
Learning-Augmented Streaming Algorithms for
Approximating Max-Cut

Yinhao Dong (董寅灏)

University of Science and Technology of China (USTC)

Pan Peng

USTC

Ali Vakilian

TTIC -> Virginia Tech

第六届 CCF 理论计算机科学博士生论坛

中南大学﹒2025 年 11 月

Based on joint work with

Max-Cut
 Input: An undirected, unweighted graph

 Goal: Find a bipartition of into and that maximizes the cut value

G = (V, E)
V S T

|E(S, T) | = |{(u, v) ∈ E : u ∈ S ∧ v ∈ T} |

2

Max-Cut
 Input: An undirected, unweighted graph

 Goal: Find a bipartition of into and that maximizes the cut value

G = (V, E)
V S T

|E(S, T) | = |{(u, v) ∈ E : u ∈ S ∧ v ∈ T} |

S T

2

Max-Cut
 Input: An undirected, unweighted graph

 Goal: Find a bipartition of into and that maximizes the cut value

G = (V, E)
V S T

|E(S, T) | = |{(u, v) ∈ E : u ∈ S ∧ v ∈ T} |

S T

3

Max-Cut
 Input: An undirected, unweighted graph

 Goal: Find a bipartition of into and that maximizes the cut value

G = (V, E)
V S T

|E(S, T) | = |{(u, v) ∈ E : u ∈ S ∧ v ∈ T} |

S T

• NP-hard

3

Max-Cut
 Input: An undirected, unweighted graph

 Goal: Find a bipartition of into and that maximizes the cut value

G = (V, E)
V S T

|E(S, T) | = |{(u, v) ∈ E : u ∈ S ∧ v ∈ T} |

S T

• NP-hard

• -approximation: outputs a cut , s.t.α (S, T)
α ⋅ 𝖮𝖯𝖳 ≤ |E(S, T) | ≤ 𝖮𝖯𝖳

3

Max-Cut
 Input: An undirected, unweighted graph

 Goal: Find a bipartition of into and that maximizes the cut value

G = (V, E)
V S T

|E(S, T) | = |{(u, v) ∈ E : u ∈ S ∧ v ∈ T} |

S T

• NP-hard

• -approximation: outputs a cut , s.t.α (S, T)
α ⋅ 𝖮𝖯𝖳 ≤ |E(S, T) | ≤ 𝖮𝖯𝖳

• SDP rounding: -approx [Goemans, Williamson, JACM’95]

• Unique Games Conjecture best possible [Khot,
Kindler, Mossel, O’Donnell, SICOMP’07]

0.878
⟹

3

Max-Cut
 Input: An undirected, unweighted graph

 Goal: Find a bipartition of into and that maximizes the cut value

G = (V, E)
V S T

|E(S, T) | = |{(u, v) ∈ E : u ∈ S ∧ v ∈ T} |

S T

4

 Estimation Task:
 Compute an estimate of the Max-Cut valuev

Max-Cut
 Input: An undirected, unweighted graph

 Goal: Find a bipartition of into and that maximizes the cut value

G = (V, E)
V S T

|E(S, T) | = |{(u, v) ∈ E : u ∈ S ∧ v ∈ T} |

S T
• -approximation: outputs a value , s.t.α v

α ⋅ 𝖮𝖯𝖳 ≤ v ≤ 𝖮𝖯𝖳

4

 Estimation Task:
 Compute an estimate of the Max-Cut valuev

Graph Streaming Model

5

Graph Streaming Model
• Input graph is presented as a sequence of edge insertions and deletions

5

Graph Streaming Model
• Input graph is presented as a sequence of edge insertions and deletions

5

Graph Streaming Model
• Input graph is presented as a sequence of edge insertions and deletions

5

Graph Streaming Model
• Input graph is presented as a sequence of edge insertions and deletions

5

Graph Streaming Model
• Input graph is presented as a sequence of edge insertions and deletions

5

Graph Streaming Model
• Input graph is presented as a sequence of edge insertions and deletions

5

Graph Streaming Model
• Input graph is presented as a sequence of edge insertions and deletions

5

Graph Streaming Model
• Input graph is presented as a sequence of edge insertions and deletions

5

Graph Streaming Model
• Input graph is presented as a sequence of edge insertions and deletions

5

Graph Streaming Model
• Input graph is presented as a sequence of edge insertions and deletions

5

Graph Streaming Model
• Input graph is presented as a sequence of edge insertions and deletions

5

Graph Streaming Model
• Input graph is presented as a sequence of edge insertions and deletions

• insertion-only streams: contains of edge insertions only

• dynamic streams: has both insertions and deletions

5

Graph Streaming Model
• Input graph is presented as a sequence of edge insertions and deletions

