
Learning-Augmented Streaming Algorithms for 
Correlation Clustering

Yinhao Dong

University of Science and Technology of China (USTC)

Pan Peng

USTC

Shan Jiang

USTC

Shi Li

Nanjing University

Joint work with



Correlation Clustering

2

Input: graph 

Output: clustering  of 

Goal: minimize the number of edges in disagreement

G = (V, E = E+ ∪ E−)
𝒞 V

agreement(u, v) ∈ E+

disagreement
disagreement

agreement(u, v) ∈ E−

 in same cluster of u, v 𝒞  in different clusters of u, v 𝒞



Correlation Clustering

2

Input: graph 

Output: clustering  of 

Goal: minimize the number of edges in disagreement

G = (V, E = E+ ∪ E−)
𝒞 V

agreement(u, v) ∈ E+

disagreement
disagreement

agreement(u, v) ∈ E−

 in same cluster of u, v 𝒞  in different clusters of u, v 𝒞

• Most commonly studied version:  is a complete graph, 

i.e., 


G
E = (V

2)



Correlation Clustering

2

Input: graph 

Output: clustering  of 

Goal: minimize the number of edges in disagreement

G = (V, E = E+ ∪ E−)
𝒞 V

agreement(u, v) ∈ E+

disagreement
disagreement

agreement(u, v) ∈ E−

 in same cluster of u, v 𝒞  in different clusters of u, v 𝒞

• Most commonly studied version:  is a complete graph, 

i.e., 


G
E = (V

2)



Correlation Clustering

3

Input: graph 

Output: clustering  of 

Goal: minimize the number of edges in disagreement

G = (V, E = E+ ∪ E−)
𝒞 V

agreement(u, v) ∈ E+

disagreement
disagreement

agreement(u, v) ∈ E−

 in same cluster of u, v 𝒞  in different clusters of u, v 𝒞

• Most commonly studied version:  is a complete graph, 

i.e., 

G
E = (V

2)



Correlation Clustering

3

Input: graph 

Output: clustering  of 

Goal: minimize the number of edges in disagreement

G = (V, E = E+ ∪ E−)
𝒞 V

agreement(u, v) ∈ E+

disagreement
disagreement

agreement(u, v) ∈ E−

 in same cluster of u, v 𝒞  in different clusters of u, v 𝒞

• Most commonly studied version:  is a complete graph, 

i.e., 

G
E = (V

2)



Correlation Clustering

3
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Output: clustering  of 

Goal: minimize the number of edges in disagreement

G = (V, E = E+ ∪ E−)
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agreement(u, v) ∈ E+

disagreement
disagreement

agreement(u, v) ∈ E−

 in same cluster of u, v 𝒞  in different clusters of u, v 𝒞

• Most commonly studied version:  is a complete graph, 

i.e., 

G
E = (V

2)
• We consider both complete and general unweighted 

graphs in this work
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Prior Results (Offline)
• On Complete Graphs 

• APX-hard [Charikar, Guruswami, Wirth, 2005]


• -hardness [Cao, Cohen-Addad, Lee, Li, Newman, Vogl, 2024]


• Best-known approx. ratio: 1.437 via LP rounding [Cao, Cohen-Addad, Lee, Li, Newman, 
Vogl, 2024] [Cao, Cohen-Addad, Lee, Li, Lolck, Newman, Thorup, Vogl, Yan, Zhang, 2025]

(24/23 − ϵ)
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• Best-known approx. ratio: 1.437 via LP rounding [Cao, Cohen-Addad, Lee, Li, Newman, 
Vogl, 2024] [Cao, Cohen-Addad, Lee, Li, Lolck, Newman, Thorup, Vogl, Yan, Zhang, 2025]

(24/23 − ϵ)

• On General Graphs 

• Equivalent to Min-Multicut and thus APX-hard [Bansal, Blum, Chawla, 2004]


• Best-known approx. ratio:  via ball-growing based LP rounding [Charikar, 
Guruswami, Wirth, 2005] [Demaine, Emanuel, Fiat, Immorlica, 2006] 

O(log n)
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Streaming Model
• Graph Stream: The input graph is presented as a sequence of edge insertions 

and deletions.
• insertion-only stream: contains only edge insertions
• dynamic stream: contains both edge insertions and deletions

