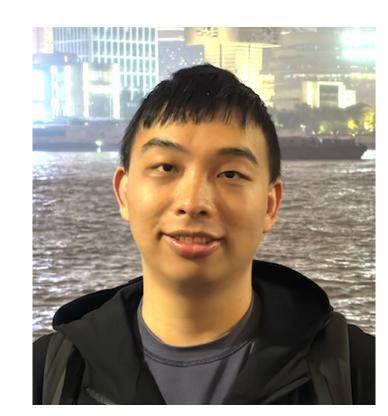
Learning-Augmented Streaming Algorithms for Correlation Clustering

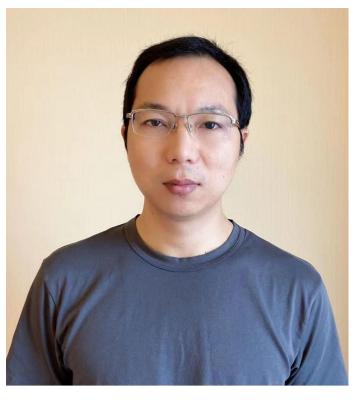
Yinhao Dong
University of Science and Technology of China (USTC)

Joint work with



Shan Jiang USTC

Shi Li Nanjing University



Pan Peng USTC

Input: graph $G = (V, E = E^+ \cup E^-)$

Output: clustering \mathscr{C} of V

Goal: minimize the number of edges in disagreement

_		u,v in same cluster of $\mathscr C$	u,v in different clusters of $\mathscr C$
	$(u,v) \in E^+$	agreement	disagreement
	$(u,v) \in E^-$	disagreement	agreement

Input: graph $G = (V, E = E^+ \cup E^-)$

Output: clustering \mathscr{C} of V

Goal: minimize the number of edges in disagreement

_		u,v in same cluster of $\mathscr C$	u,v in different clusters of $\mathscr C$
	$(u,v) \in E^+$	agreement	disagreement
_	$(u,v) \in E^-$	disagreement	agreement

• Most commonly studied version: G is a complete graph,

i.e.,
$$E = \binom{V}{2}$$

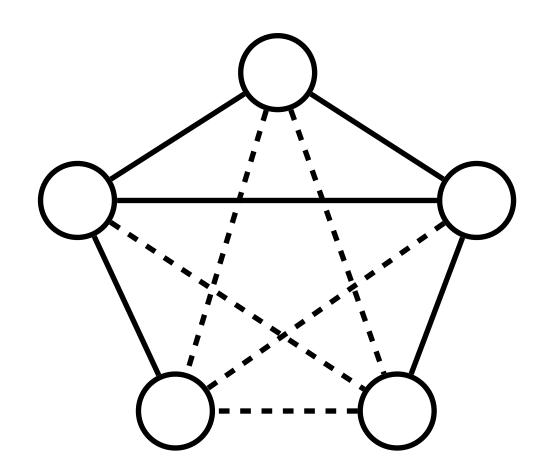
Input: graph $G = (V, E = E^+ \cup E^-)$

Output: clustering \mathscr{C} of V

Goal: minimize the number of edges in disagreement

		u,v in same cluster of $\mathscr C$	u,v in different clusters of $\mathscr C$
	$(u,v) \in E^+$	agreement	disagreement
_	$(u,v) \in E^-$	disagreement	agreement

• Most commonly studied version: G is a complete graph, i.e., $E = \binom{V}{2}$



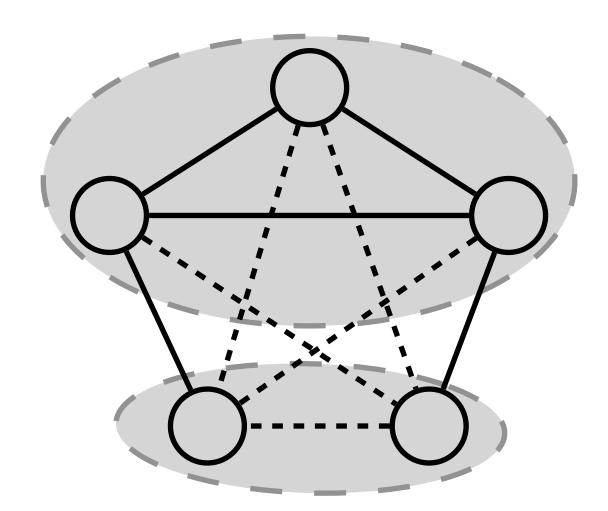
Input: graph $G = (V, E = E^+ \cup E^-)$

Output: clustering \mathscr{C} of V

Goal: minimize the number of edges in disagreement

	u,v in same cluster of $\mathscr C$	u,v in different clusters of $\mathscr C$
$(u,v) \in E^+$	agreement	disagreement
$(u,v) \in E^-$	disagreement	agreement

• Most commonly studied version: G is a complete graph, i.e., $E = \binom{V}{2}$



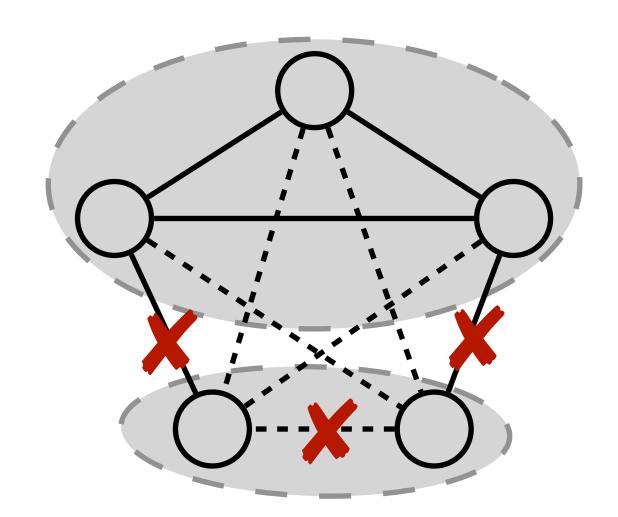
Input: graph $G = (V, E = E^+ \cup E^-)$

Output: clustering \mathscr{C} of V

Goal: minimize the number of edges in disagreement

	u,v in same cluster of $\mathscr C$	u,v in different clusters of $\mathscr C$
$(u,v) \in E^+$	agreement	disagreement
$(u,v) \in E^-$	disagreement	agreement

• Most commonly studied version: G is a complete graph, i.e., $E = \binom{V}{2}$



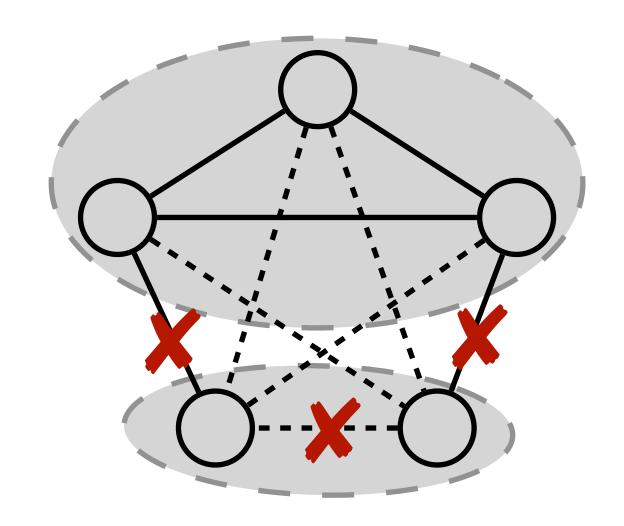
Input: graph $G = (V, E = E^+ \cup E^-)$

Output: clustering \mathscr{C} of V

Goal: minimize the number of edges in disagreement

	u, v in same cluster of $\mathscr C$	u,v in different clusters of $\mathscr C$
$(u,v) \in E^+$	agreement	disagreement
$(u,v) \in E^-$	disagreement	agreement

- Most commonly studied version: G is a complete graph, i.e., $E = \binom{V}{2}$
- We consider both complete and general unweighted graphs in this work



Prior Results (Offline)

Prior Results (Offline)

On Complete Graphs

- APX-hard [Charikar, Guruswami, Wirth, 2005]
- $(24/23 \epsilon)$ -hardness [Cao, Cohen-Addad, Lee, Li, Newman, Vogl, 2024]
- Best-known approx. ratio: 1.437 via LP rounding [Cao, Cohen-Addad, Lee, Li, Newman, Vogl, 2024] [Cao, Cohen-Addad, Lee, Li, Lolck, Newman, Thorup, Vogl, Yan, Zhang, 2025]