• insertion-only streams: contains of edge insertions only

• dynamic streams: has both insertions and deletions

• Goal: in one pass, using small space, compute the solution

5

Estimating Max-Cut Value in Streaming
 Input: An undirected, unweighted graph as a graph stream

 Goal: Compute an estimate of the Max-Cut value using small space

G = (V, E)

6

Estimating Max-Cut Value in Streaming

• A trivial -approximation using bits of space: count the number
of edges and output

1/2 O(log n)
m m/2

 Input: An undirected, unweighted graph as a graph stream

 Goal: Compute an estimate of the Max-Cut value using small space

G = (V, E)

6

Estimating Max-Cut Value in Streaming

• A trivial -approximation using bits of space: count the number
of edges and output

1/2 O(log n)
m m/2

• A series of works explored the approximation ratio vs space trade-offs
[Kapralov, Khanna, Sudan, SODA’15] [Kogan, Krauthgamer, ITCS’15] [Kapralov, Khanna, Sudan, Velingker, SODA’17]
[Kapralov, Krachun, STOC’19]

 Input: An undirected, unweighted graph as a graph stream

 Goal: Compute an estimate of the Max-Cut value using small space

G = (V, E)

6

Estimating Max-Cut Value in Streaming

• A trivial -approximation using bits of space: count the number
of edges and output

1/2 O(log n)
m m/2

• A series of works explored the approximation ratio vs space trade-offs
[Kapralov, Khanna, Sudan, SODA’15] [Kogan, Krauthgamer, ITCS’15] [Kapralov, Khanna, Sudan, Velingker, SODA’17]
[Kapralov, Krachun, STOC’19]

• Any (randomized) algorithm that achieves -approximation requires
 bits of space [Kapralov, Krachun, STOC’19]

(1/2 + ϵ)
Ωϵ(n)

 Input: An undirected, unweighted graph as a graph stream

 Goal: Compute an estimate of the Max-Cut value using small space

G = (V, E)

6

Estimating Max-Cut Value in Streaming

• A trivial -approximation using bits of space: count the number
of edges and output

1/2 O(log n)
m m/2

• A series of works explored the approximation ratio vs space trade-offs
[Kapralov, Khanna, Sudan, SODA’15] [Kogan, Krauthgamer, ITCS’15] [Kapralov, Khanna, Sudan, Velingker, SODA’17]
[Kapralov, Krachun, STOC’19]

• Any (randomized) algorithm that achieves -approximation requires
 bits of space [Kapralov, Krachun, STOC’19]

(1/2 + ϵ)
Ωϵ(n)

 Input: An undirected, unweighted graph as a graph stream

 Goal: Compute an estimate of the Max-Cut value using small space

G = (V, E)

6

What if we can obtain extra information about the input?

Learning-Augmented Algorithms
(a.k.a. Algorithms with Predictions)

7

Learning-Augmented Algorithms
(a.k.a. Algorithms with Predictions)

Algorithm

Output

Input
Machine-Learned

Oracle

7

• The algorithm has access to a learned
oracle providing a certain type of
predictions about the input instance

Learning-Augmented Algorithms
(a.k.a. Algorithms with Predictions)

Algorithm

Output

Input
Machine-Learned

Oracle

7

• The algorithm has access to a learned
oracle providing a certain type of
predictions about the input instance

• Goals:

• Consistency: High prediction quality
 Better performance than the best-

known classical algorithm
⟹

Learning-Augmented Algorithms
• The algorithm has access to a learned

oracle providing a certain type of
predictions about the input instance

• Goals:

• Consistency: High prediction quality
 Better performance than the best-

known classical algorithm

• Robustness: Low prediction quality
 Performs no worse than the best-

known classical algorithm

⟹

⟹

(a.k.a. Algorithms with Predictions)

Algorithm

Output

Input
Adversarial

Machine-Learned
Oracle

8

Learning-Augmented Algorithms
(a.k.a. Algorithms with Predictions)

9

An up-to-date repository of publications

(https://algorithms-with-predictions.github.io)

• The algorithm has access to a learned
oracle providing a certain type of
predictions about the input instance

• Goals:

• Consistency: High prediction quality
 Better performance than the best-

known classical algorithm

• Robustness: Low prediction quality
 Performs no worse than the best-

known classical algorithm

⟹

⟹

https://algorithms-with-predictions.github.io

Learning-Augmented Algorithms
(a.k.a. Algorithms with Predictions)

9

An up-to-date repository of publications

(https://algorithms-with-predictions.github.io)

• The algorithm has access to a learned
oracle providing a certain type of
predictions about the input instance

• Goals:

• Consistency: High prediction quality
 Better performance than the best-

known classical algorithm

• Robustness: Low prediction quality
 Performs no worse than the best-

known classical algorithm

⟹

⟹

How to define predictions?