• Goal: scan the stream in (ideally) one pass, and find the solution at the end of 
the stream using small space
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• Since outputting the clustering requires  space, we consider semi-streaming 
model:  space is allowed

Ω(n)
Õ(n)

• Best-known approximation-space trade-offs on complete graphs

• -approx.,  total space [Cambus, Kuhn, Lindy, Pai, Uitto, 2024](3 + ϵ) Õ(ϵ−1n)

• -approx.,  space during the stream,  space for post-
processing [Assadi, Khanna, Putterman, 2025]
(αBEST + ϵ) Õ(ϵ−2n) poly(n)

• Best-known approximation-space trade-off on general graphs

• -approx.,  total space [Ahn, Cormode, Guha, 
McGregor, Wirth, 2015]
O(log |E− | ) Õ(ϵ−2n + |E− | )

6

best approx. ratio of any poly-time classical algorithm 
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Learning-Augmented Algorithms
• Motivation: Use ML techniques in classical 

algorithms to improve their performance 
beyond worst-case bounds


• Assumption: The algorithm has oracle 
access to an (untrusted) predictor


• Goals: 
• High prediction quality  significantly 

outperforms the best-known classical 
(worst-case) algorithm


• Low prediction quality  performs no 
worse than the best-known classical 
(worst-case) algorithm

⟹

⟹

(a.k.a. Algorithms with Predictions)
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Learning-Augmented Algorithms
• Motivation: Use ML techniques in classical 

algorithms to improve their performance 
beyond worst-case bounds


• Assumption: The algorithm has oracle 
access to an (untrusted) predictor
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An up-to-date repository of publications

(https://algorithms-with-predictions.github.io)

https://algorithms-with-predictions.github.io
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Our Prediction Model
• Oracle access to pairwise distance  between any duv ∈ [0,1] u, v ∈ V

• Arises in many scenarios: multiple graphs on the same vertex set 

• Healthcare: disease network, provider network, clinical trial network


• Biology: protein-protein interaction network, gene co-expression 
network, signaling pathway network


• Temporal graphs: same vertices, different edges over time

• Observation: Two vertices similar in one network are likely similar in 
another — cluster structure can thus be extracted
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-level predictor ( ): predicts pairwise distance  between 
any  such that


(1)  for all  (triangle inequality)


(2)

β β ≥ 1 duv ∈ [0,1]
u, v ∈ V

duv + dvw ≥ duw u, v, w ∈ V

∑
(u,v)∈E+

duv + ∑
(u,v)∈E−

(1 − duv) ≤ β ⋅ 𝖮𝖯𝖳



Our Prediction Model

• Inspired by the metric LP formulation of Correlation Clustering

• Smaller   higher qualityβ ⟹

• Can be implemented in practice!
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Setting Best-known approx.-space 
trade-offs (without predictions)

Our results 
(with predictions)

Complete graphs,

Dynamic streams

General graphs,

Dynamic streams

-approx.

 total space


[Cambus, Kuhn, Lindy, Pai, Uitto, 2024]

(3 + ϵ)
Õ(ϵ−1n)

-approx.

 space during the stream


 space for post-processing

[Assadi, Khanna, Putterman, 2025]

(αBEST + ϵ)
Õ(ϵ−2n)
poly(n)

-approx.

 total space


[Ahn, Cormode, Guha, McGregor, Wirth, 2015]

O(log |E− | )
Õ(ϵ−2n + |E− | )

-approx.

 total space


[D., Jiang, Li, Peng, 2025]

(min{2.06β,3} + ϵ)
Õ(ϵ−2n)

-approx.

 total space


[D., Jiang, Li, Peng, 2025]

O(β log |E− | )
Õ(ϵ−2n)

better approx.-space tradeoff

better space complexity



Our Algorithm for Complete Graphs: Key Insight

13



Our Algorithm for Complete Graphs: Key Insight

• For a long time, -approx. is a natural target in streaming(3 + ϵ)

13



Our Algorithm for Complete Graphs: Key Insight

• For a long time, -approx. is a natural target in streaming(3 + ϵ)
• The seminal 3-approx. combinatorial PIVOT algorithm [Ailon, Charikar, Neuman, 2008] can be 

efficiently simulated in streaming [Chakrabarty, Makarychev, 2023] [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]