Prior Results (Offline)

On Complete Graphs

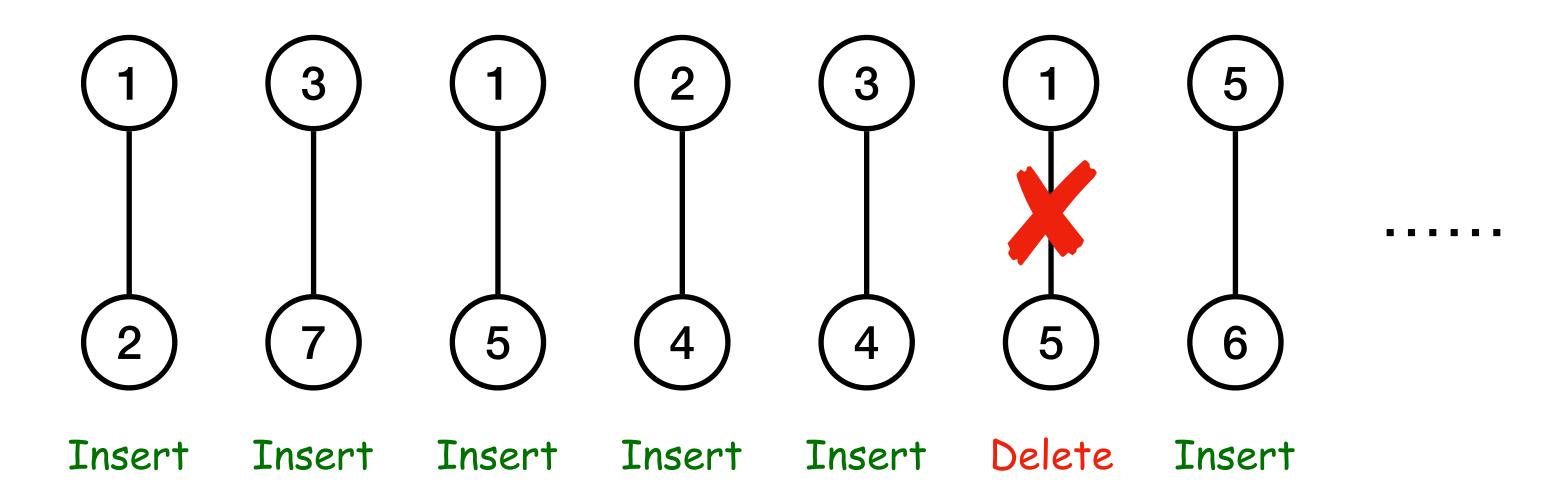
- APX-hard [Charikar, Guruswami, Wirth, 2005]
- $(24/23 \epsilon)$ -hardness [Cao, Cohen-Addad, Lee, Li, Newman, Vogl, 2024]
- Best-known approx. ratio: 1.437 via LP rounding [Cao, Cohen-Addad, Lee, Li, Newman, Vogl, 2024] [Cao, Cohen-Addad, Lee, Li, Lolck, Newman, Thorup, Vogl, Yan, Zhang, 2025]

On General Graphs

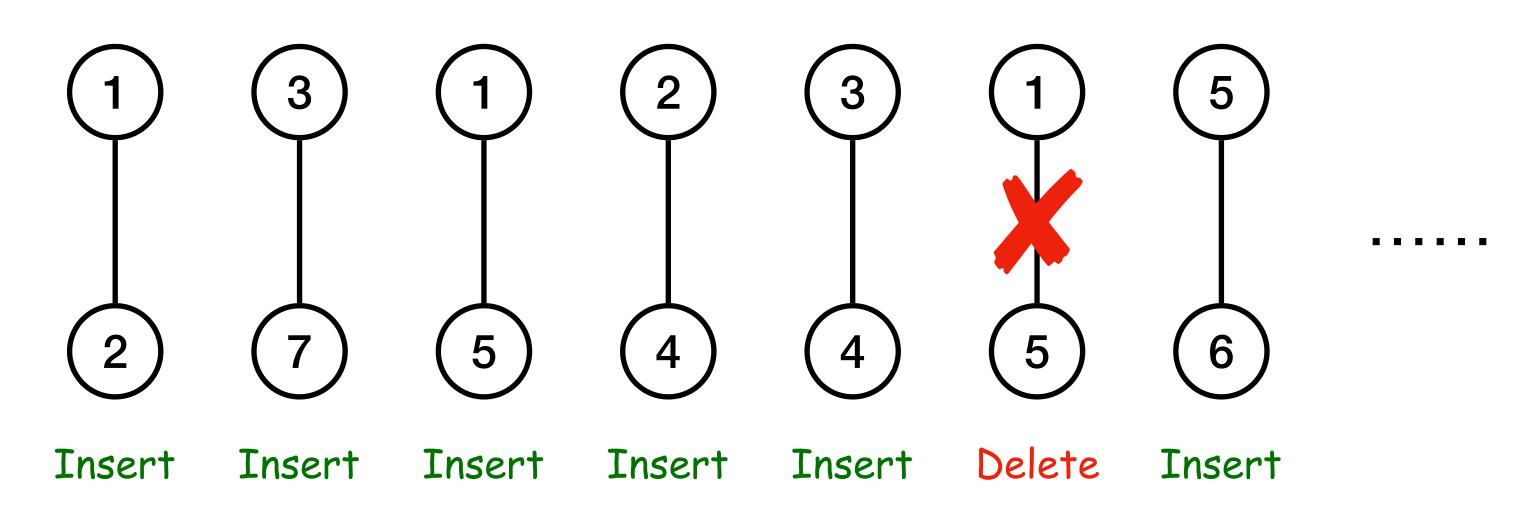
- Equivalent to Min-Multicut and thus APX-hard [Bansal, Blum, Chawla, 2004]
- Best-known approx. ratio: $O(\log n)$ via ball-growing based LP rounding [Charikar, Guruswami, Wirth, 2005] [Demaine, Emanuel, Fiat, Immorlica, 2006]

 Graph Stream: The input graph is presented as a sequence of edge insertions and deletions.

- **Graph Stream:** The input graph is presented as a sequence of edge insertions and deletions.
 - insertion-only stream: contains only edge insertions
 - dynamic stream: contains both edge insertions and deletions



- **Graph Stream:** The input graph is presented as a sequence of edge insertions and deletions.
 - insertion-only stream: contains only edge insertions
 - dynamic stream: contains both edge insertions and deletions
- Goal: scan the stream in (ideally) one pass, and find the solution at the end of the stream using small space



• Since outputting the clustering requires $\Omega(n)$ space, we consider semi-streaming model: $\tilde{O}(n)$ space is allowed

- Since outputting the clustering requires $\Omega(n)$ space, we consider semi-streaming model: $\tilde{O}(n)$ space is allowed
- Best-known approximation-space trade-offs on complete graphs

- Since outputting the clustering requires $\Omega(n)$ space, we consider semi-streaming model: $\tilde{O}(n)$ space is allowed
- Best-known approximation-space trade-offs on complete graphs
 - $(3+\epsilon)$ -approx., $\tilde{O}(\epsilon^{-1}n)$ total space [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]

- Since outputting the clustering requires $\Omega(n)$ space, we consider semi-streaming model: $\tilde{O}(n)$ space is allowed
- Best-known approximation-space trade-offs on complete graphs
 - $(3+\epsilon)$ -approx., $\tilde{O}(\epsilon^{-1}n)$ total space [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]
 - $(\alpha_{\rm BEST}+\epsilon)$ -approx., $\tilde{O}(\epsilon^{-2}n)$ space during the stream, ${\rm poly}(n)$ space for post-processing [Assadi, Khanna, Putterman, 2025]

