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Correlation Clustering

Input: graph G = (V,E=ETUE")

Output: clustering € of V
Goal: minimize the number of edges in disagreement

u,vin same cluster of ¢ | u, v in different clusters of ¢
(u,v) € £ agreement disagreement
(u,v) € £ disagreement agreement

« Most commonly studied version: G is a complete graph,

o= (1)

* \We consider both complete and general unweighted
graphs in this work
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e On Complete Graphs

 APX-hard [Charikar, Guruswami, Wirth, 2005]

e (24/23 — €)-hardness [Cao, Cohen-Addad, Lee, Li, Newman, Vog|, 2024]

* Best-known approx. ratio: 1.437 via LP rounding [Cao, Cohen-Addad, Lee, Li, Newman,
Vogl, 2024] [Cao, Cohen-Addad, Lee, Li, Lolck, Newman, Thorup, Vogl, Yan, Zhang, 2025]

 On General Graphs

* Equivalent to Min-Multicut and thus APX-hard [Bansal, Blum, Chawla, 2004]

« Best-known approx. ratio: O(log n) via ball-growing based LP rounding [Charikar,
Guruswami, Wirth, 2005] [Demaine, Emanuel, Fiat, Immorlica, 2006}
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Streaming Model

 Graph Stream: The input graph is presented as a sequence of edge insertions
and deletions.

* /nsertion-only stream: contains only edge insertions
* dynamic stream: contains both edge insertions and deletions

 Goal: scan the stream in (ideally) one pass, and find the solution at the end of
the stream using small space

Insert Insert Insert Insert 1Insert Delete Insert

5
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Correlation Clustering in Dynamic Streams

 Since outputting the clustering requires £2(n) space, we consider semi-streaming
model: O(n) space is allowed

 Best-known approximation-space trade-offs on complete graphs

. (3 + ¢€)-approx., O(e~'n) total space [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]

_ 3 best approx. ratio of any poly-time classical algorithm
€)-approx., O(e~?n) space during the stream, poly(n) space for post-
processmg [Assadi, Khanna, Putterman, 2025]

 Best-known approximation-space trade-off on general graphs

. O(log| E~|)-approx., O(e ?n + | E™|) total space [Ahn, Cormode, Guha,
McGregor, Wirth, 2015]
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Learnmg-Augmented Algorithms

(a.k.a. Algorithms with Predictions)

* Motivation: Use ML techniques in classical
algorithms to improve their performance

Algorithms with Predictions Paper List Further Material How to Contribute About )

beyond worst-case bounds d e .
 Assumption: The algorithm has oracle - .||||| - o
access to an (untrusted) predictor —
Goals: .
 High prediction quality = significantly [
outperforms the best-known classical —
(worst-case) algorithm
» Low prediction quality => performs no An up-to-date repository of publications

(https://algorithms-with-predictions.github.io)

worse than the best-known classical
(worst-case) algorithm


https://algorithms-with-predictions.github.io
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Our Prediction Model

» Oracle access to pairwise distance d ,, € [0,1] between any u,v € V

* Arises in many scenarios: multiple graphs on the same vertex set

 Healthcare: disease network, provider network, clinical trial network

* Biology: protein-protein interaction network, gene co-expression
network, signaling pathway network

* [Temporal graphs: same vertices, different edges over time

 Observation: Two vertices similar in one network are likely similar in
another — cluster structure can thus be extracted
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Our Prediction Model

p-level predictor (/ > 1): predicts pairwise distance d ,, € [0,1] between
any u,v € V such that

1d,+d, >d,, forallu,v,w € V (triangle inequality)

D, dy+ ), (1-d,)<[-OPT

(u,v)eE™ (u,v)eE™

* |nspired by the metric LP formulation of Correlation Clustering

min Z Tt + Z (1 — zy)

» Smaller f/ = higher quality Db+ Db
S.t. ZTyw + Tww = Tuw VUu,v,wEV
 Can be implemented in practice! Ty € [0,1] V(u,v) € (})

Loy = 0 VueV
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Our Results

Settin Best-known approx.-space Our results
9 trade-offs (without predictions) (with predictions)
(3 + €)-approx.
O(e~'n) total space
Complete graphs, [Cambus, Kuhn, Lindy, Pai, Uitto, 2024] (mlnizo_gﬁ;s} 1 €)—approx.
Dynamic streams (aggsT + €)-approx. O(e™“n) total space

[D., Jiang, Li, Peng, 2025]

O(e~*n) space during the stream
( ) s ) better approx.-space tradeoff

poly(n) space for post-processing
[Assadi, Khanna, Putterman, 2025]