https://algorithms-with-predictions.github.io

Our Prediction Model
• -accurate predictions [Cohen-Addad, d’Orsi, Gupta, Lee, Panigrahi, NeurIPS’24] [Braverman,

Dharangutte, Shah, Wang, APPROX’24] [Ghoshal, Makarychev, Makarychev, SODA’25]
ϵ

10

Our Prediction Model
• -accurate predictions [Cohen-Addad, d’Orsi, Gupta, Lee, Panigrahi, NeurIPS’24] [Braverman,

Dharangutte, Shah, Wang, APPROX’24] [Ghoshal, Makarychev, Makarychev, SODA’25]
ϵ

• Let denote some fixed but unknown optimal solutionx* ∈ {−1,1}n

10

Our Prediction Model
• -accurate predictions [Cohen-Addad, d’Orsi, Gupta, Lee, Panigrahi, NeurIPS’24] [Braverman,

Dharangutte, Shah, Wang, APPROX’24] [Ghoshal, Makarychev, Makarychev, SODA’25]
ϵ

• Let denote some fixed but unknown optimal solutionx* ∈ {−1,1}n

10

S* T*

v

Our Prediction Model
• -accurate predictions [Cohen-Addad, d’Orsi, Gupta, Lee, Panigrahi, NeurIPS’24] [Braverman,

Dharangutte, Shah, Wang, APPROX’24] [Ghoshal, Makarychev, Makarychev, SODA’25]
ϵ

• Let denote some fixed but unknown optimal solutionx* ∈ {−1,1}n

• Oracle access to a prediction vector Y ∈ {−1,1}n

10

S* T*

v

Our Prediction Model
• -accurate predictions [Cohen-Addad, d’Orsi, Gupta, Lee, Panigrahi, NeurIPS’24] [Braverman,

Dharangutte, Shah, Wang, APPROX’24] [Ghoshal, Makarychev, Makarychev, SODA’25]
ϵ

• Let denote some fixed but unknown optimal solutionx* ∈ {−1,1}n

• Oracle access to a prediction vector Y ∈ {−1,1}n

• Each entry is independently correct with probability Yv 1/2 + ϵ

, ∀v ∈ V Pr[Yv = x*v] =
1
2

+ ϵ

10

S* T*

v

Our Prediction Model
• -accurate predictions [Cohen-Addad, d’Orsi, Gupta, Lee, Panigrahi, NeurIPS’24] [Braverman,

Dharangutte, Shah, Wang, APPROX’24] [Ghoshal, Makarychev, Makarychev, SODA’25]
ϵ

• Let denote some fixed but unknown optimal solutionx* ∈ {−1,1}n

• Oracle access to a prediction vector Y ∈ {−1,1}n

• Each entry is independently correct with probability Yv 1/2 + ϵ

, ∀v ∈ V Pr[Yv = x*v] =
1
2

+ ϵ

Only slightly better than a random guess!

10

S* T*

v

Our Results
Theorem [D., Peng, Vakilian, ITCS’25]:
Given -accurate predictions, there exists a single-pass streaming algorithm
achieving a -approx with high probability, that uses

• words of space in insertion-only streams, and

• words of space in dynamic streams.

ϵ
(1/2 + Ω(ϵ2))

poly(1/ϵ)
poly(1/ϵ, log n)

11

Our Results

• Bypass the classical -approx vs space trade-off [Kapralov, Krachun,
STOC’19]

(1/2 + ϵ) Ωϵ(n)

Theorem [D., Peng, Vakilian, ITCS’25]:
Given -accurate predictions, there exists a single-pass streaming algorithm
achieving a -approx with high probability, that uses

• words of space in insertion-only streams, and

• words of space in dynamic streams.

ϵ
(1/2 + Ω(ϵ2))

poly(1/ϵ)
poly(1/ϵ, log n)

11

Our Results

• Bypass the classical -approx vs space trade-off [Kapralov, Krachun,
STOC’19]

(1/2 + ϵ) Ωϵ(n)

• No need to store predictions (only oracle access suffices)

Theorem [D., Peng, Vakilian, ITCS’25]:
Given -accurate predictions, there exists a single-pass streaming algorithm
achieving a -approx with high probability, that uses

• words of space in insertion-only streams, and

• words of space in dynamic streams.