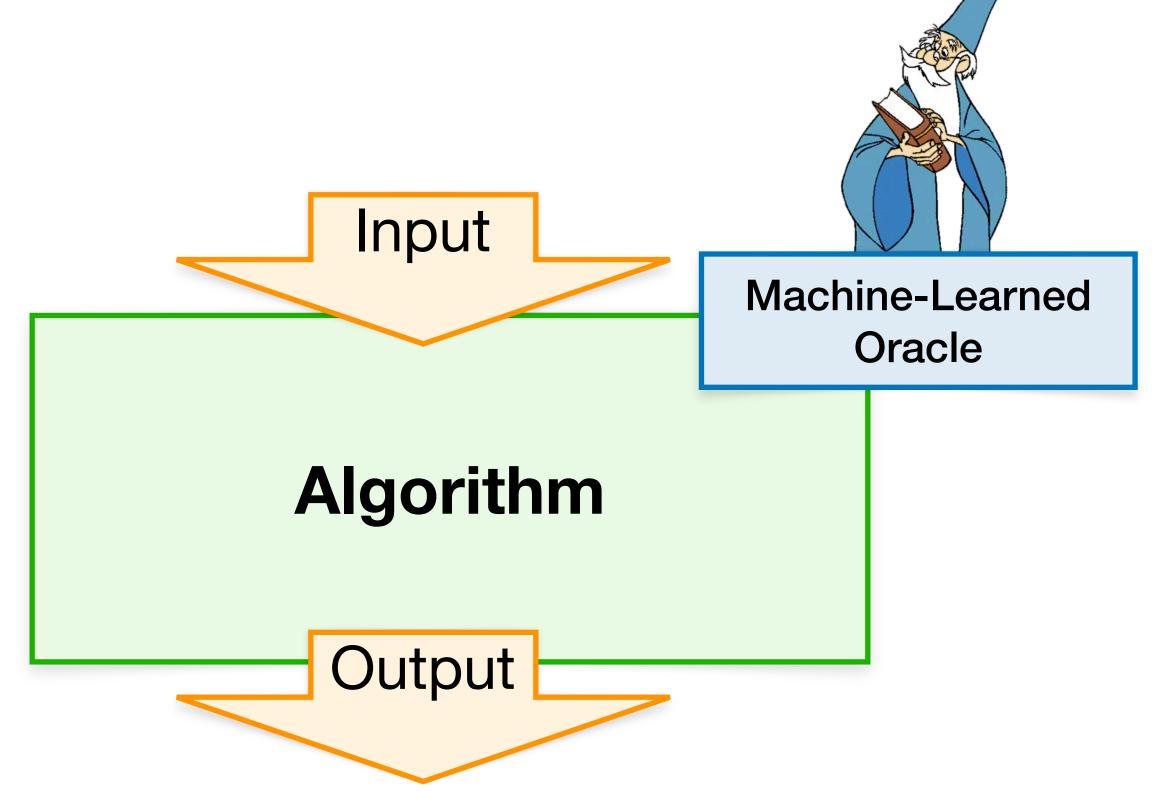
- Since outputting the clustering requires $\Omega(n)$ space, we consider semi-streaming model: $\tilde{O}(n)$ space is allowed
- Best-known approximation-space trade-offs on complete graphs
 - $(3+\epsilon)$ -approx., $\tilde{O}(\epsilon^{-1}n)$ total space [Cambus, Kuhn, Lindy, Pai, Uitto, 2024] best approx. ratio of any poly-time classical algorithm
 - $(\alpha_{\text{BEST}} + \epsilon)$ -approx., $\tilde{O}(\epsilon^{-2}n)$ space during the stream, $\operatorname{poly}(n)$ space for post-processing [Assadi, Khanna, Putterman, 2025]

- Since outputting the clustering requires $\Omega(n)$ space, we consider semi-streaming model: $\tilde{O}(n)$ space is allowed
- Best-known approximation-space trade-offs on complete graphs
 - $(3+\epsilon)$ -approx., $\tilde{O}(\epsilon^{-1}n)$ total space [Cambus, Kuhn, Lindy, Pai, Uitto, 2024] best approx. ratio of any poly-time classical algorithm
 - $(\alpha_{\rm BEST} + \epsilon)$ -approx., $\tilde{O}(\epsilon^{-2}n)$ space during the stream, $\operatorname{poly}(n)$ space for post-processing [Assadi, Khanna, Putterman, 2025]
- Best-known approximation-space trade-off on general graphs
 - $O(\log |E^-|)$ -approx., $\tilde{O}(\epsilon^{-2}n+|E^-|)$ total space [Ahn, Cormode, Guha, McGregor, Wirth, 2015]

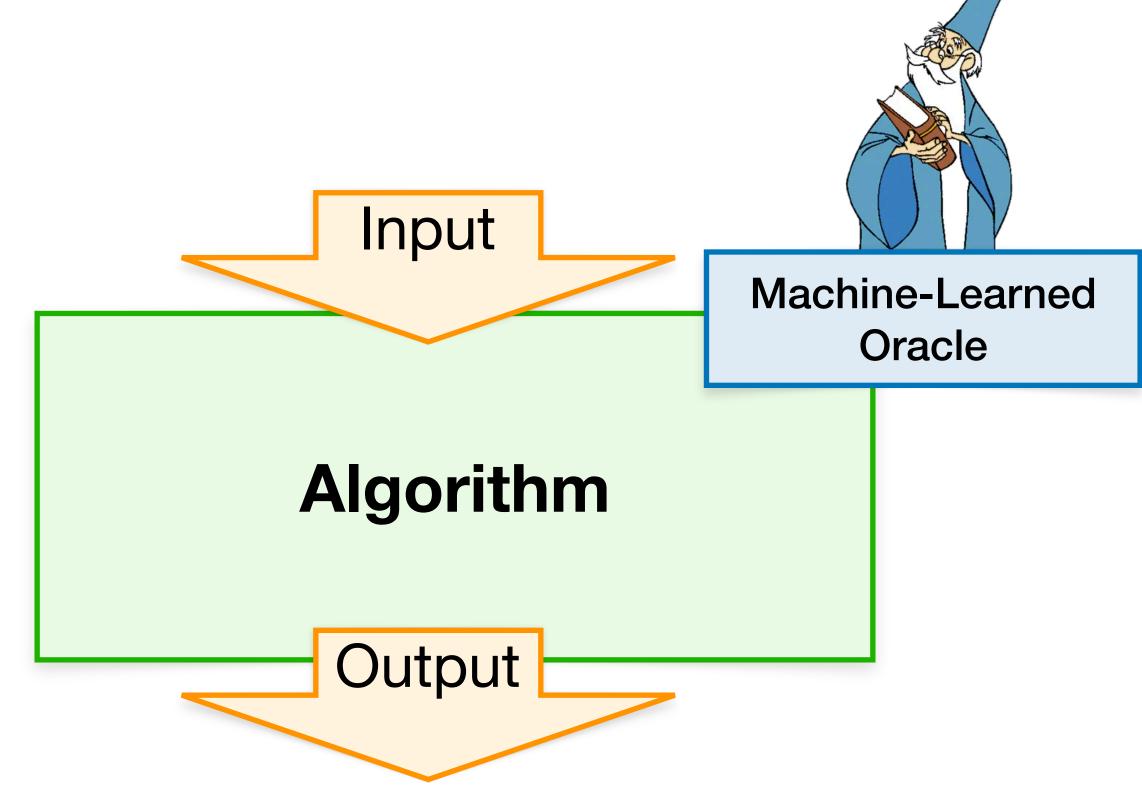
(a.k.a. Algorithms with Predictions)

 Motivation: Use ML techniques in classical algorithms to improve their performance beyond worst-case bounds

