SEA: Semantic Aligned Code Summary Generation with
Contrastive Learning Framework

Anonymous ACL submission

Abstract

Code summary aims to generate a natural lan-
guage description of a piece of code, which
can help understand the program and increase
development productivity. Although the perfor-
mance of previous works has greatly improved,
the in-depth exploration of inherent gaps be-
tween code semantics and natural language se-
mantics still needs to be developed. To this end,
we explore the role of data flow and summary
in code semantics. In this paper, we propose the
SEmantic-Aligned code summary generation
framework (SEA), a semantic-aware method
that conducts in-depth research into code se-
mantics and converges on alignment with natu-
ral language semantics. Specifically, we use the
data-flow-guided walking algorithm to capture
co-occurrence nodes and utilize destruction-
construction ideas to represent code semantics.
We also design a semantic alignment loss to
align code and natural language semantics in
the same space. Extensive experiments on Java
and Python datasets show the effectiveness and
generalization of our SEA.

1 Introduction

Code summary has been acknowledged as a criti-
cal issue in software development and maintenance,
which aims to generate intelligible natural language
descriptions for source code segments. As shown
in Figure 1(a), given a piece of code, the summary
describes its main goal of “array calculation”. A
good summary can facilitate program comprehen-
sion and support various programming applications
(e.g., code search), potentially increasing develop-
ers’ productivity and significantly reducing their
tedious workload (Ahmad et al., 2020; Lu et al.,
2021; Wang et al., 2022).

The core problem of code summary is to under-
stand and align both semantics. Along this line,
several strategies have been investigated to model
the codes using language models (Iyer et al., 2016;
Allamanis et al., 2017; Hu et al., 2018a; Alon et al.,

{ module Code:
def sum_func(array):
4L sum=

vfunc def for value in array:
= sum += value

return sum

Summary:

Calculate the sum of
an array.
(a)

return_stmt

b

N TN T
D) for> (\value)
z S o

s

~ N / |expr_stmt

~]
Sso S]
____________ ~ [
’ ~ O] {
1 ~ agrmt_asgmt
[T control node ! \:;:;_./,\

.o
~
~
~~
~~
~
~~an

~

1{__ tokennode !
|

AST edge

| = =% dataflow edge (b)

Figure 1: (a) An example of a code and summary. (b)
The abstract syntax tree (AST) and data flow correspond
to the code.

2018, 2019), including learning the sequential se-
mantics by treating the code token-by-token and
learning the topological semantics via establishing
its abstract syntax tree (AST) (Figure 1(b) shows
one AST example). Despite their success, most
of them are still far from a comprehensive code
understanding, since the following two key aspects
are underexplored. First, they overlook the deep
analysis of data flow. Specifically, the data flow of
the code generally reflects the relation the of vari-
able where-the-value-comes-from. In Figure 1(b),
we can understand the loop statement “for value ...”
by analyzing its dataflow edges: the element value
is taken from the input array, and then the value
is added by sum, and finally, the sum is returned.
Though some work considers it as auxiliary infor-
mation (Wu et al., 2020; Guo et al., 2020), they fail
to extract sufficient semantics from the whole code
process of “input-computation-return” reflected by
the data flow from a dynamic perspective. Second,
they generally follow a standard encoder-decoder
framework, where the summary only works in the
decoding stage. Therefore, they often suffer from
the exposure bias problem (Ahmad et al., 2020;
Wu et al., 2020) because the code and summary

follow different grammar and exist in inconsistent
semantic space. Thus, how to align both code and
summary into consistency is important.

In this paper, we deeply focus on code summary
from the above aspects. However, it is always chal-
lenging. First, how to exploit code intermediate
forms like abstract syntax tree (AST) and data flow
to explore code semantics has yet to be deeply
explored. Sequentially modeling code lacks struc-
tural information (e.g., topology information in
Figure 1(b)), while graph representation methods
fail to capture the long-distance dependencies that
often exist in code (e.g., the input "array” and the
output "sum" distance is 5-hops in Figure 1(b)).

Second, since both the code and summary follow
different grammars, which have different inherent
properties, it is difficult to align them. For exam-
ple, in Figure 1(a), if we replace the word "array"
with the word "var_I" in summary, the meaning
of the sentence changes dramatically. In contrast,
nothing has changed if we arbitrarily replace the
variable names in the code (e.g., replacing "array"
with the word "var_1"). We make deeper data anal-
ysis in Figure 6 to demonstrate such differences.
Specifically, the token imbalance issue in code is
more severe than it is in summary, i.e., fewer token
categories (20 words) occupy a higher proportion
(38.4%) of the code corpus, making code repre-
sentations more ambiguous. Thus, how to mine
code semantics from the data flow and align it with
the summary semantics has become a problem that
needs to be solved.

To meet the above challenges, we propose a
novel SEmantic Aligned code summary generation
framework (SEA). The whole model includes two
modules: Semantic Extraction Module (SEM) and
Semantic Align Module (SAM). In the SEM, we try
to model the structured long-distance dependencies
to mine semantic information. Based on the source
code, we build AST with data flow edges like Fig-
ure 1(b). Then, for each token node, we apply
a novel data-flow-guided walking method to cap-
ture the semantically related nodes (see Figure 3).
Next, we use a model inspired by the destruction-
reconstruction process to depict the co-occurrence
correlation in the walking path. In the SAM, the
use of Bi-GRU first ensures that code and natural
language are projected into the same space. After
that, to get the semantic representation of code
as close as feasible to that of natural language,
while keeping the various meanings as far away

as possible inside the same space, we build on
the promising results of bilinear contrastive learn-
ing (Kong et al., 2019; Clark et al., 2020). After
constructing negative samples with convex inter-
polation, contrastive learning not only optimizes
semantic similarity function but also guides the
subsequent decoding stage. In the decode stage,
we integrate the semantic representation into the
code representation and use the trained semantic
similarity function to guide the generation process.
We conduct extensive experiments on real-world
datasets. The experimental results fully validate
the effectiveness of SEA in semantic representation
and semantic alignment.