ϵ
(1/2 + Ω(ϵ2))

poly(1/ϵ)
poly(1/ϵ, log n)

11

Simple Case: Low-Degree Graphs

12

Simple Case: Low-Degree Graphs
Low-Degree Graphs: Graphs with maximum degree Δ = Θ(ϵ2m)

12

Simple Case: Low-Degree Graphs
Low-Degree Graphs: Graphs with maximum degree Δ = Θ(ϵ2m)

Algorithm for Low-Degree Graphs
• initially

• for each edge in the stream do:

•
• if then

• return

X = 0
(u, v)

Yu = 𝒪(u), Yv = 𝒪(v)
Yu ≠ Yv X = X + 1
X

12

Simple Case: Low-Degree Graphs
Low-Degree Graphs: Graphs with maximum degree Δ = Θ(ϵ2m)

Algorithm for Low-Degree Graphs
• initially

• for each edge in the stream do:

•
• if then

• return

X = 0
(u, v)

Yu = 𝒪(u), Yv = 𝒪(v)
Yu ≠ Yv X = X + 1
X

12

Simple Case: Low-Degree Graphs
Low-Degree Graphs: Graphs with maximum degree Δ = Θ(ϵ2m)

Algorithm for Low-Degree Graphs
• initially

• for each edge in the stream do:

•
• if then

• return

X = 0
(u, v)

Yu = 𝒪(u), Yv = 𝒪(v)
Yu ≠ Yv X = X + 1
X

u v

12

Simple Case: Low-Degree Graphs
Low-Degree Graphs: Graphs with maximum degree Δ = Θ(ϵ2m)

Algorithm for Low-Degree Graphs
• initially

• for each edge in the stream do:

•
• if then

• return

X = 0
(u, v)

Yu = 𝒪(u), Yv = 𝒪(v)
Yu ≠ Yv X = X + 1
X

u v

Yu = 1 Yv = − 1

12

Simple Case: Low-Degree Graphs
Low-Degree Graphs: Graphs with maximum degree Δ = Θ(ϵ2m)

Algorithm for Low-Degree Graphs
• initially

• for each edge in the stream do:

•
• if then

• return

X = 0
(u, v)

Yu = 𝒪(u), Yv = 𝒪(v)
Yu ≠ Yv X = X + 1
X Just Follow the

Predictions!

u v

Yu = 1 Yv = − 1

12

Simple Case: Low-Degree Graphs
Low-Degree Graphs: Graphs with maximum degree Δ = Θ(ϵ2m)

Algorithm for Low-Degree Graphs
• initially

• for each edge in the stream do:

•
• if then

• return

X = 0
(u, v)

Yu = 𝒪(u), Yv = 𝒪(v)
Yu ≠ Yv X = X + 1
X

Observation:

-accurate predictions -approx., words of spaceϵ (1/2 + ϵ2) O(1)

w.p. ≥ 2/3

Just Follow the

Predictions!

u v

Yu = 1 Yv = − 1

12

Simple Case: Low-Degree Graphs
Low-Degree Graphs: Graphs with maximum degree Δ = Θ(ϵ2m)

Algorithm for Low-Degree Graphs
• initially

• for each edge in the stream do:

•
• if then

• return

X = 0
(u, v)

Yu = 𝒪(u), Yv = 𝒪(v)
Yu ≠ Yv X = X + 1
X

Observation:

-accurate predictions -approx., words of spaceϵ (1/2 + ϵ2) O(1)

w.p. ≥ 2/3

Just Follow the

Predictions!

u v

Yu = 1 Yv = − 1

12

What to do in general graphs?

High-Level Overview of Our Algorithm

13

High-Level Overview of Our Algorithm

13

Offline Algorithm for General Graphs

High-Level Overview of Our Algorithm

14

Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)V H L H

L

High-Level Overview of Our Algorithm

14

Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)V H L H

L

• Degree threshold is , soΘ(ϵ2m)

• , and |H | ≤ 1/ϵ2 |E(H) | < |H |2 ≤ 1/ϵ4

High-Level Overview of Our Algorithm

14

Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)V H L
• Output the maximum of the following Max-Cut estimates:

H

L

• Degree threshold is , soΘ(ϵ2m)

• , and |H | ≤ 1/ϵ2 |E(H) | < |H |2 ≤ 1/ϵ4

High-Level Overview of Our Algorithm

15

Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)V H L
• Output the maximum of the following Max-Cut estimates:
• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

G[L]
(L+, L−)

H

L

L−L+

High-Level Overview of Our Algorithm

15

Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)V H L
• Output the maximum of the following Max-Cut estimates:
• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

G[L]
(L+, L−)

H

L−L+

High-Level Overview of Our Algorithm

15

Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)V H L
• Output the maximum of the following Max-Cut estimates:
• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

G[L]
(L+, L−)

H

Observation on Low-Degree Graphs:

-accurate predictions -approx., words of spaceϵ (1/2 + ϵ2) O(1)w.p. ≥ 2/3

L−L+

High-Level Overview of Our Algorithm

15

Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)V H L
• Output the maximum of the following Max-Cut estimates:
• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

G[L]
(L+, L−)