13



Our Algorithm for Complete Graphs: Key Insight

• For a long time, -approx. is a natural target in streaming(3 + ϵ)
• The seminal 3-approx. combinatorial PIVOT algorithm [Ailon, Charikar, Neuman, 2008] can be 

efficiently simulated in streaming [Chakrabarty, Makarychev, 2023] [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]

• A combinatorial 1.847-approx. algorithm [Cohen-Addad, Lolck, Pilipczuk, Thorup, Yan, Zhang, 2024]: 
works only in insertion-only streams, far from practical

13



Our Algorithm for Complete Graphs: Key Insight

• For a long time, -approx. is a natural target in streaming(3 + ϵ)
• The seminal 3-approx. combinatorial PIVOT algorithm [Ailon, Charikar, Neuman, 2008] can be 

efficiently simulated in streaming [Chakrabarty, Makarychev, 2023] [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]

• A combinatorial 1.847-approx. algorithm [Cohen-Addad, Lolck, Pilipczuk, Thorup, Yan, Zhang, 2024]: 
works only in insertion-only streams, far from practical

• However, there are several works breaking 3-approx. barrier in the offline setting
• 2.06 [Chawla, Makarychev, Schramm, Yaroslavtsev, 2015]: metric LP
• 1.994 [Cohen-Addad, Lee, Neuman, 2022]: Sherali-Adams LP relaxation hierarchy 
• 1.73 [Cohen-Addad, Lee, Li, Neuman, 2023]: Sherali-Adams LP relaxation hierarchy + Preclustering
• 1.437 [Cao, Cohen-Addad, Lee, Li, Neuman, Vogl, 2024] [Cao, Cohen-Addad, Lee, Li, Lolck, Newman, Thorup, 

Vogl, Yan, Zhang, 2025]: cluster LP

13



Our Algorithm for Complete Graphs: Key Insight

• For a long time, -approx. is a natural target in streaming(3 + ϵ)
• The seminal 3-approx. combinatorial PIVOT algorithm [Ailon, Charikar, Neuman, 2008] can be 

efficiently simulated in streaming [Chakrabarty, Makarychev, 2023] [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]

• A combinatorial 1.847-approx. algorithm [Cohen-Addad, Lolck, Pilipczuk, Thorup, Yan, Zhang, 2024]: 
works only in insertion-only streams, far from practical

• However, there are several works breaking 3-approx. barrier in the offline setting
• 2.06 [Chawla, Makarychev, Schramm, Yaroslavtsev, 2015]: metric LP
• 1.994 [Cohen-Addad, Lee, Neuman, 2022]: Sherali-Adams LP relaxation hierarchy 
• 1.73 [Cohen-Addad, Lee, Li, Neuman, 2023]: Sherali-Adams LP relaxation hierarchy + Preclustering
• 1.437 [Cao, Cohen-Addad, Lee, Li, Neuman, Vogl, 2024] [Cao, Cohen-Addad, Lee, Li, Lolck, Newman, Thorup, 

Vogl, Yan, Zhang, 2025]: cluster LP
• All these algorithms are based on LP rounding — difficult to implement in streaming 😭

13



Our Algorithm for Complete Graphs: Key Insight

• For a long time, -approx. is a natural target in streaming(3 + ϵ)
• The seminal 3-approx. combinatorial PIVOT algorithm [Ailon, Charikar, Neuman, 2008] can be 

efficiently simulated in streaming [Chakrabarty, Makarychev, 2023] [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]
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• However, there are several works breaking 3-approx. barrier in the offline setting
• 2.06 [Chawla, Makarychev, Schramm, Yaroslavtsev, 2015]: metric LP
• 1.994 [Cohen-Addad, Lee, Neuman, 2022]: Sherali-Adams LP relaxation hierarchy 
• 1.73 [Cohen-Addad, Lee, Li, Neuman, 2023]: Sherali-Adams LP relaxation hierarchy + Preclustering
• 1.437 [Cao, Cohen-Addad, Lee, Li, Neuman, Vogl, 2024] [Cao, Cohen-Addad, Lee, Li, Lolck, Newman, Thorup, 

Vogl, Yan, Zhang, 2025]: cluster LP
• All these algorithms are based on LP rounding — difficult to implement in streaming 😭

• We can use “pairwise distance” predictions to bypass this bottleneck! 😁
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-Approx. PIVOT Algorithm [Ailon, Charikar, Neuman, 2008]3
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1. Pick a random permutation  over the 
vertices.