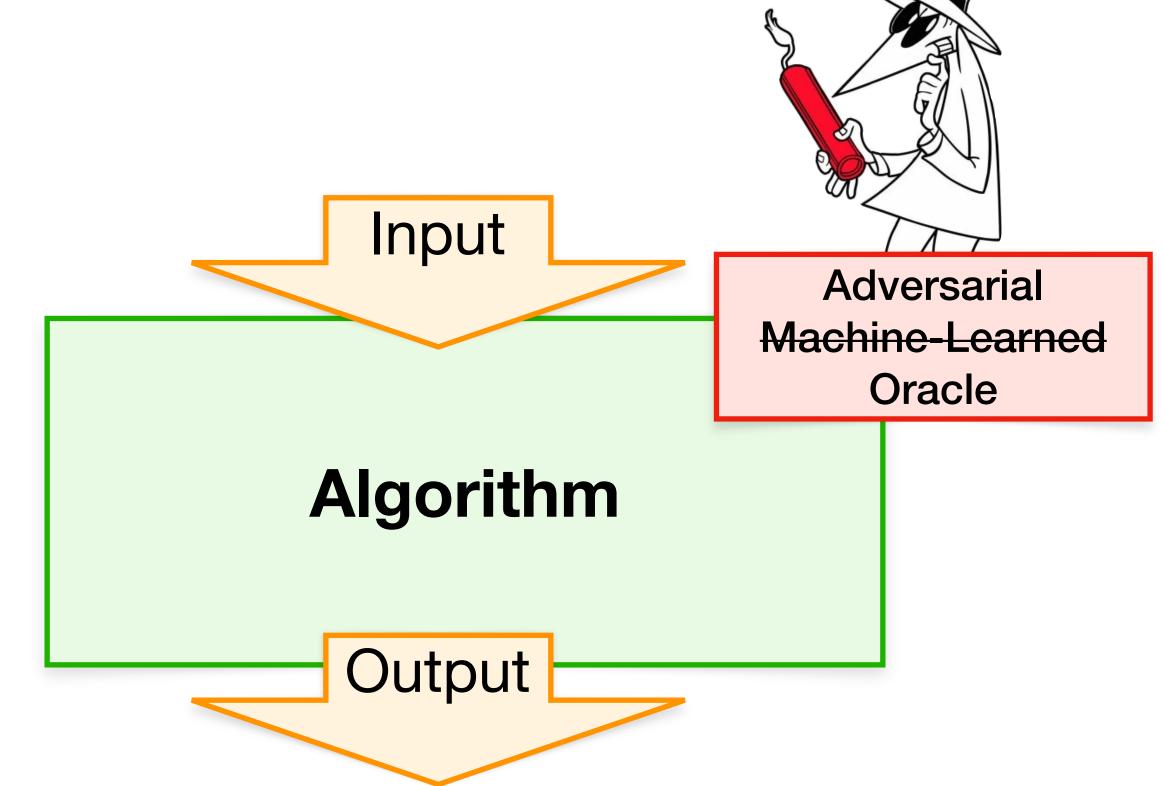
- Motivation: Use ML techniques in classical algorithms to improve their performance beyond *worst-case* bounds
- Assumption: The algorithm has oracle access to an (untrusted) predictor



- Motivation: Use ML techniques in classical algorithms to improve their performance beyond *worst-case* bounds
- Assumption: The algorithm has oracle access to an (untrusted) predictor
- Goals:
 - High prediction quality
 ⇒ significantly outperforms the best-known classical (worst-case) algorithm

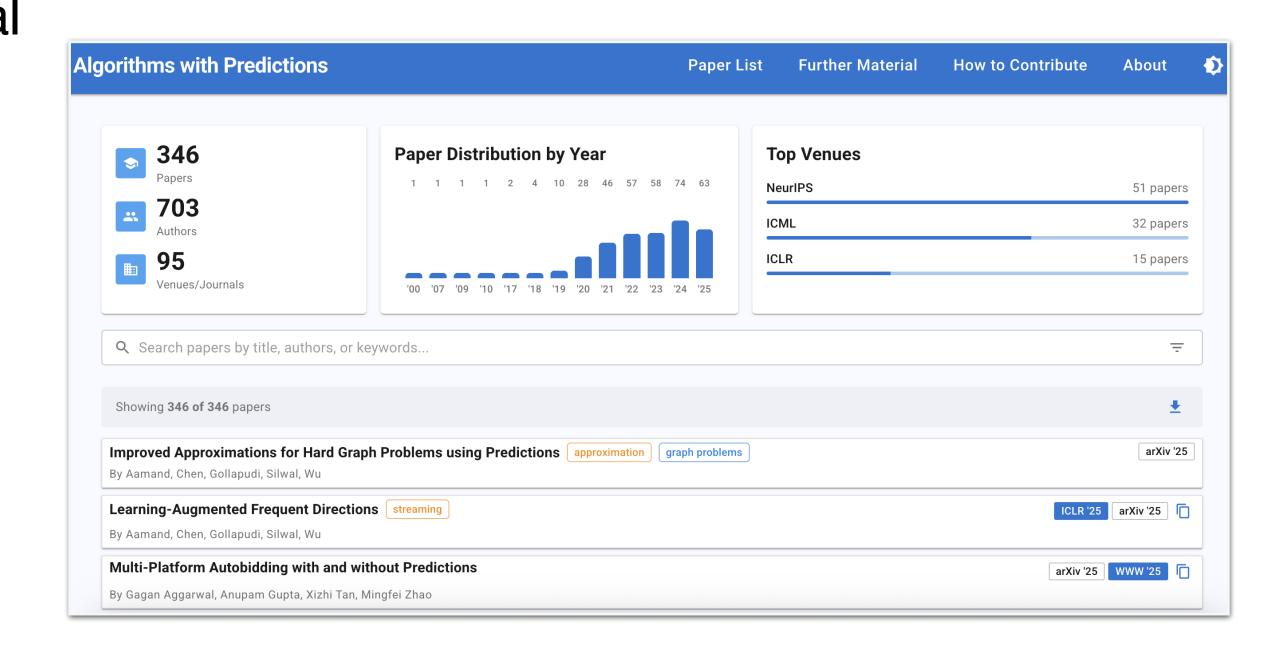


- Motivation: Use ML techniques in classical algorithms to improve their performance beyond *worst-case* bounds
- Assumption: The algorithm has oracle access to an (untrusted) predictor
- Goals:
 - High prediction quality
 ⇒ significantly outperforms the best-known classical (worst-case) algorithm



(a.k.a. Algorithms with Predictions)

- Motivation: Use ML techniques in classical algorithms to improve their performance beyond *worst-case* bounds
- Assumption: The algorithm has oracle access to an (untrusted) predictor
- Goals:
 - High prediction quality
 ⇒ significantly outperforms the best-known classical (worst-case) algorithm



An up-to-date repository of publications (https://algorithms-with-predictions.github.io)

• Oracle access to pairwise distance $d_{uv} \in [0,1]$ between any $u,v \in V$

- Oracle access to pairwise distance $d_{uv} \in [0,1]$ between any $u,v \in V$
- Arises in many scenarios: multiple graphs on the same vertex set
 - Healthcare: disease network, provider network, clinical trial network
 - <u>Biology</u>: protein-protein interaction network, gene co-expression network, signaling pathway network
 - Temporal graphs: same vertices, different edges over time

- Oracle access to pairwise distance $d_{uv} \in [0,1]$ between any $u,v \in V$
- Arises in many scenarios: multiple graphs on the same vertex set
 - Healthcare: disease network, provider network, clinical trial network
 - <u>Biology</u>: protein-protein interaction network, gene co-expression network, signaling pathway network
 - Temporal graphs: same vertices, different edges over time
- Observation: Two vertices similar in one network are likely similar in another — cluster structure can thus be extracted

 β -level predictor ($\beta \geq 1$): predicts pairwise distance $d_{uv} \in [0,1]$ between any $u,v \in V$ such that

(1)
$$d_{uv} + d_{vw} \ge d_{uw}$$
 for all $u, v, w \in V$ (triangle inequality)

(2)
$$\sum_{(u,v)\in E^{+}} d_{uv} + \sum_{(u,v)\in E^{-}} (1 - d_{uv}) \leq \beta \cdot \mathsf{OPT}$$

 β -level predictor ($\beta \geq 1$): predicts pairwise distance $d_{uv} \in [0,1]$ between any $u,v \in V$ such that

(1)
$$d_{uv} + d_{vw} \ge d_{uw}$$
 for all $u, v, w \in V$ (triangle inequality)

(2)
$$\sum_{(u,v)\in E^{+}} d_{uv} + \sum_{(u,v)\in E^{-}} (1 - d_{uv}) \le \beta \cdot \mathsf{OPT}$$

- Inspired by the metric LP formulation of Correlation Clustering
- Smaller $\beta \Longrightarrow$ higher quality
- Can be implemented in practice!

$$\begin{array}{ll} \min & \sum\limits_{(u,v)\in E^+} x_{uv} + \sum\limits_{(u,v)\in E^-} (1-x_{uv}) \\ \text{s.t.} & x_{uw} + x_{wv} \geq x_{uv} \quad \forall u,v,w \in V \\ & x_{uv} \in [0,1] \qquad \quad \forall (u,v) \in \binom{V}{2} \\ & x_{uu} = 0 \qquad \qquad \forall u \in V \end{array}$$