- Extend with vertices in via a greedy
approach

(L+, L−) H

H

High-Level Overview of Our Algorithm

v

16

Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

- Extend with vertices in via a greedy
approach

V H L

G[L]
(L+, L−)

(L+, L−) H

H

L−L+

High-Level Overview of Our Algorithm

v

17

Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

- Extend with vertices in via a greedy
approach

V H L

G[L]
(L+, L−)

(L+, L−) H

H

L−L+

High-Level Overview of Our Algorithm

v

18

Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

- Extend with vertices in via a greedy
approach

V H L

G[L]
(L+, L−)

(L+, L−) H

H

L−L+

High-Level Overview of Our Algorithm
Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)V H L
• Output the maximum of the following Max-Cut estimates:
• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

G[L]
(L+, L−)

- Extend with vertices in via a greedy
approach

(L+, L−) H

19

High-Level Overview of Our Algorithm
Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)V H L
• Output the maximum of the following Max-Cut estimates:
• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

G[L]
(L+, L−)

- Extend with vertices in via a greedy
approach

(L+, L−) H

19

•
Z1 = |E(L+, L−) | + ∑

v∈H

max{ |E(v, L+) | , |E(v, L−) |}

High-Level Overview of Our Algorithm
Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)V H L
• Output the maximum of the following Max-Cut estimates:
• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

G[L]
(L+, L−)

- Extend with vertices in via a greedy
approach

(L+, L−) H

• Candidate Estimate (2):
- Compute the cut value of (H, L)

19

•
Z1 = |E(L+, L−) | + ∑

v∈H

max{ |E(v, L+) | , |E(v, L−) |}

High-Level Overview of Our Algorithm
Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)V H L
• Output the maximum of the following Max-Cut estimates:
• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

G[L]
(L+, L−)

- Extend with vertices in via a greedy
approach

(L+, L−) H

• Candidate Estimate (2):
- Compute the cut value of (H, L)

19

•
Z1 = |E(L+, L−) | + ∑

v∈H

max{ |E(v, L+) | , |E(v, L−) |}

High-Level Overview of Our Algorithm
Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)V H L
• Output the maximum of the following Max-Cut estimates:
• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

G[L]
(L+, L−)

- Extend with vertices in via a greedy
approach

(L+, L−) H

• Candidate Estimate (2):
- Compute the cut value of (H, L)

19

•
Z1 = |E(L+, L−) | + ∑

v∈H

max{ |E(v, L+) | , |E(v, L−) |}

• Z2 = |E(H, L) |

Approximation Analysis of Our Algorithm

20

Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

- Extend with vertices in via a greedy
approach

• Candidate Estimate (2):

- Compute the cut value of

V H L

G[L]
(L+, L−)

(L+, L−) H

(H, L)

Approximation Analysis of Our Algorithm

20

• Goal: To prove max{Z1, Z2} ≥ (1/2 + Ω(ϵ2)) ⋅ 𝖮𝖯𝖳Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

- Extend with vertices in via a greedy
approach

• Candidate Estimate (2):

- Compute the cut value of

V H L

G[L]
(L+, L−)

(L+, L−) H

(H, L)

Approximation Analysis of Our Algorithm

20

• Goal: To prove max{Z1, Z2} ≥ (1/2 + Ω(ϵ2)) ⋅ 𝖮𝖯𝖳
• If , DONEZ2 = |E(H, L) | ≥ (1/2 + ϵ2) ⋅ 𝖮𝖯𝖳

Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

- Extend with vertices in via a greedy
approach

• Candidate Estimate (2):

- Compute the cut value of

V H L

G[L]
(L+, L−)

(L+, L−) H

(H, L)

Approximation Analysis of Our Algorithm

20

• Goal: To prove max{Z1, Z2} ≥ (1/2 + Ω(ϵ2)) ⋅ 𝖮𝖯𝖳
• If , DONEZ2 = |E(H, L) | ≥ (1/2 + ϵ2) ⋅ 𝖮𝖯𝖳
• Otherwise, , it

suffices to prove
|E(H, L) | < (1/2 + ϵ2) ⋅ 𝖮𝖯𝖳

Z1 ≥ (1/2 + Ω(ϵ2)) ⋅ 𝖮𝖯𝖳

Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

- Extend with vertices in via a greedy
approach

• Candidate Estimate (2):

- Compute the cut value of

V H L

G[L]
(L+, L−)

(L+, L−) H

(H, L)