General graphs, ~ O(log | E™ | )-approx. O(f log | E™ | )-approx.
Dynamic streams O(e™*n + | E~|) total space O(e~*n) total space
[Ahn, Cormode, Guha, McGregor, Wirth, 2015] [D., Jiang, Li, Peng, 2025]

. better space complexity
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» For along time, (3 + ¢)-approx. is a natural target in streaming

 The seminal 3-approx. combinatorial PIVOT algorithm [Ailon, Charikar, Neuman, 2008] can be
efficiently simulated in streaming [Chakrabarty, Makarychev, 2023] [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]

A combinatorial 1.847-approx. algorithm [Cohen-Addad, Lolck, Pilipczuk, Thorup, Yan, Zhang, 2024]:
works only in insertion-only streams, far from practical

 However, there are several works breaking 3-approx. barrier in the offline setting
o 2.06 [Chawla, Makarychev, Schramm, Yaroslavtsev, 2015]: metric LP
e 1.994 [Cohen-Addad, Lee, Neuman, 2022]: Sherali-Adams LP relaxation hierarchy
e 1.73 [Cohen-Addad, Lee, Li, Neuman, 2023]: Sherali-Adams LP relaxation hierarchy + Preclustering

e 1.437 [Cao, Cohen-Addad, Lee, Li, Neuman, Vogl, 2024] [Cao, Cohen-Addad, Lee, Li, Lolck, Newman, Thorup,
Vogl, Yan, Zhang, 2025]: cluster LP

* All these algorithms are based on LP rounding — difficult to implement in streaming @

« We can use “pairwise distance” predictions to bypass this bottleneck! &
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3-ApprOX. PIVOT AlgOrlthm [Ailon, Charikar, Neuman, 2008]

1. Pick a random permutation V — {1,...,n} over the
vertices.

2. V<« V.6 « O
3. while V' # @ do

Let p € V' be the vertex with the smallest rank.
Mark p as pivot.

Initialize C <« {p}.
Addv € V'to Cif (p,v) € E™.
Vi< VANC,6 « U {C}

4. return €
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3-ApprOX. PIVOT AlgOrlthm [Ailon, Charikar, Neuman, 2008]

1. Pick a random permutation V — {1,...,n} over the
vertices.

2. V<« V.6 « O
3. while V' # @ do

« Let p € V' be the vertex with the smallest rank.
Mark p as pivot.

o |nitialize C <« {p}.
e Addve VtoCif(p,v) e E™.
e V<« VA\C, € « €U {(C}

4. return €
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2.06-Approx. LP Rounding Algorithm

[Chawla, Makarychev, Schramm, Yaroslavtsev, 2015]

. Solve the metric LP of Correlation Clustering and obtain
the optimal solution {x,, }, ,cy- st w42 > 20 Vuvw €V
Pick a random permutation V — {1,...,n} over the Ty € [0,1] V(u,v) € (v)
vertices.
V<V €€ @

. while V' £ @ do

« Let p € V' be the vertex with the smallest rank. Mark p
as pivot.

o Initialize C <« {p}.
+ Addv € V'to Cindependently w.p. 1 — f(x,,).
e VN« V\C,¢6 « €U {C}

5. return
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1. Solve the metric LP of Correlation Clustering and obtain
the optimal solution {x,, }, ,cy-

2. Pick arandom permutation V — {1,...,n} over the
vertices.

3. V&« V6« O

4. while V' # @ do

« Let p € V' be the vertex with the smallest rank. Mark p
as pivot.

o Initialize C <« {p}.
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Our Streaming Algorithm for Complete Graphs

1. During the stream:

» Maintain a truncated subgraph G’ of G (refer to [Cambus,
Kuhn, Lindy, Pai, Uitto, 2024]).

2. After the stream:

» Run the 3-approx. combinatorial algorithm (PIVOT) on G,
then assign unclustered vertices and obtain clustering €,

on G.

e Run the 2.06-approx. LP rounding algorithm on G’ (use
predictions d , to replace metric LP solution x ), then
assign unclustered vertices and obtain clustering €, on G.

e return the clustering with the lower cost between &, and

G)
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Our Streaming Algorithm for Complete Graphs

1. During the stream: Theorem [D., Jiang, Li, Peng, 2025]:
[-level predictor

lw.p. > 1 —1/n?

» Maintain a truncated subgraph G’ of G (refer to [Cambus,

Kuhn, Lindy, Pal, Uitt] | emma [cambus, Kuhn, Lindy, Pai, Uitto, 2024]:
2. After the stream: costg(€) < (3+¢) - OPT

* Run the 3-approx. combinatorial algorithm (PIVOT) on ¢/,
then assign unclustered vertices and obtain clustering €,

on G.

e Run the 2.06-approx. LP rounding algorithm on G’ (use
predictions d , to replace metric LP solution x ), then
assign unclustered vertices and obtain clustering €, on G.