Our Results

Setting	Best-known approxspace trade-offs (without predictions)	Our results (with predictions)
Complete graphs,	$(3+\epsilon)\text{-approx.}$ $\tilde{O}(\epsilon^{-1}n) \text{ total space}$ [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]	$(\min\{2.06\beta,3\}+\epsilon)$ -approx. $\tilde{O}(\epsilon^{-2}n)$ total space [D., Jiang, Li, Peng, 2025] better approxspace tradeoff
Dynamic streams	$(\alpha_{\mathrm{BEST}} + \epsilon)$ -approx. $\tilde{O}(\epsilon^{-2}n)$ space during the stream $\mathrm{poly}(n)$ space for post-processing [Assadi, Khanna, Putterman, 2025]	
General graphs, Dynamic streams	$O(\log E^-)\text{-approx.}$ $\tilde{O}(\epsilon^{-2}n + E^-) \text{ total space}$ [Ahn, Cormode, Guha, McGregor, Wirth, 2015]	$O(\beta \log E^-)$ -approx. $\tilde{O}(\epsilon^{-2}n)$ total space [D., Jiang, Li, Peng, 2025]
	10	better space complexity

Our Algorithm for Complete Graphs: Key Insight

Our Algorithm for Complete Graphs: Key Insight

• For a long time, $(3 + \epsilon)$ -approx. is a natural target in streaming

- For a long time, $(3 + \epsilon)$ -approx. is a natural target in streaming
 - The seminal 3-approx. combinatorial PIVOT algorithm [Ailon, Charikar, Neuman, 2008] can be efficiently simulated in streaming [Chakrabarty, Makarychev, 2023] [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]

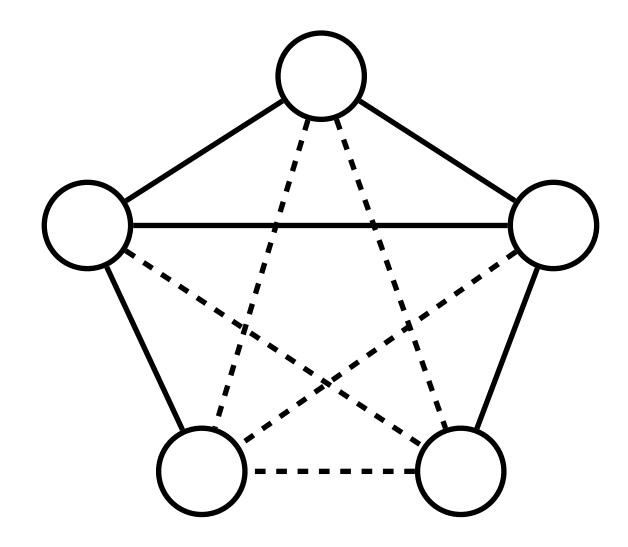
- For a long time, $(3 + \epsilon)$ -approx. is a natural target in streaming
 - The seminal 3-approx. combinatorial PIVOT algorithm [Ailon, Charikar, Neuman, 2008] can be efficiently simulated in streaming [Chakrabarty, Makarychev, 2023] [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]
 - A combinatorial 1.847-approx. algorithm [Cohen-Addad, Lolck, Pilipczuk, Thorup, Yan, Zhang, 2024]: works only in insertion-only streams, far from practical

- For a long time, $(3 + \epsilon)$ -approx. is a natural target in streaming
 - The seminal 3-approx. combinatorial PIVOT algorithm [Ailon, Charikar, Neuman, 2008] can be efficiently simulated in streaming [Chakrabarty, Makarychev, 2023] [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]
 - A combinatorial 1.847-approx. algorithm [Cohen-Addad, Lolck, Pilipczuk, Thorup, Yan, Zhang, 2024]: works only in insertion-only streams, far from practical
- However, there are several works breaking 3-approx. barrier in the offline setting
 - 2.06 [Chawla, Makarychev, Schramm, Yaroslavtsev, 2015]: metric LP
 - 1.994 [Cohen-Addad, Lee, Neuman, 2022]: Sherali-Adams LP relaxation hierarchy
 - 1.73 [Cohen-Addad, Lee, Li, Neuman, 2023]: Sherali-Adams LP relaxation hierarchy + Preclustering
 - 1.437 [Cao, Cohen-Addad, Lee, Li, Neuman, Vogl, 2024] [Cao, Cohen-Addad, Lee, Li, Lolck, Newman, Thorup, Vogl, Yan, Zhang, 2025]: cluster LP

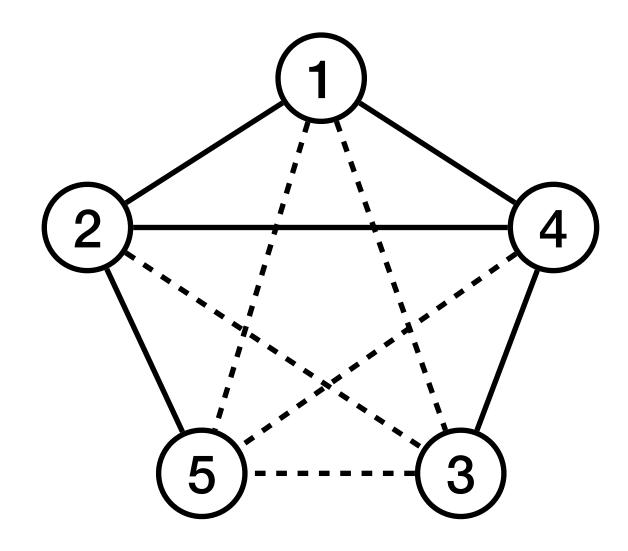
- For a long time, $(3 + \epsilon)$ -approx. is a natural target in streaming
 - The seminal 3-approx. combinatorial PIVOT algorithm [Ailon, Charikar, Neuman, 2008] can be efficiently simulated in streaming [Chakrabarty, Makarychev, 2023] [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]
 - A combinatorial 1.847-approx. algorithm [Cohen-Addad, Lolck, Pilipczuk, Thorup, Yan, Zhang, 2024]: works only in insertion-only streams, far from practical
- However, there are several works breaking 3-approx. barrier in the offline setting
 - 2.06 [Chawla, Makarychev, Schramm, Yaroslavtsev, 2015]: metric LP
 - 1.994 [Cohen-Addad, Lee, Neuman, 2022]: Sherali-Adams LP relaxation hierarchy
 - 1.73 [Cohen-Addad, Lee, Li, Neuman, 2023]: Sherali-Adams LP relaxation hierarchy + Preclustering
 - 1.437 [Cao, Cohen-Addad, Lee, Li, Neuman, Vogl, 2024] [Cao, Cohen-Addad, Lee, Li, Lolck, Newman, Thorup, Vogl, Yan, Zhang, 2025]: cluster LP
 - All these algorithms are based on LP rounding difficult to implement in streaming for

- For a long time, $(3 + \epsilon)$ -approx. is a natural target in streaming
 - The seminal 3-approx. combinatorial PIVOT algorithm [Ailon, Charikar, Neuman, 2008] can be efficiently simulated in streaming [Chakrabarty, Makarychev, 2023] [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]
 - A combinatorial 1.847-approx. algorithm [Cohen-Addad, Lolck, Pilipczuk, Thorup, Yan, Zhang, 2024]: works only in insertion-only streams, far from practical
- However, there are several works breaking 3-approx. barrier in the offline setting
 - 2.06 [Chawla, Makarychev, Schramm, Yaroslavtsev, 2015]: metric LP
 - 1.994 [Cohen-Addad, Lee, Neuman, 2022]: Sherali-Adams LP relaxation hierarchy
 - 1.73 [Cohen-Addad, Lee, Li, Neuman, 2023]: Sherali-Adams LP relaxation hierarchy + Preclustering
 - 1.437 [Cao, Cohen-Addad, Lee, Li, Neuman, Vogl, 2024] [Cao, Cohen-Addad, Lee, Li, Lolck, Newman, Thorup, Vogl, Yan, Zhang, 2025]: cluster LP
 - All these algorithms are based on LP rounding difficult to implement in streaming for
- We can use "pairwise distance" predictions to bypass this bottleneck!