Approximation Analysis of Our Algorithm

21

• Goal: To prove

• If , DONE

• Otherwise, , it
suffices to prove

max{Z1, Z2} ≥ (1/2 + Ω(ϵ2)) ⋅ 𝖮𝖯𝖳
Z2 = |E(H, L) | ≥ (1/2 + ϵ2) ⋅ 𝖮𝖯𝖳

|E(H, L) | < (1/2 + ϵ2) ⋅ 𝖮𝖯𝖳
Z1 ≥ (1/2 + Ω(ϵ2)) ⋅ 𝖮𝖯𝖳

Z1 = |E(L+, L−) | + ∑
v∈H

max{ |E(v, L+) | , |E(v, L−) |}

Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

- Extend with vertices in via a greedy
approach

• Candidate Estimate (2):

- Compute the cut value of

V H L

G[L]
(L+, L−)

(L+, L−) H

(H, L)

Approximation Analysis of Our Algorithm

22

• Goal: To prove

• If , DONE

• Otherwise, , it
suffices to prove

max{Z1, Z2} ≥ (1/2 + Ω(ϵ2)) ⋅ 𝖮𝖯𝖳
Z2 = |E(H, L) | ≥ (1/2 + ϵ2) ⋅ 𝖮𝖯𝖳

|E(H, L) | < (1/2 + ϵ2) ⋅ 𝖮𝖯𝖳
Z1 ≥ (1/2 + Ω(ϵ2)) ⋅ 𝖮𝖯𝖳

Z1 = |E(L+, L−) | + ∑
v∈H

max{ |E(v, L+) | , |E(v, L−) |}

≥ (1
2

+ ϵ2) ⋅ 𝖮𝖯𝖳L +
|E(H, L) |

2

Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

- Extend with vertices in via a greedy
approach

• Candidate Estimate (2):

- Compute the cut value of

V H L

G[L]
(L+, L−)

(L+, L−) H

(H, L)

Approximation Analysis of Our Algorithm

22

• Goal: To prove

• If , DONE

• Otherwise, , it
suffices to prove

max{Z1, Z2} ≥ (1/2 + Ω(ϵ2)) ⋅ 𝖮𝖯𝖳
Z2 = |E(H, L) | ≥ (1/2 + ϵ2) ⋅ 𝖮𝖯𝖳

|E(H, L) | < (1/2 + ϵ2) ⋅ 𝖮𝖯𝖳
Z1 ≥ (1/2 + Ω(ϵ2)) ⋅ 𝖮𝖯𝖳

Z1 = |E(L+, L−) | + ∑
v∈H

max{ |E(v, L+) | , |E(v, L−) |}

≥ (1
2

+ ϵ2) ⋅ 𝖮𝖯𝖳L +
|E(H, L) |

2

Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

- Extend with vertices in via a greedy
approach

• Candidate Estimate (2):

- Compute the cut value of

V H L

G[L]
(L+, L−)

(L+, L−) H

(H, L)

Observation: |E(L+, L−) | ≥ (1/2 + ϵ2) ⋅ 𝖮𝖯𝖳L

Approximation Analysis of Our Algorithm

23

• Goal: To prove

• If , DONE

• Otherwise, , it
suffices to prove

max{Z1, Z2} ≥ (1/2 + Ω(ϵ2)) ⋅ 𝖮𝖯𝖳
Z2 = |E(H, L) | ≥ (1/2 + ϵ2) ⋅ 𝖮𝖯𝖳

|E(H, L) | < (1/2 + ϵ2) ⋅ 𝖮𝖯𝖳
Z1 ≥ (1/2 + Ω(ϵ2)) ⋅ 𝖮𝖯𝖳

Z1 = |E(L+, L−) | + ∑
v∈H

max{ |E(v, L+) | , |E(v, L−) |}

≥ (1
2

+ ϵ2) ⋅ 𝖮𝖯𝖳L +
|E(H, L) |

2

≥ (1
2

+ ϵ2) (1 − α − ϵ4) ⋅ 𝖮𝖯𝖳 +
α ⋅ 𝖮𝖯𝖳

2

Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

- Extend with vertices in via a greedy
approach

• Candidate Estimate (2):

- Compute the cut value of

V H L

G[L]
(L+, L−)

(L+, L−) H

(H, L)

Approximation Analysis of Our Algorithm

23

• Goal: To prove

• If , DONE

• Otherwise, , it
suffices to prove

max{Z1, Z2} ≥ (1/2 + Ω(ϵ2)) ⋅ 𝖮𝖯𝖳
Z2 = |E(H, L) | ≥ (1/2 + ϵ2) ⋅ 𝖮𝖯𝖳

|E(H, L) | < (1/2 + ϵ2) ⋅ 𝖮𝖯𝖳
Z1 ≥ (1/2 + Ω(ϵ2)) ⋅ 𝖮𝖯𝖳

Z1 = |E(L+, L−) | + ∑
v∈H

max{ |E(v, L+) | , |E(v, L−) |}

≥ (1
2

+ ϵ2) ⋅ 𝖮𝖯𝖳L +
|E(H, L) |

2

≥ (1
2

+ ϵ2) (1 − α − ϵ4) ⋅ 𝖮𝖯𝖳 +
α ⋅ 𝖮𝖯𝖳

2

Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

- Extend with vertices in via a greedy
approach

• Candidate Estimate (2):