2 Related Works

2.1 Code Summary

Based on the ways of source code representations,
generally, we divide the previous work into three
categories. The most basic is the linearization
method. The general approach is to take the code
sequence directly as input (Iyer et al., 2016; Hu
et al., 2018b; Feng et al., 2020; Ahmad et al., 2020;
Parvez et al., 2021; Wei et al., 2019). Some other
methods consider that AST has rich structural in-
formation, and traverse the AST to get the lin-
earized input, such as, Pre-Order Traversal (Guo
et al., 2022; Tang et al., 2022) and Structure-Based
Traversal (Hu et al., 2018a, 2020). Simply enter-
ing a sequence cannot capture the hierarchical re-
lationship and structural information of the code.
Whereas path-aware methods focus more on mod-
eling paths in the AST. It regards AST as the back-
bone, which represents the code by integrating path
information (Alon et al., 2018, 2019). Despite the
strong interpretability, the rigid way of path se-
lection leads to its poor performance. The graph
representation method comprehensively considers
the topological structure of the code graph. Most
of the early works rely on convolutional neural net-
work (CNN) to carry out convolution operations on
AST (Mou et al., 2016) or rely on recurrent neural
network (RNN) to represent the entire AST bottom-
up (Wan et al., 2018; Zhang et al., 2019). Although
the above approaches have achieved considerable
success, AST is typical non-Euclidean data, which
contains complex structural information. The emer-
gence of graph representation algorithms such as
graph convolutional networks (GCN) has effec-
tively filled this gap (Kipf and Welling, 2016). The
graph representation method is applied on the code

Code

sum_func (array):
sum =0

value in array:
sum += value
sum

peaH-nINA
premuo4
psed
WION® ppY <+
Buippaquiz
ndino

Buippaquig
nduy
v
(\/
* 0—‘
uonuany
WION ® PPV

Parser

<]

= :g- = Summary
>=z@ X2 o
2= Z = & S Calculate the sum of
Sl o & 5 Beam Search
=I3 z 5 % & 5 anarray.
S o8| 58 x

o 3 o

Similarity
Score

& WIoN ’8 Ppv
pIemioS
paad
> WION @ ppv

JLl]

(a) Semantic Extraction Module

. AST with data flow Walking Algorithm

Buijood abelany

(b) Semantic Align Module
QPS;;

&
LS

summary
semantic

Summary
code
semantic

Buijood abelany

Destruction and Reconstruction

Figure 2: The overview of our proposed model SEA. The architecture of SEA is based on the Transformer as the
backbone. We design a data flow-guided walk algorithm to capture the co-occurrence relationships of key variables.
SEM and SAM are designed for semantic extraction and semantic alignment, respectively.

graph to get the code representation (Allamanis
etal., 2017; Xu et al., 2018b; LeClair et al., 2020;
Fernandes et al., 2018; Guo et al., 2020; Liu et al.,
2020). The core idea of graph representation is the
propagation and aggregation of neighbor informa-
tion, which is difficult to capture the dependencies
between multi-hop neighbors (Xu et al., 2018a) that
exist in code graphs (e.g., the input "array” and the
output "sum" distance is 5-hops in Figure 1(b)). For
the reasons outlined above, prior arts can’t fully ex-
ploit the data flow and disregard the gap between
code and natural language.

2.2 Contrastive Learning

Contrastive learning, as one of the self-supervised
learning methods, has the characteristics of obtain-
ing prior knowledge distribution between sample
pairs without relying on labeled data, which has
been well received since it was proposed. Con-
trastive learning has gradually become the new
paradigm in the CV and NLP field (Chen et al.,
2020; He et al., 2020; Kong et al., 2019; Clark
et al., 2020; Gao et al., 2021). Contrastive learning
has also attracted increasing attention in the field
of code. (Bui et al., 2021) uses five operations (e.g.,
Variable Renaming) to construct positive samples
from the original code. The code representation
is optimized by contrastive learning, which mini-
mizes the distance between positive samples while
maximizing the distance between negative sam-
ples. In our article, we draw on the experience
of contrastive learning to pull code semantics and
summary semantics closer.

3 Preliminary

3.1 Abstract Syntax Tree and Data Flow

In this section, we will introduce abstract syntax
tree (AST) and data flow. A typical AST and data
flow are shown in Figure 1. AST consists of two
kinds of nodes including control nodes V, and to-
ken nodes V;. Control nodes represent certain con-
struction (e.g., for_statement and block), while
token nodes are composed of the lexical token,
such as identifiers (array), keywords (def), num-
bers(0), etc. AST edges E, reflect the topology
structure between nodes and data flow edges F; re-
flect the transfer of information between variables.
For example, if there is an assignment statement
sum=0, then a one-way edge is drawn from token
node 0 to sum. Therefore we define a code graph as
GV, Vi, Eq, Eq, W), where V., V;, E,, E4 repre-
sent the sets of the control node, token node, AST
edge, and data flow edge. In addition, AST edges
and data flow both affect the preference of the fol-
lowing walking algorithm. To emphasize the data
flow guidance, we define the weights of the two
types of edges W, are inversely proportional to
their numbers:

1
Wij =1 |Ed
[Eal

where e; ; means edge between node 7 and j.

if €;j € E,,

1
if €ij € Ey, 1

3.2 Problem Definition

We denote (x,y) € (&X,Y) as a pair of
(code, summary), where x = {x1,z9,...,xN}

is a source code with N tokens (e.g., "int sum
=0"),y = {y1,y2, ...,y } is a target summary
with N tokens. Code summary usually employs a
sequence-to-sequence model of which the purpose
is to learn the transformation from the source space
to the target space, thatis X — Y : f(y | x;0).
Formally, given a set of k observed (code, sum-
mary) pairs, S = {(x.¥)1, (X, ¥)2, - (X, ¥)i 1
the training objective is to minimize the following
log-likelihood:

['mle (9) - E(x,y)NS(f lOgP(y | X; @))

a @)
=Exy)~s Z —log P (yt | y<t,%;0),

t=1

where y «; is sequence of summary before time ¢
and O is a trainable set of model parameters.

4 The Proposed Model

The overall architecture of SEA is shown in Fig-
ure 2. Specifically, we separate the code semantics
into two phases and design two modules to corre-
spond to the two phases. At first step, we create a
novel Semantic Extraction Module (SEM), which
aims to mine code semantics guided by the data
flow. In the meantime, a Semantic Align Mod-
ule (SAM) is proposed to solve the semantic gap
between code and summary. The following two
sections will describe these modules in detail.

4.1 Semantic Extraction Module

To extract specific semantic information from the
code, we design a data flow-guided walking algo-
rithm. To be specific, given a certain source code
x = {1, x9, ..., zN }, we output the semantic rep-
resentation pr, through SEM. To this end, we first
extract the walking paths p from the code graph G,
and then obtain the code semantic representation
Prq through the walking paths p.

Unlike the previous path-aware method (Alon
et al., 2018, 2019), we do not take a mandatory
path from token to token but adopt a data flow-
guided random walk strategy. Inspired by previous
work (Perozzi et al., 2014; Tang et al., 2015; Grover
and Leskovec, 2016), the walking process we take
starts from all token nodes V; and walks along the
edges (i.e., the AST edges E, and data flow edges
FEy). Specifically, given a start token node v € V;,
we simulate a path of fixed length /. We donate ¢;
is the i-th node in the path, starting with ¢y = v.
The probability of accessing the node ¢; from the

former node ¢;_q is:

€i—1,i

if (ci—1,¢;) € BE,UEy,
P(Cz’\cz'—l):{ z if (ci-1, ¢i) a-d

0 otherwise ,
3)
where 2 is the normalizing constant. We show the
detailed walking algorithm in Appendix A.3.

The introduction of data flow edges makes it
more likely that semantically related nodes will
occur together, and this walking algorithm cap-
tures the relationship between semantically related
nodes. Taking Figure 1 as an example, we calcu-
late the expected hitting time (time to first reach
the destination node) between the input parameters
array and the final result sum (green node). How-
ever, if we remove data flow edges, the expected
hitting time will rise significantly from 9.9 to 135.
This indicates that the existence of data flow edges
provides a shortcut to capture the co-occurrence
relationship between variables. The existence of
this shortcut ensures that the algorithm can capture
nodes with close semantics with a small path length
[, which improves efficiency and avoids noises. The
details of the calculation of hitting time will be pre-
sented in Appendix A.2.

Figure 3 shows the specific walking process. We
take node "array" as the starting point and use
the walk algorithm above to capture co-occurrence
nodes with close semantics. First we calculate the
transition probability distribution, and transfer to
node "array" with high probability (0.89). This
step reflects that "array" is inherited from the input
"array". Likewise, node "array" transfers to nodes
"value" and "sum", reflecting the value of "value"
being taken from "array" and flowing out to "sum".

In this way, we get paths of fixed length p =
{p1,p2,..,pn} for each start node v € V;, where
pi = {pi1, pi2, .-, it} (e.8., array->array->value-
>value->sum) and [is a small path length. It should
be noted that the sequence obtained by arrang-
ing the token nodes V; in a pre-order traversal of
the AST is exactly the input sequence x, that is
X = {1‘1, T2y uny I'N} = {pll,pzl, ...,le}. To
better represent the path, we adopt the idea of de-
struction and reconstruction (Mikolov et al., 2013;
Devlin et al., 2018). In the destruction step, we use
average pooling at each path to destruct the rep-
resentation of each token p,, = {p1,P32,...., DN }-
Then, we reconstruct the corrupted token using
the input tokens in the reconstruction step by op-
timizing the loss function. This process can be

array -> array

array -> value

value -> value

Figure 3: The process diagram of the walking algorithm. The example comes from Figure 1. We omit some nodes
for clarity. Guided by data flow, the walking algorithm automatically captures co-occurrence relationships. Since
the number of data flow edges is 7 (unidirectional) and the number of AST edges is 56 (bidirectional), the weights
of the edge are 8 and 1. The starting point is array, and after being guided by the data flow, it reaches the sum node

through the node array and value respectively.

formalized as follows:

X/ = f(pra)a @

[’drc(@) = E(x,y)wé‘(_ log P(X | X/; @))v %)
f represents the fitting function, such as a neural
network. x_ is the reconstructed token. We opti-
mize the semantic representation p,, by optimizing
the loss function Lg4;... Finally, we incorporate p,q
into the vanilla Transformer’s representation as:

xy = A - Transformer(x) + (1 — \) pra, (6)

where) is a trainable parameter controlling the
weights of the representation.

