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Graph Streaming Model
• Input graph is presented as a sequence of edge insertions and deletions

• insertion-only streams: contains of edge insertions only

• dynamic streams: has both insertions and deletions

• Goal: in one pass, using small space, compute the solution

5



Estimating Max-Cut Value in Streaming
 Input: An undirected, unweighted graph  as a graph stream

 Goal: Compute an estimate of the Max-Cut value using small space

G = (V, E)
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What if we can obtain extra information about the input? 
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How to define predictions? 
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Our Prediction Model
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• -accurate predictions [Cohen-Addad, d’Orsi, Gupta, Lee, Panigrahi, NeurIPS’24] [Braverman, 

Dharangutte, Shah, Wang, APPROX’24] [Ghoshal, Makarychev, Makarychev, SODA’25]
ϵ

• Let  denote some fixed but unknown optimal solutionx* ∈ {−1,1}n

• Oracle access to a prediction vector Y ∈ {−1,1}n

• Each entry  is independently correct with probability Yv 1/2 + ϵ

,   ∀v ∈ V Pr[Yv = x*v ] =
1
2

+ ϵ

Only slightly better than a random guess!
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Our Results
Theorem [D., Peng, Vakilian, ITCS’25]: 
Given -accurate predictions, there exists a single-pass streaming algorithm 
achieving a -approx with high probability, that uses

•  words of space in insertion-only streams, and 

•  words of space in dynamic streams.

ϵ
(1/2 + Ω(ϵ2))

poly(1/ϵ)
poly(1/ϵ, log n)
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• No need to store predictions (only oracle access suffices)
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What to do in general graphs? 
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, then 
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• 


•

𝖮𝖯𝖳 ≤ 𝖮𝖯𝖳L + 𝖮𝖯𝖳H + |E(H, L) |

𝖮𝖯𝖳H ≤ |E(H) | ≤ 1/ϵ4
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• Random Order Streams (insertion-only)


• Arbitrary Order Streams (insertion-only)


• Dynamic Streams
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Algorithm in Arbitrary Order Streams 
• Streaming Phase: 
• Perform reservoir sampling to obtain  edges
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• Approx: 


• Space:  words

1/2 + Ω(ϵ2)

poly(1/ϵ)

Algorithm in Arbitrary Order Streams 
• Streaming Phase: 
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• Approx: 1/2 + Ω(ϵ2)

• Space:  wordspoly(1/ϵ, log n)
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• Takeaway: -accurate predictions can help bypass the classical 
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