- Compute the cut value of

V H L

G[L]
(L+, L−)

(L+, L−) H

(H, L)

Lemma: Suppose where
, then

|E(H, L) | = α ⋅ 𝖮𝖯𝖳
α < 1/2 + ϵ2 𝖮𝖯𝖳L > (1 − α − ϵ4) ⋅ 𝖮𝖯𝖳

•

•

𝖮𝖯𝖳 ≤ 𝖮𝖯𝖳L + 𝖮𝖯𝖳H + |E(H, L) |

𝖮𝖯𝖳H ≤ |E(H) | ≤ 1/ϵ4

Approximation Analysis of Our Algorithm

24

• Goal: To prove

• If , DONE

• Otherwise, , it
suffices to prove

max{Z1, Z2} ≥ (1/2 + Ω(ϵ2)) ⋅ 𝖮𝖯𝖳
Z2 = |E(H, L) | ≥ (1/2 + ϵ2) ⋅ 𝖮𝖯𝖳

|E(H, L) | < (1/2 + ϵ2) ⋅ 𝖮𝖯𝖳
Z1 ≥ (1/2 + Ω(ϵ2)) ⋅ 𝖮𝖯𝖳

Z1 = |E(L+, L−) | + ∑
v∈H

max{ |E(v, L+) | , |E(v, L−) |}

≥ (1
2

+ ϵ2) ⋅ 𝖮𝖯𝖳L +
|E(H, L) |

2

≥ (1
2

+ ϵ2) (1 − α − ϵ4) ⋅ 𝖮𝖯𝖳 +
α ⋅ 𝖮𝖯𝖳

2

≥ (1
2

+ Ω(ϵ2)) ⋅ 𝖮𝖯𝖳

Offline Algorithm for General Graphs
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

- Follow predictions on , compute the cut value
of

- Extend with vertices in via a greedy
approach

• Candidate Estimate (2):

- Compute the cut value of

V H L

G[L]
(L+, L−)

(L+, L−) H

(H, L)

Implementation of Our Algorithm in Streaming

25

Implementation of Our Algorithm in Streaming

• Random Order Streams (insertion-only)

• Arbitrary Order Streams (insertion-only)

• Dynamic Streams

25

Our Algorithm in Random Order Streams

26

Our Algorithm in Random Order Streams
Random Order Stream: Edges of the input graph arrive in a uniformly random order

26

Our Algorithm in Random Order Streams
Random Order Stream: Edges of the input graph arrive in a uniformly random order

26

Offline Algorithm
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

• Follow predictions on , compute the cut value of

• Extend with vertices in via a greedy approach

• Candidate Estimate (2):

• Compute the cut value of

V H L

G[L] (L+, L−)
(L+, L−) H

(H, L)

H

L

Our Algorithm in Random Order Streams
Random Order Stream: Edges of the input graph arrive in a uniformly random order

26

Offline Algorithm
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

• Follow predictions on , compute the cut value of

• Extend with vertices in via a greedy approach

• Candidate Estimate (2):

• Compute the cut value of

V H L

G[L] (L+, L−)
(L+, L−) H

(H, L) Algorithm in Random Order Streams
• Streaming Phase:
• Store the first edges, detect and

• Compute Estimate (1) and Estimate (2) w.r.t. and

• Store the degree info of and

• Post-Processing Phase:
• Correct and the estimates using degree info of

poly(1/ϵ) H̃ ⊇ H
L̃ ⊆ L

H̃ L̃
H̃ E(H̃)

H, L H̃

H

L

H̃

Our Algorithm in Random Order Streams
Random Order Stream: Edges of the input graph arrive in a uniformly random order

26

Offline Algorithm
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

• Follow predictions on , compute the cut value of

• Extend with vertices in via a greedy approach

• Candidate Estimate (2):

• Compute the cut value of

V H L

G[L] (L+, L−)
(L+, L−) H

(H, L) Algorithm in Random Order Streams
• Streaming Phase:
• Store the first edges, detect and

• Compute Estimate (1) and Estimate (2) w.r.t. and

• Store the degree info of and

• Post-Processing Phase:
• Correct and the estimates using degree info of

poly(1/ϵ) H̃ ⊇ H
L̃ ⊆ L

H̃ L̃
H̃ E(H̃)

H, L H̃

H

L

H̃

Our Algorithm in Random Order Streams
Random Order Stream: Edges of the input graph arrive in a uniformly random order

26

Offline Algorithm
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

• Follow predictions on , compute the cut value of

• Extend with vertices in via a greedy approach

• Candidate Estimate (2):