4.2 Semantic Align Module

To alleviate the semantic gap between code and
summary, we try to put forward the SAM using bi-
linear contrastive learning to align code semantics
with summary semantics. Therefore in SAM, given
a code semantic representation p,, and summary
Yy = {y1,¥2, ..., yn’ }, our goal is to train a seman-
tic similarity function s, (-, -) that makes positive
samples as close as possible and negative samples
as far apart as possible. During this process, we
mainly focus on three points: the projection of se-
mantic representation, the construction of negative
samples, and the use of contrastive learning.

The first is the projection of semantic represen-
tation. For natural language, we don’t put much
focus on the issue of how to represent its semantics,
as this is not a simple problem and still merits more
study. Therefore, we only use mean-pooled word
embeddings as semantic/representations for natural

language y, = ﬁ Zfil y;. For code, a Bi-GRU
encoder is applied to the semantic representation
Prq to project it into a vectorized semantic repre-

sentation py.4:

N
1
Prg = N Z FC (Bi'GRU (pra)) ’ (7)

=1

where FC () is the fully connected layer.

The second is the construction of negative sam-
ples. Instead of sampling directly from a mini-
batch, we use convex interpolation to construct
negative samples from other samples in a mini-
batch (Wei et al., 2022). Specifically, we construct
negative samples in the following way:

d
o) =ty + 20 (- p0) Ap e (41).
P

_ _ p @)
i =y oy (v - y0) € (CT" 1] :
Y

where d = ||p) —y"|[s, d;, = [|p\) —p%||» and

dy, = Hyy) - y7(~]) ||2. The existence of A, ensures
that once the distance between the positive sample
pair (prg,yr) is larger than the negative sample
pair (pﬁfg), p,(i,)), the constructed interpolated nega-
tive sample semantics will not be too far from the
original sample semantics. The same goes for the
existence of Ay.

Finally, we apply bilinear contrastive learning
(Hou et al., 2022) to align the code semantic rep-
resentation and natural language semantic repre-
sentation. All samples are combined to optimize
semantic similarity function s, (-, -) through mini-

mizing contrastive learning loss:

(o7.54")
EalO =B o i)~ (mguwwﬁy

f _ flj (eSW (ygi)’y;‘(j)) n e (p(Z)’P;(;))) ,
9)

J&j#i

where B is a mini-batch sampled from training set
S and s, (-, -) is the similarity function parameter-
ized by w, we define it in the form of bilinear:

so (P y?) =pl) - woyD, 10
where W € R%mosel Xdmodel i 3 trainable matrix. The
final training objective is:

L= £mle(@) + £drc(@) + ﬁclt(g)- (1)

4.3 Generation with Similarity Function

Contrasted with previous generate tasks, we in-
corporate the semantic similarity function learned
in Eq. 10 into the decoding stage to guide the
generated results. Given the code x, we aim to
generate optimal target y*. We first utilize beam
search to autoregressively generate k candidates
v ={y1,¥2 .-, Y& }- Then, we employ the trained
similarity function to evaluate the semantic similar-
ity between the candidates and the code. Finally,
we combine the likelihood and similarity scores to
find the target sequence y*:

y>k =arg m}g}X{Ox * Sw (p’l‘g7 yT)+

L=a)[[PGl 3<x)}.

t=0

(12)

S Experiments

5.1 Dataset

We conduct our experiments on two commonly
used code summary generation datasets. One is
Java (Hu et al., 2018b) and the other is Python
(Wan et al., 2018). We filter summaries that are
less than four characters to ensure quality. We give
statistics of these two datasets in Appendix 4. We
split CamelCase and snake_case, such as splitting
sum_func into sum and func, which can greatly
alleviate the Out-Of-Vocabulary problem.

5.2 Evaluation Metrics

We evaluate the performance with BLEU (Papineni
etal., 2002), METEOR (Banerjee and Lavie, 2005),
and ROUGE-L (Lin, 2004). BLUE compares the
result of the summary with its corresponding refer-
ence and calculates a composite score. The higher
the score, the better the machine translates. Here,
we use smoothed BLEU-4 as an evaluation metric
and report the overall score. METEOR consid-
ers the accuracy rate and recall rate based on the

whole corpus, sentence fluency, and the influence
of synonyms on semantics. ROUGE-L computes
the longest common subsequence used by summary
and reference

5.3 Baselines

To fully prove the validity of our model, we com-
pared SEA to nine different baseline models. As
(Shi et al., 2022) mentioned, the metric varies with
different BLEU calculation methods. Therefore
for a fair comparison, in our experiment, we re-
run the two best-performing baselines and use the
same method to calculate BLEU scores. In gen-
eral, we divide baselines into three categories: 1)
Linearization Methods: CODE-NN (Iyer et al.,
2016), DeepCom (Hu et al., 2018a), API+CODE
(Hu et al., 2018b), Dual Model (Wei et al., 2019),
TransBase (Ahmad et al., 2020); 2) Path-Aware
Methods: Code2Seq (Alon et al., 2018), SiT
(Wu et al., 2020); 3) Graph Methods Tree2Seq
(Eriguchi et al., 2016), RL+Hybird2Seq (Wan et al.,
2018).

5.4 Main Results

Our model results on Java and Python datasets are
shown in Table 1, the following conclusions can be
drawn from the results: 1) Our model outperforms
all baseline models on the Java dataset. Specif-
ically, our model outperforms the best baseline
model by 28.3% in METEOR. Since we augment
token nodes with co-occurrence nodes to enrich
semantics, our model generates more synonyms.
Therefore, as a metric for accurate measurement of
each word, BLEU does not improve significantly,
but METEOR comprehensively considers all syn-
onyms, so it received a huge boost. 2) On the
Python dataset, the improvement of BLEU value is
relatively limited (although there is still a huge
performance boost over the BaseTrans (Ahmad
et al., 2020)), but METEOR and ROUGE-L have
achieved 3.04 and 5.19 improvements respectively.
Experimental results demonstrate the effectiveness
of our model.