2. 

3. while  do


• Let  be the vertex with the smallest rank. 
Mark  as pivot. 


• Initialize .


• Add  to  if .


• 

4. return 

V → {1,…, n}

V′￼ ← V, 𝒞 ← ∅
V′￼ ≠ ∅

p ∈ V′￼

p
C ← {p}

v ∈ V′￼ C (p, v) ∈ E+

V′￼ ← V′￼∖C, 𝒞 ← 𝒞 ∪ {C}
𝒞
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[Chawla, Makarychev, Schramm, Yaroslavtsev, 2015]
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1. Solve the metric LP of Correlation Clustering and obtain 
the optimal solution .


2. Pick a random permutation  over the 
vertices.


3. 

4. while  do

• Let  be the vertex with the smallest rank. Mark  

as pivot. 

• Initialize .

• Add  to  independently w.p. .


• 

5. return 

{xuv}u,v∈V
V → {1,…, n}

V′￼ ← V, 𝒞 ← ∅
V′￼ ≠ ∅

p ∈ V′￼ p

C ← {p}
v ∈ V′￼ C 1 − f(xpv)

V′￼ ← V′￼∖C, 𝒞 ← 𝒞 ∪ {C}
𝒞

[Chawla, Makarychev, Schramm, Yaroslavtsev, 2015]
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1. During the stream: 

• Maintain a truncated subgraph  of  (refer to [Cambus, 
Kuhn, Lindy, Pai, Uitto, 2024]).


2. After the stream: 

• Run the -approx. combinatorial algorithm (PIVOT) on , 
then assign unclustered vertices and obtain clustering  
on .


• Run the -approx. LP rounding algorithm on  (use 
predictions  to replace metric LP solution ), then 
assign unclustered vertices and obtain clustering  on .


• return the clustering with the lower cost between  and 

G′￼ G

3 G′￼

𝒞1
G

2.06 G′￼

duv xuv
𝒞2 G
𝒞1

𝒞2
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Kuhn, Lindy, Pai, Uitto, 2024]).


2. After the stream: 

• Run the -approx. combinatorial algorithm (PIVOT) on , 
then assign unclustered vertices and obtain clustering  
on .


• Run the -approx. LP rounding algorithm on  (use 
predictions  to replace metric LP solution ), then 
assign unclustered vertices and obtain clustering  on .


• return the clustering with the lower cost between  and 

G′￼ G

3 G′￼

𝒞1
G

2.06 G′￼

duv xuv
𝒞2 G
𝒞1

𝒞2

Theorem [D., Jiang, Li, Peng, 2025]: 

-level predictor                      

-approx.

 words of total space,


works in dynamic streams

β

(min{2.06β, 3} + ϵ)
Õ(n)

w.p. ≥ 1 − 1/n2

Remarks: 

• Better than -approx. under 
good prediction quality


• Simple and efficient

• Do not consider the space for 

the predictor
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 Lemma [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]:  
 costG(𝒞1) ≤ (3 + ϵ) ⋅ OPT

 Lemma [D., Jiang, Li, Peng, 2025]: 
costG(𝒞2) ≤ (2.06β + ϵ) ⋅ OPT
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Our Streaming Algorithm for General Graphs

• Recall that the best-known streaming algorithm for general graphs is a 
-approx. while using  total space [Ahn, 

Cormode, Guha, McGregor, Wirth, 2015]
O(log |E− | ) Õ(ϵ−2n + |E− | )
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• Recall that the best-known streaming algorithm for general graphs is a 
-approx. while using  total space [Ahn, 

Cormode, Guha, McGregor, Wirth, 2015]
O(log |E− | ) Õ(ϵ−2n + |E− | )

• During the stream: Sparsify the positive subgraph  to 
, and store 

G+ := (V, E+)
H+ E−

• After the stream: Use the stored information to solve an LP, and run a 
ball-growing based LP rounding algorithm on H+
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Our Streaming Algorithm for General Graphs

• Recall that the best-known streaming algorithm for general graphs is a 
-approx. while using  total space [Ahn, 

Cormode, Guha, McGregor, Wirth, 2015]
O(log |E− | ) Õ(ϵ−2n + |E− | )

• During the stream: Sparsify the positive subgraph  to 
, and store 

G+ := (V, E+)
H+ E−

• After the stream: Use the stored information to solve an LP, and run a 
ball-growing based LP rounding algorithm on H+

• We can use predictions to guide the rounding algorithm, thus avoiding 
storing  and leading to better space complexity!E−
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Our Streaming Algorithm for General Graphs
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1. During the stream: 
• Maintain a spectral sparsifier  for .