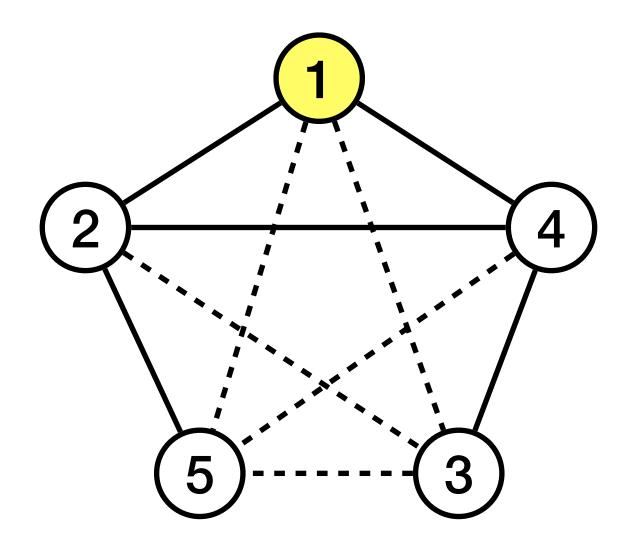
- 1. Pick a random permutation $V \rightarrow \{1,...,n\}$ over the vertices.
- 2. $V' \leftarrow V, \mathscr{C} \leftarrow \emptyset$
- 3. while $V' \neq \emptyset$ do
 - Let $p \in V'$ be the vertex with the smallest rank. Mark p as pivot.
 - Initialize $C \leftarrow \{p\}$.
 - Add $v \in V'$ to C if $(p, v) \in E^+$.
 - $V' \leftarrow V' \setminus C, \mathscr{C} \leftarrow \mathscr{C} \cup \{C\}$
- 4. return \mathscr{C}



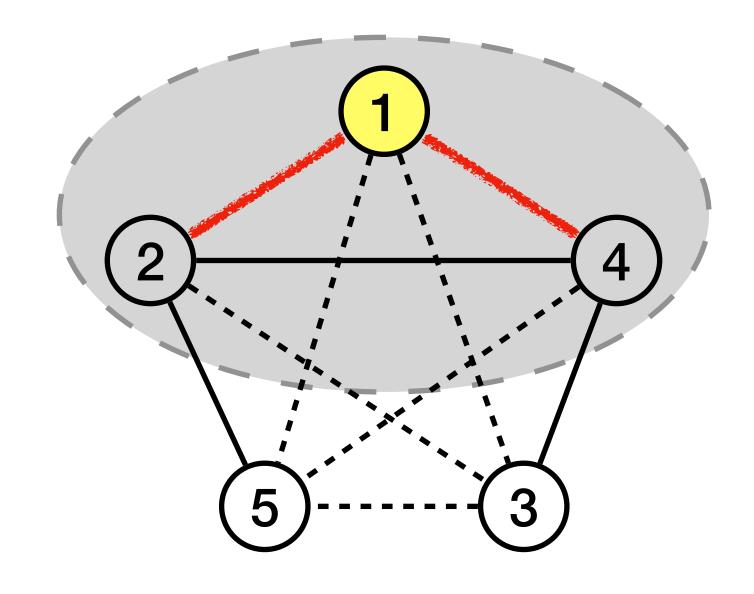
- 1. Pick a random permutation $V \rightarrow \{1,...,n\}$ over the vertices.
- 2. $V' \leftarrow V, \mathscr{C} \leftarrow \emptyset$
- 3. while $V' \neq \emptyset$ do
 - Let $p \in V'$ be the vertex with the smallest rank. Mark p as pivot.
 - Initialize $C \leftarrow \{p\}$.
 - Add $v \in V'$ to C if $(p, v) \in E^+$.
 - $V' \leftarrow V' \setminus C, \mathscr{C} \leftarrow \mathscr{C} \cup \{C\}$
- 4. return \mathscr{C}



- 1. Pick a random permutation $V \rightarrow \{1,...,n\}$ over the vertices.
- 2. $V' \leftarrow V, \mathscr{C} \leftarrow \emptyset$
- 3. while $V' \neq \emptyset$ do
 - Let $p \in V'$ be the vertex with the smallest rank. Mark p as pivot.
 - Initialize $C \leftarrow \{p\}$.
 - Add $v \in V'$ to C if $(p, v) \in E^+$.
 - $V' \leftarrow V' \setminus C, \mathscr{C} \leftarrow \mathscr{C} \cup \{C\}$
- 4. return \mathscr{C}



- 1. Pick a random permutation $V \rightarrow \{1,...,n\}$ over the vertices.
- 2. $V' \leftarrow V, \mathscr{C} \leftarrow \emptyset$
- 3. while $V' \neq \emptyset$ do
 - Let $p \in V'$ be the vertex with the smallest rank. Mark p as pivot.
 - Initialize $C \leftarrow \{p\}$.
 - Add $v \in V'$ to C if $(p, v) \in E^+$.
 - $V' \leftarrow V' \setminus C, \mathscr{C} \leftarrow \mathscr{C} \cup \{C\}$
- 4. return \mathscr{C}



2.06-Approx. LP Rounding Algorithm

[Chawla, Makarychev, Schramm, Yaroslavtsev, 2015]

2.06-Approx. LP Rounding Algorithm

[Chawla, Makarychev, Schramm, Yaroslavtsev, 2015]

- 1. Solve the **metric LP** of Correlation Clustering and obtain the optimal solution $\{x_{uv}\}_{u,v\in V}$.
- 2. Pick a random permutation $V \rightarrow \{1,...,n\}$ over the vertices.
- 3. $V' \leftarrow V, \mathscr{C} \leftarrow \emptyset$
- 4. while $V' \neq \emptyset$ do
 - Let $p \in V'$ be the vertex with the smallest rank. Mark p as pivot.
 - Initialize $C \leftarrow \{p\}$.
 - Add $v \in V'$ to C independently w.p. $1 f(x_{pv})$.
 - $V' \leftarrow V' \setminus C, \mathscr{C} \leftarrow \mathscr{C} \cup \{C\}$
- 5. return \mathscr{C}

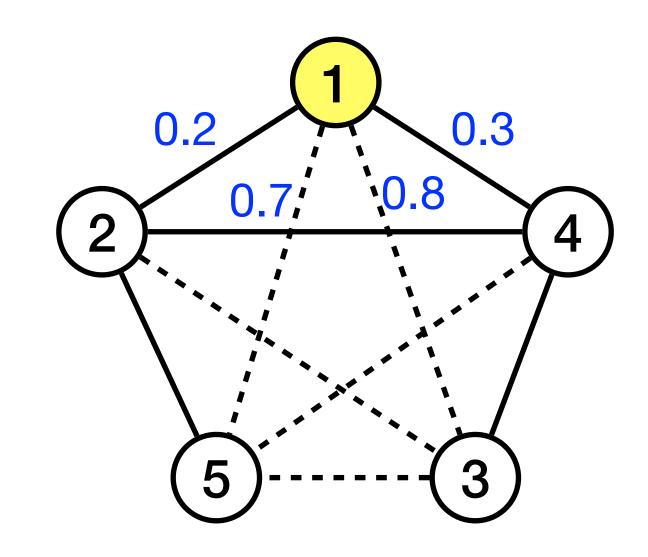
$$\begin{array}{ll} \min & \sum\limits_{(u,v)\in E^+} x_{uv} + \sum\limits_{(u,v)\in E^-} (1-x_{uv}) \\ \text{s.t.} & x_{uw} + x_{wv} \geq x_{uv} \quad \forall u,v,w \in V \\ & x_{uv} \in [0,1] \qquad \quad \forall (u,v) \in \binom{V}{2} \\ & x_{uu} = 0 \qquad \qquad \forall u \in V \end{array}$$

2.06-Approx. LP Rounding Algorithm

[Chawla, Makarychev, Schramm, Yaroslavtsev, 2015]

- 1. Solve the **metric LP** of Correlation Clustering and obtain the optimal solution $\{x_{uv}\}_{u,v\in V}$.
- 2. Pick a random permutation $V \rightarrow \{1,...,n\}$ over the vertices.
- 3. $V' \leftarrow V, \mathscr{C} \leftarrow \emptyset$
- 4. while $V' \neq \emptyset$ do
 - Let $p \in V'$ be the vertex with the smallest rank. Mark p as pivot.
 - Initialize $C \leftarrow \{p\}$.
 - Add $v \in V'$ to C independently w.p. $1 f(x_{pv})$.
 - $V' \leftarrow V' \setminus C, \mathscr{C} \leftarrow \mathscr{C} \cup \{C\}$
- 5. return \mathscr{C}

$$\begin{aligned} & \min & & \sum_{(u,v) \in E^+} x_{uv} + \sum_{(u,v) \in E^-} (1-x_{uv}) \\ & \text{s.t.} & & x_{uw} + x_{wv} \geq x_{uv} & \forall u,v,w \in V \\ & & x_{uv} \in [0,1] & \forall (u,v) \in \binom{V}{2} \\ & & x_{uu} = 0 & \forall u \in V \end{aligned}$$



1. During the stream:

• Maintain a truncated subgraph G' of G (refer to [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]).