5.5 Ablation Study

Ablation on the Semantic Extraction Module.
We introduce a variant of the model by removing
the SEM. This variant directly uses the unmodi-
fied transformer encoder output as the input of the
decoder. We named this variant as SEA_w/o_SEM.

Ablation on the Semantic Align Module. Like-
wise, a variant of the model is introduced by remov-

Category Methods Java Python
BLEU METEOR ROUGE-L | BLEU METEOR ROUGE-L
CODE-NN (lIyer et al., 2016) 27.60 12.61 41.10 17.36 09.29 37.81
DeepCom (Hu et al., 2018a) 39.75 23.06 52.67 20.78 09.98 37.35
Linearization | API+CODE (Hu et al., 2018b) 41.31 23.73 52.25 15.36 08.57 33.65
Dual Model (Wei et al., 2019) 42.39 25.77 53.61 21.80 11.14 39.45
BaseTrans* (Ahmad et al., 2020) 44.58 29.12 53.63 25.77 16.33 38.95
Graph Tree2Seq (Eriguchi et al., 2016) 37.88 22.55 51.50 20.07 08.96 35.64
RL+Hybrid2Seq (Wan et al., 2018) | 38.22 22.75 51.91 19.28 09.75 39.34
Path-Aware Code2Seq (Alon et al., 2018) 24.42 15.35 33.95 17.54 08.49 20.93
SiT* (Wu et al., 2020) 44.98 26.97 55.18 33.84 20.94 48.26
Ours SEA (our) 45.23 37.37 56.01 30.30 23.98 53.45

Table 1: Comparison of SEA with the baseline methods. * means we re-run and use a consistent BLEU calculation
method. Bold means state of the art on this metric. Some results of the baseline methods are directly reported from
(Ahmad et al., 2020).

(a) Java
Methods BLEU | A(%) | METEOR | A(%) | ROUGE-L | A(%)
SEA 45.23 - 37.37 - 56.01 -
SEA_w/o_SEM | 4497 | -0.26 37.30 -0.07 54.45 -1.56
SEA_w/o_SAM | 44.26 | -0.97 37.33 -0.04 54.06 -1.95
SEA_w/o_dfg | 44.41 | -0.82 36.95 -0.42 54.37 -1.95
SEA_random | 44.26 | -0.97 37.02 -0.35 54.35 -1.66
(b) Python
Methods BLEU | A(%) | METEOR | A(%) | ROUGE-L | A(%)
SEA 30.30 - 23.98 - 5345 -
SEA_w/o_SEM | 2743 | -2.87 19.57 -4.41 40.57 -12.88
SEA_w/o_SAM | 2693 | -3.37 19.00 -4.98 40.13 -13.32
SEA_w/o_dfg | 27.83 | -2.47 19.13 -4.85 40.65 -12.80
SEA_random | 28.28 | -2.02 19.53 -4.45 41.28 -12.17

Table 2: Ablation study on the effect of the different
modules we designed.

ing SAM. We named this variant as SEA_w/o_SAM.
SEA_w/o_SAM removes the process of using Bi-
GRU encoding path and bilinear contrastive learn-
ing. These components make code and natural
language semantically close in the same space.

Ablation on the Walking Algorithm. We de-
sign two variants to verify the effectiveness of the
walking algorithm. The first variant is to remove
the guidance. Specifically, we perform the walking
algorithm directly on AST instead of AST with data
flow edges. We note this variant as SEA_w/o_dfs.
The second variant is that we do not perform a
walking algorithm to capture co-occurring nodes
but directly use random selection. This variant is
denoted as SEA_random.

The results are reported in Table 2. Experimental
results demonstrate the effectiveness of each mod-
ule. The major results are summarized as: 1) On
the Java dataset, the variants of the model have an
overall performance loss relative to the full model.
For example, the performance degradation of meth-
ods that directly use random selection to capture
co-occurrence nodes (such as SEA_random) is not
particularly severe. We conjecture the reason is that
long-distance variable dependencies exist in the

Average Cosine Similarity between Randomly Sampled Words

—®- Base model 4

0.41 —@- Our model 7/
/
/
/
/
0.3 A f
/
/
/
0.2 /‘;{_ —e
-7
’./". -
- —
0.1 &’
7 —
o
z7
Z

004 @&

0 1 2 3 4

Layer index

Figure 4: Comparison of cosine similarity between our
model and vanilla Transformer. The higher the value,
the stronger the anisotropy.

code graph, although in the absence of guidance,
random selection can capture some long-distance
dependencies. 2) Compared with the Java dataset,
the model variants’ performance drops significantly
under the Python dataset. Among them, the perfor-
mance drop of variant SEA_w/o_SAM is the most
obvious, indicating that the Semantic Align Mod-
ule in the Python dataset can effectively align the
code and the summary in the latent space, further
filling the gap between the two.