2. After the stream: perform ball-growing 
• 


• while  do


- Pick an arbitrary vertex . Initialize .


- Increase  and grow a ball  using 
predictions  as distance metric, until a certain 
condition is satisfied.


- 

• return the resulting clustering

H+ G+ := (V, E+)

V′￼ ← V, 𝒞 ← ∅
V′￼ ≠ ∅

u ∈ V′￼ ru ← 0
ru B(u, ru)

duv

V′￼ ← V′￼∖B(u, ru), 𝒞 ← 𝒞 ∪ {B(u, ru)}
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Theorem [D., Jiang, Li, Peng, 2025]: 
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-approx.

 words of total space,


works in dynamic streams

β

O(β log |E− | )
Õ(n)

w.p. ≥ 1 − 1/n2
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Theorem [D., Jiang, Li, Peng, 2025]: 

-level predictor                      

-approx.

 words of total space,


works in dynamic streams

β

O(β log |E− | )
Õ(n)

w.p. ≥ 1 − 1/n2

Remarks: 
• Close to -approx. 

under good prediction quality

• Better space complexity

• Do not consider the space for 

the predictor

O(log |E− | )

1. During the stream: 
• Maintain a spectral sparsifier  for .


2. After the stream: perform ball-growing 
• 


• while  do


- Pick an arbitrary vertex . Initialize .


- Increase  and grow a ball  using 
predictions  as distance metric, until a certain 
condition is satisfied.


- 

• return the resulting clustering

H+ G+ := (V, E+)

V′￼ ← V, 𝒞 ← ∅
V′￼ ≠ ∅

u ∈ V′￼ ru ← 0
ru B(u, ru)

duv

V′￼ ← V′￼∖B(u, ru), 𝒞 ← 𝒞 ∪ {B(u, ru)}



Experimental Setting
• Datasets: 

• Synthetic datasets: Generated from the Stochastic Block Model (SBM)


• Real-world datasets: EmailCore, Facebook, LastFM, DBLP from SNAP Collection


• Predictor: Noisy predictor, Spectral embedding, Binary classifier


• Baselines: 

• -approx. algorithm without predictions [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]


• Agreement decomposition-based algorithm [Cohen-Addad, Lattanzi, Mitrović, Norouzi-
Fard, Parotsidis, Tarnawski, 2021]: -approx. in theory, performs well on certain 
types of graphs

(3 + ϵ)

701
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Experimental Results
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Synthetic Dataset Real-World Dataset: Facebook

Our Algorithm Our Algorithm

Conclusion: 
• Our algorithm (with predictions) outperforms its non-learning counterpart (CKLPU24) 

under high prediction quality, while no worse under low prediction quality.

• Our algorithm performs much better in practice than the theoretical guarantee suggests.



Summary
• The first learning-augmented streaming algorithms for Correlation 

Clustering on both complete and general graphs (in dynamic streams)
• For complete graphs: -level “pairwise distance” predictor  -

approx.,  total space
β ⟹ (min{2.06β,3} + ϵ)

Õ(ϵ−2n)
• For general graphs: -level “pairwise distance” predictor  -approx., 

 total space
β ⟹ O(β log |E− | )

Õ(ϵ−2n)
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β ⟹ O(β log |E− | )

Õ(ϵ−2n)

• Open Problems
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Summary
• The first learning-augmented streaming algorithms for Correlation 

Clustering on both complete and general graphs (in dynamic streams)
• For complete graphs: -level “pairwise distance” predictor  -

approx.,  total space
β ⟹ (min{2.06β,3} + ϵ)

Õ(ϵ−2n)
• For general graphs: -level “pairwise distance” predictor  -approx., 

 total space
β ⟹ O(β log |E− | )

Õ(ϵ−2n)

• Open Problems
• -approx.,  total space for complete graphs?(αBEST + ϵ) Õ(n)
• Better-than- -approx. for general graphs?O(log |E− | )

Thank you!
24

better approximation-space tradeoff

better space complexity


