Linguistics. 658

Patrick Fernandes, Miltiadis Allamanis, and Marc 659
Brockschmidt. 2018. Structured neural summariza- 660
tion. arXiv preprint arXiv:1811.01824. 661

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. 662
Simcse: Simple contrastive learning of sentence em- 663
beddings. arXiv preprint arXiv:2104.08821. 664

Aditya Grover and Jure Leskovec. 2016. node2vec: 665
Scalable feature learning for networks. In Proceed- 666
ings of the 22nd ACM SIGKDD international con- 667
ference on Knowledge discovery and data mining, 668
pages 855–864. 669

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming 670
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross- 671
modal pre-training for code representation. arXiv 672
preprint arXiv:2203.03850. 673

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu 674
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey 675
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode- 676
bert: Pre-training code representations with data flow. 677
arXiv preprint arXiv:2009.08366. 678

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and 679
Ross Girshick. 2020. Momentum contrast for unsu- 680
pervised visual representation learning. In Proceed- 681
ings of the IEEE/CVF conference on computer vision 682
and pattern recognition, pages 9729–9738. 683

Min Hou, Chang Xu, Zhi Li, Yang Liu, Weiqing Liu, En- 684
hong Chen, and Jiang Bian. 2022. Multi-granularity 685
residual learning with confidence estimation for time 686
series prediction. In Proceedings of the ACM Web 687
Conference 2022, pages 112–121. 688

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018a. 689
Deep code comment generation. In 2018 IEEE/ACM 690
26th International Conference on Program Compre- 691
hension (ICPC), pages 200–20010. IEEE. 692

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2020. 693
Deep code comment generation with hybrid lexical 694
and syntactical information. Empirical Software En- 695
gineering, 25(3):2179–2217. 696

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and 697
Zhi Jin. 2018b. Summarizing source code with trans- 698
ferred api knowledge.(2018). In Proceedings of the 699
Twenty-Seventh International Joint Conference on 700
Artificial Intelli-gence (IJCAI 2018), Stockholm, Swe- 701
den, 2018 July 13, volume 19, pages 2269–2275. 702

9

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and703
Luke Zettlemoyer. 2016. Summarizing source code704
using a neural attention model. In Proceedings of the705
54th Annual Meeting of the Association for Compu-706
tational Linguistics (Volume 1: Long Papers), pages707
2073–2083.708

Thomas N Kipf and Max Welling. 2016. Semi-709
supervised classification with graph convolutional710
networks. arXiv preprint arXiv:1609.02907.711

Lingpeng Kong, Cyprien de Masson d’Autume, Wang712
Ling, Lei Yu, Zihang Dai, and Dani Yogatama. 2019.713
A mutual information maximization perspective of714
language representation learning. arXiv preprint715
arXiv:1910.08350.716

Alexander LeClair, Sakib Haque, Lingfei Wu, and717
Collin McMillan. 2020. Improved code summariza-718
tion via a graph neural network. In Proceedings of719
the 28th international conference on program com-720
prehension, pages 184–195.721

Chin-Yew Lin. 2004. Rouge: A package for automatic722
evaluation of summaries. In Text summarization723
branches out, pages 74–81.724

Shangqing Liu, Yu Chen, Xiaofei Xie, Jingkai Siow, and725
Yang Liu. 2020. Retrieval-augmented generation for726
code summarization via hybrid gnn. arXiv preprint727
arXiv:2006.05405.728

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey729
Svyatkovskiy, Ambrosio Blanco, Colin Clement,730
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.731
Codexglue: A machine learning benchmark dataset732
for code understanding and generation. arXiv733
preprint arXiv:2102.04664.734

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-735
frey Dean. 2013. Efficient estimation of word736
representations in vector space. arXiv preprint737
arXiv:1301.3781.738

David Mimno and Laure Thompson. 2017. The strange739
geometry of skip-gram with negative sampling. In740
Empirical Methods in Natural Language Processing.741

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016.742
Convolutional neural networks over tree structures743
for programming language processing. In Thirtieth744
AAAI conference on artificial intelligence.745

Jiaqi Mu, Suma Bhat, and Pramod Viswanath. 2017.746
All-but-the-top: Simple and effective postprocess-747
ing for word representations. arXiv preprint748
arXiv:1702.01417.749

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-750
Jing Zhu. 2002. Bleu: a method for automatic evalu-751
ation of machine translation. In Proceedings of the752
40th annual meeting of the Association for Computa-753
tional Linguistics, pages 311–318.754

Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat 755
Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 756
2021. Retrieval augmented code generation and sum- 757
marization. arXiv preprint arXiv:2108.11601. 758

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. 759
Deepwalk: Online learning of social representations. 760
In Proceedings of the 20th ACM SIGKDD interna- 761
tional conference on Knowledge discovery and data 762
mining, pages 701–710. 763

Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen, Shi 764
Han, Hongyu Zhang, Dongmei Zhang, and Hong- 765
bin Sun. 2022. On the evaluation of neural code 766
summarization. In Proceedings of the 44th Interna- 767
tional Conference on Software Engineering, pages 768
1597–1608. 769

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun 770
Yan, and Qiaozhu Mei. 2015. Line: Large-scale 771
information network embedding. In Proceedings of 772
the 24th international conference on world wide web, 773
pages 1067–1077. 774

Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo 775
Huang, Zhelin Zhu, and Bin Luo. 2022. Ast-trans: 776
Code summarization with efficient tree-structured 777
attention. In 2022 IEEE/ACM 44th International 778
Conference on Software Engineering(ICSE 2022). 779
ICSE. 780

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, 781
Haochao Ying, Jian Wu, and Philip S Yu. 2018. Im- 782
proving automatic source code summarization via 783
deep reinforcement learning. In Proceedings of the 784
33rd ACM/IEEE international conference on auto- 785
mated software engineering, pages 397–407. 786

Xin Wang, Yasheng Wang, Yao Wan, Jiawei Wang, 787
Pingyi Zhou, Li Li, Hao Wu, and Jin Liu. 2022. 788
Code-mvp: Learning to represent source code from 789
multiple views with contrastive pre-training. arXiv 790
preprint arXiv:2205.02029. 791

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. 792
Code generation as a dual task of code summarization. 793
Advances in neural information processing systems, 794
32. 795

Xiangpeng Wei, Heng Yu, Yue Hu, Rongxiang Weng, 796
Weihua Luo, Jun Xie, and Rong Jin. 2022. Learning 797
to generalize to more: Continuous semantic augmen- 798
tation for neural machine translation. arXiv preprint 799
arXiv:2204.06812. 800

Hongqiu Wu, Hai Zhao, and Min Zhang. 2020. Code 801
summarization with structure-induced transformer. 802
arXiv preprint arXiv:2012.14710. 803

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomo- 804
hiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie 805
Jegelka. 2018a. Representation learning on graphs 806
with jumping knowledge networks. In International 807
conference on machine learning, pages 5453–5462. 808
PMLR. 809

10

Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng,810
Michael Witbrock, and Vadim Sheinin. 2018b.811
Graph2seq: Graph to sequence learning with812
attention-based neural networks. arXiv preprint813
arXiv:1804.00823.814

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun,815
Kaixuan Wang, and Xudong Liu. 2019. A novel816
neural source code representation based on abstract817
syntax tree. In 2019 IEEE/ACM 41st International818
Conference on Software Engineering (ICSE), pages819
783–794. IEEE.820

A Appendix821

A.1 Gap Between Code and Natural822

Language823

30.2%

38.4%

61.6%
69.8%

30.2%

38.4%

61.6%
69.8%

code meaningless token

summary meaningless token

Figure 6: Gap between code and natural language. The
outer circle is the corpus of codes, and the inner circle
is the corpus of summaries.

We count the proportion of 20 completely mean-824

ingless words (e.g., ’{’ and ’}’) on the whole code825

corpus. Similarly, we count the proportion of 179826

English stop words that are commonly offered by827

NLTK1 on the whole summary. We put detailed828

trivial words list in Table 3. The results of the ratio829

of the two are shown in Figure 6. The outer circle830

is the corpus of codes, and the inner circle is the831

corpus of summaries. A little meaningless words832

account for a considerably higher proportion of the833

code corpus.834

A.2 Detailed Procedure for Calculating835

Hitting Time836

Given a connected AST with data flow edges G,837

we can get its corresponding probability transition838

matrix B, whose element Bij represents the prob-839

ability of transitioning from the i-th node to the840

j-th node. Meanwhile, probability transition ma-841

trix B satisfies the spectral radius less than 1 and842

is a primitive matrix.843

1https://github.com/nltk

Summary
t these having haven’t weren’t their then just ma been

which ourselves don’t to nor aren what yourself ve won’t
no we it is m needn hasn’t whom our because

down you’ve needn’t by themselves with d there myself theirs
be don had who wasn’t are weren shouldn’t for now

you’re when but own you’ll at hasn haven under through
up i wouldn did out over yourselves you’d below any
do his hadn’t off above she’s the herself than into

wasn shan’t and until each ain not mightn’t against can
before too an very as on or those other here
them should about he so isn she of why where
aren’t hadn am mustn’t itself isn’t has once such hers
while does it’s again y didn’t a some ours after
you from re o shan doesn how ll will they
both won during if didn most few have doesn’t couldn

mustn doing only shouldn being all mightn me in were
more wouldn’t yours further himself my between its her this
same couldn’t your was that him that’ll should’ve s

Code
() . { } # $ [] \
; : " ’ ? , _ ‘ \t \n

Table 3: Detailed trivial words list in summary and code
respectively.