5.6 Anisotropy Study

Previous methods have successfully created con-
textualized code token representations, which are
sensitive to the context in which they appear (Ah-
mad et al., 2020; Wu et al., 2020). This kind of
representation has achieved success, but there are
also works pointing out that the context-sensitive
method embeds words in a narrow cone space,
rather than being uniform in all directions (Etha-

Base model
Our model

T T T T T T
BLEU-J ROUGE-] METEOR-J] BLEU-P ROUGE-P METEOR-P

Figure 5: Results comparison with vanilla Transformer
in inappropriate naming scenarios. The three columns
on the left are metrics on the Java dataset, and the three
columns on the right are metrics on the Python dataset.

yarajh, 2019; Cai et al., 2020). This phenomenon
is called anisotropy. The greater the anisotropy, the
narrower this cone will be (Mimno and Thomp-
son, 2017). Contrarily, isotropy often increases the
space’s robustness and efficiency. (Cai et al., 2020).

Note that, Isotropy has theoretical (Arora et al.,
2017) and empirical (Mu et al., 2017) benefits. In-
spired by the above works, we further explore the
anisotropy of our model. We follow their proce-
dure: uniformly randomly sample 5K words and
calculate the average cosine similarity:

S £ Eizjlcos (¢ (i), ¢ ()]

where ¢ (t;) is one random sample’s representation.
The result of the cosine similarity calculation is
shown in Figure 4. The results we observed are
consistent with the conclusions of previous work:
The higher the layer, the more anisotropic. But
the difference is that our model does not signifi-
cantly improve the anisotropy in the final output
layer (layer index 4). This phenomenon may be
explained by 1) In the SEM, strongly linked words
are caught and displayed to bring similar words
closer. 2) In the SAM, negative samples are pushed
further apart so that representations can be evenly
spread throughout the entire space. Based on these
findings, it’s clear that our model successfully alle-
viates the issue of anisotropy in representation.

(13)

5.7 Performance in Meaningless Identifiers

As we mentioned in Section 1, one difference be-
tween code and natural language is that we can
replace identifiers in code at will, but natural lan-
guage cannot. However, previous arts utilized the
identifiers to learn the representation of code, while

the identifiers are not convinced, and replacing
them with meaningless identifiers will cause per-
formance reduction. Therefore, to verify the ro-
bustness of our model, we replace all identifiers
in the code with anonymous identifiers, e.g., re-
place sum_func with a. The result is shown in
Figure 5. Although the performance of both has
declined, our model still outperforms the vanilla
Transformer in all metrics. Our method outper-
forms vanilla Transformer due to the introduction
of a semantic understanding that does not vary with
how identifiers are named, and the introduction of
natural language as an additional semantic comple-
ment. This further proves the robustness of SEA in
confusing scenarios.

5.8 Learned Similarity Function

To support whether our model learns semantic
consistency between code and summary, we cal-
culate semantic similarity of positive and nega-
tive samples and compare it with vanilla Trans-
former on the testing set. Specifically, the decreas-
ing trend of semantic similarity is: positive sam-
ples of SEA (0.7463) > positive samples of the
base model (0.0126) > negative samples of the
base model (0.0125) > negative samples of SEA
(0.0119). Compared with the vanilla Transformer,
SEA learns the commonality of positive samples,
which is shown as the similarity between positive
samples is closer, and the similarity between neg-
ative samples is farther. This indicates that our
model can close the semantic distance between
code and summary.

6 Conclusion

In this paper, we proposed a semantically aligned
code summary framework with contrastive learn-
ing. We designed two novel modules: Semantic
Extraction Module and Semantic Align Module.
Specifically, the Semantic Extraction Module per-
formed a guided walking algorithm on the code
graph to capture co-occurrence nodes and represent
the code semantics. Semantic Align Module used
contrastive learning to align code and summary
semantics on the latent space. Extensive experi-
ments on two benchmark datasets demonstrated
the effectiveness of the proposed model, with good
semantic comprehension insights.

References

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,
and Kai-Wei Chang. 2020. A transformer-based
approach for source code summarization. arXiv
preprint arXiv:2005.00653.

Miltiadis Allamanis, Marc Brockschmidt, and Mah-
moud Khademi. 2017. Learning to repre-
sent programs with graphs. arXiv preprint
arXiv:1711.00740.

Uri Alon, Shaked Brody, Omer Levy, and Eran Ya-
hav. 2018. code2seq: Generating sequences from
structured representations of code. arXiv preprint
arXiv:1808.01400.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran
Yahav. 2019. code2vec: Learning distributed rep-
resentations of code. Proceedings of the ACM on
Programming Languages, 3(POPL):1-29.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A
simple but tough-to-beat baseline for sentence em-
beddings. In International conference on learning
representations.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-
tion, pages 65-72.

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021. Self-
supervised contrastive learning for code retrieval and
summarization via semantic-preserving transforma-
tions. In Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 511-521.

Xingyu Cai, Jiaji Huang, Yuchen Bian, and Kenneth
Church. 2020. Isotropy in the contextual embedding
space: Clusters and manifolds. In International Con-
ference on Learning Representations.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597-1607. PMLR.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
arXiv preprint arXiv:2003.10555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Akiko FEriguchi, Kazuma Hashimoto, and Yoshi-
masa Tsuruoka. 2016. Tree-to-sequence atten-
tional neural machine translation. arXiv preprint
arXiv:1603.06075.

Kawin Ethayarajh. 2019. How contextual are contex-
tualized word representations? comparing the ge-
ometry of bert, elmo, and gpt-2 embeddings. arXiv
preprint arXiv:1909.00512.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
15361547, Online. Association for Computational
Linguistics.

Patrick Fernandes, Miltiadis Allamanis, and Marc
Brockschmidt. 2018. Structured neural summariza-
tion. arXiv preprint arXiv:1811.01824.