2. After the stream:

- Run the 3-approx. combinatorial algorithm (PIVOT) on G', then assign unclustered vertices and obtain clustering \mathscr{C}_1 on G.
- Run the 2.06-approx. LP rounding algorithm on G' (use predictions d_{uv} to replace metric LP solution x_{uv}), then assign unclustered vertices and obtain clustering \mathscr{C}_2 on G.
- return the clustering with the lower cost between \mathcal{C}_1 and \mathcal{C}_2

1. During the stream:

• Maintain a truncated subgraph G' of G (refer to [Cambus, Kuhn, Lindy, Pai, Uitt Lemma [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]:

2. After the stream:

 $cost_G(\mathscr{C}_1) \leq (3 + \epsilon) \cdot OPT$

- Run the 3-approx. combinatorial algorithm (PIVOT) on \mathbb{Q} , then assign unclustered vertices and obtain clustering \mathscr{C}_1 on G.
- Run the 2.06-approx. LP rounding algorithm on G' (use predictions d_{uv} to replace metric LP solution x_{uv}), then assign unclustered vertices and obtain clustering \mathscr{C}_2 on G.
- return the clustering with the lower cost between \mathcal{C}_1 and \mathcal{C}_2

1. During the stream:

Maintain a truncated subgraph G' of G (refer to [Cambus, Kuhn, Lindy, Pai, Uitt Lemma [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]:

2. After the stream:

 $cost_G(\mathscr{C}_1) \leq (3 + \epsilon) \cdot OPT$

• Run the 3-approx. combinatorial algorithm (PIVOT) on \mathbb{Q} , then assign unclustered vertices and obtain clustering \mathscr{C}_1 on G.

- Run the 2.06-approx. LP rounding algorithm on G' (use predictions d_{uv} to replace metric LP solution x_{uv}), then assign unclustered vertices and obtain clustering \mathscr{C}_2 on G.
- return the clustering with the lower cost between \mathscr{C}_1 and \mathscr{C}_2 Lemma [D., Jiang, Li, Peng, 2025]:

 $cost_G(\mathscr{C}_2) \le (2.06\beta + \epsilon) \cdot OPT$

1. During the stream:

Maintain a truncated subgraph G' of G (refer to [Cambus, Kuhn, Lindy, Pai, Uitt Lemma [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]:

2. After the stream:

 $cost_G(\mathscr{C}_1) \leq (3 + \epsilon) \cdot OPT$

- Run the 3-approx. combinatorial algorithm (PIVOT) on \mathbb{Q} , then assign unclustered vertices and obtain clustering \mathscr{C}_1 on G.
- Run the 2.06-approx. LP rounding algorithm on G' (use predictions d_{uv} to replace metric LP solution x_{uv}), then assign unclustered vertices and obtain clustering \mathscr{C}_2 on G.
- return the clustering with the lower cost beginning the clustering with the lower cost beginning and Lemma [D., Jiang, Li, Peng, 2025]:

 $cost_G(\mathscr{C}_2) \le (2.06\beta + \epsilon) \cdot OPT$

Theorem [D., Jiang, Li, Peng, 2025]: β -level predictor w.p. $\geq 1 - 1/n^2$ (min{2.06 β , 3} + ϵ)-approx. $\tilde{O}(n)$ words of total space, works in dynamic streams

19

1. During the stream:

Maintain a truncated subgraph G' of G (refer to [Cambus, Kuhn, Lindy, Pai, Uitt Lemma [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]:

2. After the stream:

 $cost_G(\mathscr{C}_1) \leq (3 + \epsilon) \cdot OPT$

- Run the 3-approx. combinatorial algorithm (PIVOT) on \mathbb{Q} , then assign unclustered vertices and obtain clustering \mathscr{C}_1 on G.
- Run the 2.06-approx. LP rounding algorithm on G' (use predictions d_{uv} to replace metric LP solution x_{uv}), then assign unclustered vertices and obtain clustering \mathscr{C}_2 on G.
- return the clustering with the lower cost better \mathscr{C}_1 and \mathscr{C}_2 Lemma [D., Jiang, Li, Peng, 2025]:

 $cost_G(\mathscr{C}_2) \le (2.06\beta + \epsilon) \cdot \mathsf{OPT}$

Theorem [D., Jiang, Li, Peng, 2025]: β -level predictor w.p. $\geq 1 - 1/n^2$ (min{2.06 β , 3} + ϵ)-approx. $\tilde{O}(n)$ words of total space, works in dynamic streams

Remarks:

- Better than 3-approx. under good prediction quality
- Simple and efficient
- Do not consider the space for the predictor

• Recall that the best-known streaming algorithm for general graphs is a $O(\log |E^-|)$ -approx. while using $\tilde{O}(\epsilon^{-2}n + |E^-|)$ total space [Ahn, Cormode, Guha, McGregor, Wirth, 2015]

- Recall that the best-known streaming algorithm for general graphs is a $O(\log |E^-|)$ -approx. while using $\tilde{O}(\epsilon^{-2}n + |E^-|)$ total space [Ahn, Cormode, Guha, McGregor, Wirth, 2015]
 - During the stream: Sparsify the positive subgraph $G^+ := (V, E^+)$ to H^+ , and store E^-
 - After the stream: Use the stored information to solve an LP, and run a ball-growing based LP rounding algorithm on ${\cal H}^+$

- Recall that the best-known streaming algorithm for general graphs is a $O(\log |E^-|)$ -approx. while using $\tilde{O}(\epsilon^{-2}n + |E^-|)$ total space [Ahn, Cormode, Guha, McGregor, Wirth, 2015]
 - During the stream: Sparsify the positive subgraph $G^+ := (V, E^+)$ to H^+ , and store E^-
 - After the stream: Use the stored information to solve an LP, and run a ball-growing based LP rounding algorithm on ${\cal H}^+$
- We can use predictions to guide the rounding algorithm, thus avoiding storing E^- and leading to better space complexity!

1. During the stream:

- Maintain a spectral sparsifier H^+ for $G^+ := (V, E^+)$.
- 2. After the stream: perform ball-growing
 - $V' \leftarrow V, \mathscr{C} \leftarrow \emptyset$
 - while $V' \neq \emptyset$ do
 - Pick an arbitrary vertex $u \in V'$. Initialize $r_u \leftarrow 0$.
 - Increase r_u and grow a ball $B(u, r_u)$ using predictions d_{uv} as distance metric, until a certain condition is satisfied.
 - $-V' \leftarrow V' \backslash B(u,r_u), \mathcal{C} \leftarrow \mathcal{C} \cup \{B(u,r_u)\}$
 - return the resulting clustering

1. During the stream:

- Maintain a spectral sparsifier H^+ for $G^+ := (V, E^+)$.
- 2. After the stream: perform ball-growing
 - $V' \leftarrow V, \mathscr{C} \leftarrow \emptyset$
 - while $V' \neq \emptyset$ do
 - Pick an arbitrary vertex $u \in V'$. Initialize $r_u \leftarrow 0$.
 - Increase r_u and grow a ball $B(u, r_u)$ using predictions d_{uv} as distance metric, until a certain condition is satisfied.
 - $-V' \leftarrow V' \backslash B(u, r_u), \mathscr{C} \leftarrow \mathscr{C} \cup \{B(u, r_u)\}$
 - return the resulting clustering

Theorem [D., Jiang, Li, Peng, 2025]: β -level predictor w.p. $\geq 1 - 1/n^2$ $O(\beta \log |E^-|)$ -approx. $\tilde{O}(n)$ words of total space, works in dynamic streams