The formula for calculating the expected of the 844

hitting time H is: 845

(I −B)−1 f̃(1), 846

where f̃(1) = [1, 1, ..., 1]T . The proof is as fol- 847

lows: 848

We denote the random variable H(s)
t to represent 849

the hitting time from the starting point s to the 850

target point t. First, let us consider the simplest 851

case, the starting point s has only one adjacent 852

node, and this node is the target node t, then the 853

hitting time of the walk is equal to one, that is: 854

P
(
H

(s)
t = n

)
= δ1,n, n ≥ 1. 855

where δ1,n returns 1 if n = 1 else 0. 856

Now we consider the most general case: the start- 857

ing point does not coincide with the target point, 858

and the target node is not the only neighbor of the 859

target node. For convenience, we record the start- 860

ing node as i and the target node as t. Specify 861

i ̸= t. Note that the probability of starting from i 862

and reaching t for the first time after n ≥ 1 steps 863

is P (H
(i)
t = n). Due to the memoryless nature of 864

walks, we can obtain a recursion relation: 865

P
(
H

(i)
t =n

)
=

m∑
iα=1
iα ̸=t

P (i→ iα)P
(
H

(iα)
t =n−1

)
,n≥2, 866

where iα represents a neighboring node of node 867

i, P (i → iα) represents the probability of moving 868

from node i to its neighbor iα, which is Biiα . Then 869

the above equation can be rewritten as: 870

P
(
H

(i)
t =n

)
=

|V|∑
j=1
j ̸=t

BijP
(
H

(j)
t =n− 1

)
, n ≥ 2, 871

11

where V represents the set of all nodes in the graph872

G. Since the probability transition matrix has a873

spectral radius of less than 1 and is a primitive ma-874

trix. In this way, we can recursively get the proba-875

bility distribution of hitting times. Then define the876

vector877

Xi
n = P

(
H

(i)
t = n

)
, n ≥ 1,878

which satisfy the difference equation:879

Xn = BXn−1, n ≥ 2

= Bn−1X1, n ≥ 1.
880

The probability density function of the random vec-881

tor Xn is written as:882

f(x) =

∞∑
n=1

Xnδ(x− n),883

and its characteristic function is:884

f̂(ω) =

∫
x∈R

f(x)eiωx

=
∞∑
n=1

Xne
iωn, ω ∈ R.

885

Note that z = eiω, the characteristic function can886

be rewritten as the probability generating function887

as follows:888

f̃(z) = f̂(ω)

=

∞∑
n=1

Xnz
n

=
∞∑
n=1

znBn−1X1

=

(∞∑
n=1

znBn−1

)
X1

= z (I − zB)−1X1, z = eiω, ω ∈ R.

889

The higher-order differentiation of the probabil-890

ity generating function gives the higher-order mo-891

ments of the probability distribution of hitting time,892

while the first-order moments correspond to the893

expectation of H , respectively namely:894

E(H) = f̂
′
(0)

= f̃
′
(1)

= (I −B)−1
(
Bf̃(1) +X1

)
= (I −B)−1 f̃(1).

895

Meanwhile, we used the Monte Carlo method to896

analogously demonstrate the hitting time, and the897

results are consistent with the calculation.898

A.3 Walking Algorithm 899

The guided walk algorithm process is shown in 900

Algorithm 1.

Algorithm 1 Co-occurrence Capture Algorithm

Input: Graph G = (Vc, Vt, Ea, Ed), Start node
set S = Vt, Walk length l

Output: Sampled paths P
P = []
π = ModifiedWeights(G) // Eq. 3
G

′
= (V,E, π)

for s ∈ S do
path = Walk(G

′
, s, l)

P .append(path)
end for
return P

901

A.4 Data Statistics 902

The detailed data analysis results are shown in Ta- 903

ble 4. We split CamelCase and snake_case, such 904

as splitting sum_func into sum and func, which can 905

greatly alleviate the OOV problem. 906

Perspectives Java Python

of Train instances 69708 55538
of Validation instances 8714 18505

of Test instances 8714 18502

Avg. tokens per code 120.16 47.98
Avg. tokens per summary 17.73 9.48

Unique tokens of code in train set 73492 94325
Unique tokens of summary in train set 28047 29890

of intersection of code and summary tokens in train set 9368 11173
Unique tokens of code in dev set 23877 50352

Unique tokens of summary in dev set 9555 15929
of intersection of code and summary tokens in dev set 3894 6806

Unique tokens of code in test set 23606 49726
Unique tokens of summary in test set 9293 16046

of intersection of code and summary tokens in test set 3858 6845
Unique tokens of code in data set 82621 123471

Unique tokens of summary in data set 31249 39824
of intersection of code and summary tokens in data set 10217 13798

Table 4: Statistics of datase

12