Tianyu Gao, Xingcheng Yao, and Dangi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on Knowledge discovery and data mining,

pages 855-864.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. arXiv
preprint arXiv:2203.03850.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for unsu-
pervised visual representation learning. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9729-9738.

Min Hou, Chang Xu, Zhi Li, Yang Liu, Weiqing Liu, En-
hong Chen, and Jiang Bian. 2022. Multi-granularity
residual learning with confidence estimation for time
series prediction. In Proceedings of the ACM Web
Conference 2022, pages 112—121.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018a.
Deep code comment generation. In 2018 IEEE/ACM
26th International Conference on Program Compre-
hension (ICPC), pages 200-20010. IEEE.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2020.
Deep code comment generation with hybrid lexical
and syntactical information. Empirical Software En-
gineering, 25(3):2179-2217.

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and
Zhi Jin. 2018b. Summarizing source code with trans-
ferred api knowledge.(2018). In Proceedings of the
Twenty-Seventh International Joint Conference on
Artificial Intelli-gence (IJCAI 2018), Stockholm, Swe-
den, 2018 July 13, volume 19, pages 2269-2275.

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139

Srinivasan lIyer, loannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2073-2083.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Lingpeng Kong, Cyprien de Masson d’ Autume, Wang
Ling, Lei Yu, Zihang Dai, and Dani Yogatama. 2019.
A mutual information maximization perspective of
language representation learning. arXiv preprint
arXiv:1910.08350.

Alexander LeClair, Sakib Haque, Lingfei Wu, and
Collin McMillan. 2020. Improved code summariza-
tion via a graph neural network. In Proceedings of
the 28th international conference on program com-
prehension, pages 184-195.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Shangqing Liu, Yu Chen, Xiaofei Xie, Jingkai Siow, and
Yang Liu. 2020. Retrieval-augmented generation for
code summarization via hybrid gnn. arXiv preprint
arXiv:2006.05405.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. arXiv
preprint arXiv:2102.04664.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

David Mimno and Laure Thompson. 2017. The strange
geometry of skip-gram with negative sampling. In
Empirical Methods in Natural Language Processing.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016.
Convolutional neural networks over tree structures
for programming language processing. In Thirtieth
AAAI conference on artificial intelligence.

Jiaqi Mu, Suma Bhat, and Pramod Viswanath. 2017.
All-but-the-top: Simple and effective postprocess-
ing for word representations. arXiv preprint
arXiv:1702.01417.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

10

Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat
Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2021. Retrieval augmented code generation and sum-
marization. arXiv preprint arXiv:2108.11601.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014.
Deepwalk: Online learning of social representations.
In Proceedings of the 20th ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining, pages 701-710.

Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen, Shi
Han, Hongyu Zhang, Dongmei Zhang, and Hong-
bin Sun. 2022. On the evaluation of neural code
summarization. In Proceedings of the 44th Interna-

tional Conference on Software Engineering, pages
1597-1608.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun
Yan, and Qiaozhu Mei. 2015. Line: Large-scale
information network embedding. In Proceedings of
the 24th international conference on world wide web,
pages 1067-1077.

Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo
Huang, Zhelin Zhu, and Bin Luo. 2022. Ast-trans:
Code summarization with efficient tree-structured
attention. In 2022 IEEE/ACM 44th International
Conference on Software Engineering(ICSE 2022).
ICSE.

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu,
Haochao Ying, Jian Wu, and Philip S Yu. 2018. Im-
proving automatic source code summarization via
deep reinforcement learning. In Proceedings of the
33rd ACM/IEEE international conference on auto-
mated software engineering, pages 397-407.

Xin Wang, Yasheng Wang, Yao Wan, Jiawei Wang,
Pingyi Zhou, Li Li, Hao Wu, and Jin Liu. 2022.
Code-mvp: Learning to represent source code from
multiple views with contrastive pre-training. arXiv
preprint arXiv:2205.02029.

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019.
Code generation as a dual task of code summarization.
Advances in neural information processing systems,

32.

Xiangpeng Wei, Heng Yu, Yue Hu, Rongxiang Weng,
Weihua Luo, Jun Xie, and Rong Jin. 2022. Learning
to generalize to more: Continuous semantic augmen-
tation for neural machine translation. arXiv preprint
arXiv:2204.06812.

Hongqiu Wu, Hai Zhao, and Min Zhang. 2020. Code
summarization with structure-induced transformer.
arXiv preprint arXiv:2012.14710.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomo-
hiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. 2018a. Representation learning on graphs
with jumping knowledge networks. In International
conference on machine learning, pages 5453-5462.
PMLR.

Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng,
Michael Witbrock, and Vadim Sheinin. 2018b.
Graph2seq: Graph to sequence learning with
attention-based neural networks. arXiv preprint
arXiv:1804.00823.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun,
Kaixuan Wang, and Xudong Liu. 2019. A novel
neural source code representation based on abstract
syntax tree. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages
783-794. IEEE.

A Appendix

A.1 Gap Between Code and Natural
Language

code meaningless token

summary meaningless token

Figure 6: Gap between code and natural language. The
outer circle is the corpus of codes, and the inner circle
is the corpus of summaries.

We count the proportion of 20 completely mean-
ingless words (e.g., ’{’ and ’}’) on the whole code
corpus. Similarly, we count the proportion of 179
English stop words that are commonly offered by
NLTK' on the whole summary. We put detailed
trivial words list in Table 3. The results of the ratio
of the two are shown in Figure 6. The outer circle
is the corpus of codes, and the inner circle is the
corpus of summaries. A little meaningless words
account for a considerably higher proportion of the
code corpus.