1. During the stream:

- Maintain a spectral sparsifier H^+ for $G^+ := (V, E^+)$.
- 2. After the stream: perform ball-growing
 - $V' \leftarrow V, \mathscr{C} \leftarrow \emptyset$
 - while $V' \neq \emptyset$ do
 - Pick an arbitrary vertex $u \in V'$. Initialize $r_u \leftarrow 0$.
 - Increase r_u and grow a ball $B(u, r_u)$ using predictions d_{uv} as distance metric, until a certain condition is satisfied.
 - $V' \leftarrow V' \backslash B(u, r_u), \mathcal{C} \leftarrow \mathcal{C} \cup \{B(u, r_u)\}$
 - return the resulting clustering

Theorem [D., Jiang, Li, Peng, 2025]: β -level predictor w.p. $\geq 1 - 1/n^2$ $O(\beta \log |E^-|)$ -approx. $\tilde{O}(n)$ words of total space, works in dynamic streams

Remarks:

- Close to $O(\log |E^-|)$ -approx. under good prediction quality
- Better space complexity
- Do not consider the space for the predictor

Experimental Setting

Datasets:

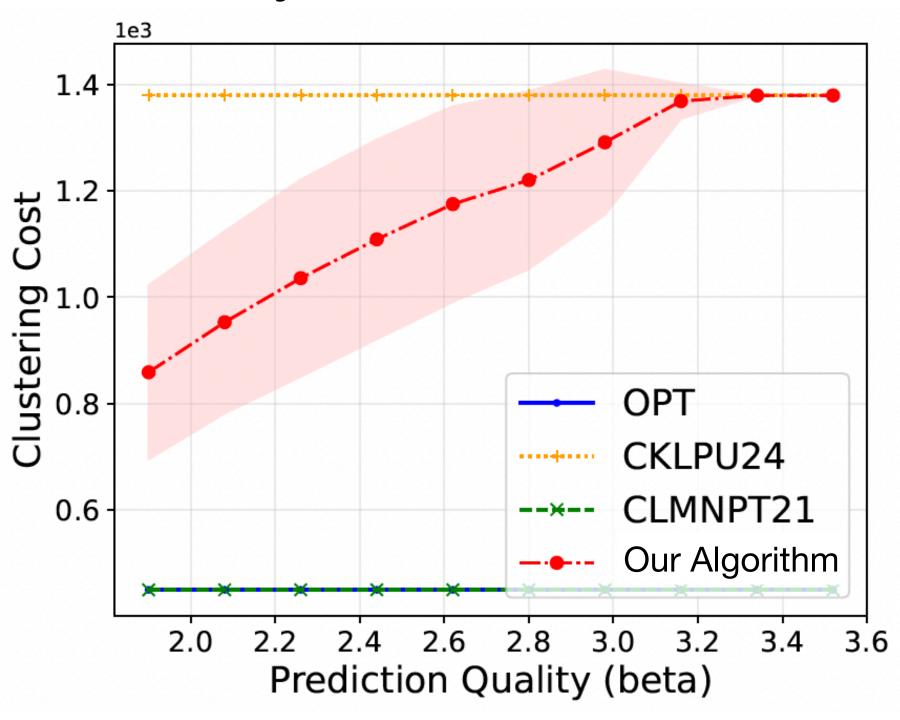
- Synthetic datasets: Generated from the Stochastic Block Model (SBM)
- Real-world datasets: EmailCore, Facebook, LastFM, DBLP from SNAP Collection
- Predictor: Noisy predictor, Spectral embedding, Binary classifier

Baselines:

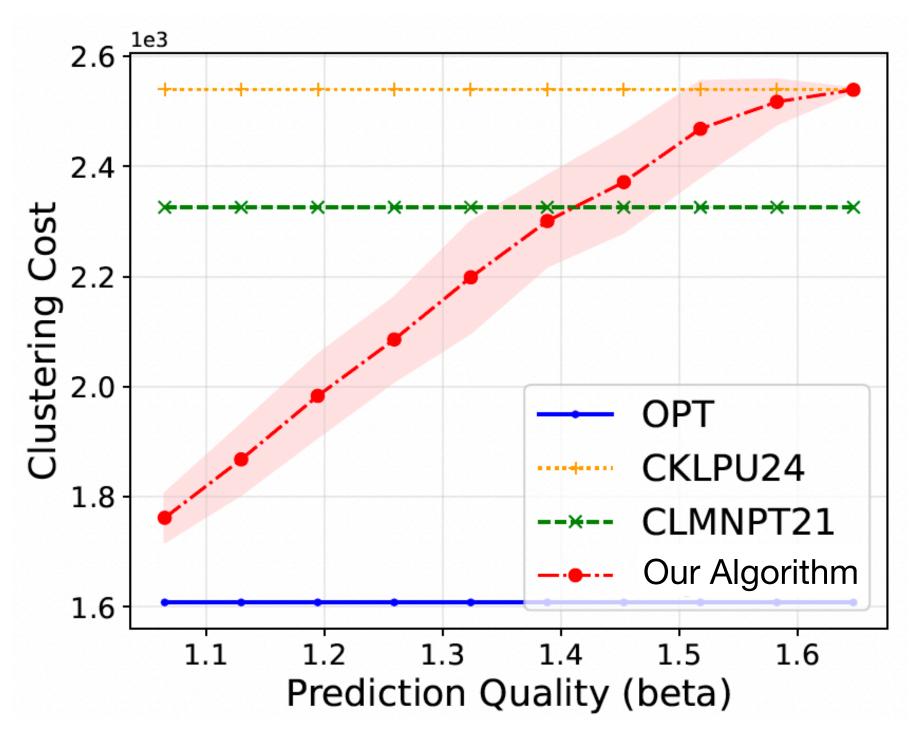
- $(3 + \epsilon)$ -approx. algorithm without predictions [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]
- Agreement decomposition-based algorithm [Cohen-Addad, Lattanzi, Mitrović, Norouzi-Fard, Parotsidis, Tarnawski, 2021]: 701-approx. in theory, performs well on certain types of graphs

Experimental Results

Synthetic Dataset



Real-World Dataset: Facebook



Conclusion:

- Our algorithm (with predictions) outperforms its non-learning counterpart (CKLPU24)
 under high prediction quality, while no worse under low prediction quality.
- Our algorithm performs much better in practice than the theoretical guarantee suggests.

Summary

- The first learning-augmented streaming algorithms for Correlation Clustering on both **complete** and **general** graphs (in dynamic streams)
 - For complete graphs: β -level "pairwise distance" predictor $\Longrightarrow (\min\{2.06\beta,3\} + \epsilon)$ -approx., $\tilde{O}(\epsilon^{-2}n)$ total space better approximation-space tradeoff
 - For general graphs: β -level "pairwise distance" predictor $\Longrightarrow O(\beta \log |E^-|)$ -approx., $\tilde{O}(\epsilon^{-2}n)$ total space better space complexity

Summary

- The first learning-augmented streaming algorithms for Correlation Clustering on both **complete** and **general** graphs (in dynamic streams)
 - For complete graphs: β -level "pairwise distance" predictor $\Longrightarrow (\min\{2.06\beta,3\} + \epsilon)$ -approx., $\tilde{O}(\epsilon^{-2}n)$ total space better approximation-space tradeoff
 - For general graphs: β -level "pairwise distance" predictor $\Longrightarrow O(\beta \log |E^-|)$ -approx., $\tilde{O}(\epsilon^{-2}n)$ total space better space complexity

Open Problems

- $(\alpha_{\text{BEST}} + \epsilon)$ -approx., $\tilde{O}(n)$ total space for complete graphs?
- Better-than- $O(\log |E^-|)$ -approx. for general graphs?

Summary

- The first learning-augmented streaming algorithms for Correlation Clustering on both **complete** and **general** graphs (in dynamic streams)
 - For complete graphs: β -level "pairwise distance" predictor $\Longrightarrow (\min\{2.06\beta,3\} + \epsilon)$ -approx., $\tilde{O}(\epsilon^{-2}n)$ total space better approximation-space tradeoff
 - For general graphs: β -level "pairwise distance" predictor $\Longrightarrow O(\beta \log |E^-|)$ -approx., $\tilde{O}(\epsilon^{-2}n)$ total space better space complexity

Open Problems

- $(\alpha_{\text{BEST}} + \epsilon)$ -approx., $\tilde{O}(n)$ total space for complete graphs?
- Better-than- $O(\log |E^-|)$ -approx. for general graphs?

Thank you!