(min{2.06f, 3} + €)-approx.
O(n) words of total space,
works In dynamic streams

Remarks:

» Better than 3-approx. under
good prediction quality

o Simple and efficient

Do not consider the space for
the predictor

Lemma [D., Jiang, Li, Peng, 2025]:
costg(6,) < (2.066 + ¢€) - OPT
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Our Streaming Algorithm for General Graphs

* Recall that the best-known streaming algorithm for general graphs is a

O(log | E~ | )-approx. while using O(e ~?n +| E~ | ) total space [Ahn,
Cormode, Guha, McGregor, Wirth, 2015]
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Our Streaming Algorithm for General Graphs

* Recall that the best-known streaming algorithm for general graphs is a

O(log | E~ | )-approx. while using O(e ~?n +| E~ | ) total space [Ahn,
Cormode, Guha, McGregor, Wirth, 2015]

 During the stream: Sparsify the positive subgraph G+ := (V, E™) to
H™, and store £~

o After the stream: Use the stored information to solve an LP, and run a
ball-growing based LP rounding algorithm on H™

 We can use predictions to guide the rounding algorithm, thus avoiding
storing £~ and leading to better space complexity!
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Our Streaming Algorithm for General Graphs

1. During the stream:
 Maintain a spectral sparsifier H' for Gt := (V, E™).
2. After the stream: perform ball-growing
c V V.6 « @&
« while V' £ @ do
- Pick an arbitrary vertex u € V'. Initialize r, < 0.

- Increase r,, and grow a ball B(u, r,) using

predictions d ,, as distance metric, until a certain
condition is satisfied.

-V < VA\B(u,r,),€6 < €U {B(u,r,)}

* return the resulting clustering
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 Maintain a spectral sparsifier H' for Gt := (V, E™).
2. After the stream: perform ball-growing lw.p. > 1 —1/n?

[-level predictor

Ve V6 <0 O(flog | E~ | )-approx.
» while V' # @& do O(n) words of total space,
- Pick an arbitrary vertex u € V'. Initialize r, < 0. works In dynamic streams
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Our Streaming Algorithm for General Graphs

Theorem [D., Jiang, Li, Peng, 2025]:
[-level predictor

lw.p. >1—1/n°

1. During the stream:

 Maintain a spectral sparsifier H' for Gt := (V, E™).
2. After the stream: perform ball-growing

c V V.6 « @&

« while V' £ @ do

O(f log| E~ | )-approx.
O(n) words of total space,
works In dynamic streams

- Pick an arbitrary vertex u € V'. Initialize r, < 0.

- Increase r,, and grow a ball B(u, r,) using Remarks:

predictions d,, as distance metric, until a certain » Close to O(log| E™ | )-approx.
condition is satisfied. under good prediction quality

_V V’\B(u, ru), € — €U {Bu. ’"u)}  Better space complexity

. . Do not consider the space for
* return the resulting clustering the predictor
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Experimental Setting

 Datasets:
* Synthetic datasets: Generated from the Stochastic Block Model (SBM)

 Real-world datasets: EmailCore, Facebook, LastFM, DBLP from SNAP Collection
* Predictor: Noisy predictor, Spectral embedding, Binary classifier

e Baselines:

e (3 + €)-approx. algorithm without predictions [Cambus, Kuhn, Lindy, Pai, Uitto, 2024]

 Agreement decomposition-based algorithm [Cohen-Addad, Lattanzi, Mitrovi¢, Norouzi-

Fard, Parotsidis, Tarnawski, 2021]: 701-approx. in theory, performs well on certain
types of graphs
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Experimental Results

Synthetic Dataset Real-World Dataset: Facebook
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Prediction Quality (beta)

Conclusion:

* Qur algorithm (with predictions) outperforms its non-learning counterpart (CKLPU24)
under high prediction quality, while no worse under low prediction quality.

* Qur algorithm performs much better in practice than the theoretical guarantee suggests.

Prediction Quality (beta)
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Summary

* The first learning-augmented streaming algorithms for Correlation
Clustering on both complete and general graphs (in dynamic streams)

« For complete graphs: f-level “pairwise distance” predictor = (min{2.06/,3} + €)-
approx., O(¢~"n) total space better approximation-space tradeoff

For general graphs: f-level “pairwise distance” predictor = O(f log | E™ | )-approx.,
O(e~*n) total space

better space complexity
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approx., O(e ~°n) total space better approximation-space tradeoff
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Open Problems
o (agggT + €)-approx., O(n) total space for complete graphs?

» Better-than-O(log | E~ | )-approx. for general graphs?

Thank you!