A.2 Detailed Procedure for Calculating
Hitting Time

Given a connected AST with data flow edges G,
we can get its corresponding probability transition
matrix B, whose element B;; represents the prob-
ability of transitioning from the i-th node to the
j-th node. Meanwhile, probability transition ma-
trix B satisfies the spectral radius less than 1 and
is a primitive matrix.

"https://github.com/nltk

Summary
their
aren

needn
with

are

then
what
hasn’t
d
weren

weren’t
nor

haven’t
[

t these
which | ourselves
no we
down | you've
be don
you're
up i
do his
wasn shan’t
before 00
them should
hadn

ma
ve
our
myself
for

been

won’t
because

theirs

having
don’t

just
yourself
whom
there
shouldn’t
haven

is
by
who

it
needn’t
had
but
wouldn
hadn’t
and
an
about

m

themselves

wasn’t
you'll

now
through
any
into
can
here
where

under
below
than
against
other
why
such

when own hasn
did
off
until
very
he
mustn’t
again
o
if
shouldn
further

at

out
above
each
as
s0
itself
y
shan
didn
being
himself
that

over

she’s
ain
on
isn

yourselves
the
not
or
she
has

you'd
herself
mightn’t
those
of
once’

isn’t hers
didn’t
doesn
most
all
my
him

aren’t am

it’s
re
during
only
yours
your,

does
from
won
doing
wouldn’t

while
you
both

mustn

after
they
couldn
were
this

a
how
few
mightn
between
that’ll

some
1
have
me

ours

will
doesn’t
in

more its her

same | couldn’t was should’ve s

Code

Table 3: Detailed trivial words list in summary and code
respectively.

The formula for calculating the expected of the
hitting time H is:

(I-B)"" F(1),

where f(1) = 1], The proof is as fol-
lows:

We denote the random variable H, t(s) to represent
the hitting time from the starting point s to the
target point ¢. First, let us consider the simplest
case, the starting point s has only one adjacent
node, and this node is the target node ¢, then the

hitting time of the walk is equal to one, that is:

(1,1,...,

P (Ht(s) - n> = Sy > 1.

where 91 5, returns 1 if n = 1 else 0.

Now we consider the most general case: the start-
ing point does not coincide with the target point,
and the target node is not the only neighbor of the
target node. For convenience, we record the start-
ing node as ¢ and the target node as t. Specify
i # t. Note that the probability of starting from ¢
and reaching ¢ for the first time after n > 1 steps
is P (Ht(z) = n). Due to the memoryless nature of
walks, we can obtain a recursion relation:

P(H(l —n) ZP@—)za (H()—n—1>,n22,

ta=1
taFt

where i, represents a neighboring node of node

i, P (i — 14) represents the probability of moving

from node ¢ to its neighbor i,,, which is B;;,_,. Then

the above equation can be rewritten as:

P(H =n) = JﬁvéBZ]P(HU)_n ~1),n>2,
j#t

11

where V represents the set of all nodes in the graph
G. Since the probability transition matrix has a
spectral radius of less than 1 and is a primitive ma-
trix. In this way, we can recursively get the proba-
bility distribution of hitting times. Then define the
vector

X =P (" =n)nz1,
which satisfy the difference equation:
X,=BX,_1,n>2
=B" X n>1.

The probability density function of the random vec-
tor X,, is written as:

flx)=> Xnd(z—n),
n=1

and its characteristic function is:

Flw) = / e
= anew",w e R.
n=1

Note that z = €™, the characteristic function can
be rewritten as the probability generating function
as follows:

f(2)

Fw)
= Z X, 2"
n=1

oo
> 2"BvX,
n=1
oo

Z ZnB n—1 X 1

n=1
z(I—2B) ' X1,z=¢",weR.
The higher-order differentiation of the probabil-
ity generating function gives the higher-order mo-
ments of the probability distribution of hitting time,
while the first-order moments correspond to the
expectation of H, respectively namely:

£0)
1)

E(H)

—

)7 (BF) + X1)
) FO).

Meanwhile, we used the Monte Carlo method to
analogously demonstrate the hitting time, and the
results are consistent with the calculation.

}VI
(I-B
(I-B

12

A.3 Walking Algorithm

The guided walk algorithm process is shown in
Algorithm 1.

Algorithm 1 Co-occurrence Capture Algorithm

Input: Graph G = (V_, V¢, E,, E4), Start node
set S = V;, Walk length [
Output: Sampled paths P
P =1
m = ModifiedWeights(G) // Eq. 3
Gl = (Vva E, ﬂ—)
for s € S do
path = Walk(G', s,1)
P.append(path)
end for
return P

A.4 Data Statistics

The detailed data analysis results are shown in Ta-
ble 4. We split CamelCase and snake_case, such
as splitting sum_func into sum and func, which can
greatly alleviate the OOV problem.

Perspectives Java Python
of Train instances 69708 55538
of Validation instances 8714 18505
of Test instances 8714 18502
Avg. tokens per code 120.16 47.98
Avg. tokens per summary 17.73 9.48
Unique tokens of code in train set 73492 94325
Unique tokens of summary in train set 28047 29890
of intersection of code and summary tokens in train set 9368 11173
Unique tokens of code in dev set 23877 50352
Unique tokens of summary in dev set 9555 15929
of intersection of code and summary tokens in dev set 3894 6806
Unique tokens of code in test set 23606 49726
Unique tokens of summary in test set 9293 16046
of intersection of code and summary tokens in test set 3858 6845
Unique tokens of code in data set 82621 123471
Unique tokens of summary in data set 31249 39824
of intersection of code and summary tokens in data set 10217 13798

Table 4: Statistics of datase