• Compute the cut value of

V H L

G[L] (L+, L−)
(L+, L−) H

(H, L) Algorithm in Random Order Streams
• Streaming Phase:
• Store the first edges, detect and

• Compute Estimate (1) and Estimate (2) w.r.t. and

• Store the degree info of and

• Post-Processing Phase:
• Correct and the estimates using degree info of

poly(1/ϵ) H̃ ⊇ H
L̃ ⊆ L

H̃ L̃
H̃ E(H̃)

H, L H̃

H

L

• Approx: 1/2 + Ω(ϵ2)

• Space: wordspoly(1/ϵ)

Our Algorithm in Arbitrary Order Streams

27

Our Algorithm in Arbitrary Order Streams
Arbitrary Order Stream: Edges of the input graph arrive in an arbitrary/adversarial order

27

Offline Algorithm
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

• Follow predictions on , compute the cut value of

• Extend with vertices in via a greedy approach

• Candidate Estimate (2):

• Compute the cut value of

V H L

G[L] (L+, L−)
(L+, L−) H

(H, L)

Our Algorithm in Arbitrary Order Streams
Arbitrary Order Stream: Edges of the input graph arrive in an arbitrary/adversarial order

27

Algorithm in Arbitrary Order Streams
• Streaming Phase:
• Perform reservoir sampling to obtain edges

• Store the degree info of all vertices to and using

CountMin Sketch (or Misra-Gries)

• Post-Processing Phase:
• Detect and from the sampled edges

• Compute Estimate (1) and Estimate (2) approximately

poly(1/ϵ)
V+ V−

H̃ ⊇ H L̃ ⊆ L

H

L

Offline Algorithm
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

• Follow predictions on , compute the cut value of

• Extend with vertices in via a greedy approach

• Candidate Estimate (2):

• Compute the cut value of

V H L

G[L] (L+, L−)
(L+, L−) H

(H, L)

H̃

Our Algorithm in Arbitrary Order Streams
Arbitrary Order Stream: Edges of the input graph arrive in an arbitrary/adversarial order

27

Algorithm in Arbitrary Order Streams
• Streaming Phase:
• Perform reservoir sampling to obtain edges

• Store the degree info of all vertices to and using

CountMin Sketch (or Misra-Gries)

• Post-Processing Phase:
• Detect and from the sampled edges

• Compute Estimate (1) and Estimate (2) approximately

poly(1/ϵ)
V+ V−

H̃ ⊇ H L̃ ⊆ L

H

L

Offline Algorithm
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

• Follow predictions on , compute the cut value of

• Extend with vertices in via a greedy approach

• Candidate Estimate (2):

• Compute the cut value of

V H L

G[L] (L+, L−)
(L+, L−) H

(H, L)

H̃

Our Algorithm in Arbitrary Order Streams
Arbitrary Order Stream: Edges of the input graph arrive in an arbitrary/adversarial order

27

Algorithm in Arbitrary Order Streams
• Streaming Phase:
• Perform reservoir sampling to obtain edges

• Store the degree info of all vertices to and using

CountMin Sketch (or Misra-Gries)

• Post-Processing Phase:
• Detect and from the sampled edges

• Compute Estimate (1) and Estimate (2) approximately

poly(1/ϵ)
V+ V−

H̃ ⊇ H L̃ ⊆ L

• Since ,
we can safely drop them in the
calculation

| H̃ | , |E(H̃) | = poly(1/ϵ)

H

L

Offline Algorithm
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

• Follow predictions on , compute the cut value of

• Extend with vertices in via a greedy approach

• Candidate Estimate (2):

• Compute the cut value of

V H L

G[L] (L+, L−)
(L+, L−) H

(H, L)

Our Algorithm in Arbitrary Order Streams
Arbitrary Order Stream: Edges of the input graph arrive in an arbitrary/adversarial order

28

H

L

H̃

Algorithm in Arbitrary Order Streams
• Streaming Phase:
• Perform reservoir sampling to obtain edges

• Store the degree info of all vertices to and using

CountMin Sketch (or Misra-Gries)

• Post-Processing Phase:
• Detect and from the sampled edges

• Compute Estimate (1) and Estimate (2) approximately

poly(1/ϵ)
V+ V−

H̃ ⊇ H L̃ ⊆ L

• Since ,
we can safely drop them in the
calculation

| H̃ | , |E(H̃) | = poly(1/ϵ)

Offline Algorithm
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

• Follow predictions on , compute the cut value of

• Extend with vertices in via a greedy approach

• Candidate Estimate (2):

• Compute the cut value of

V H L

G[L] (L+, L−)
(L+, L−) H

(H, L)

Our Algorithm in Arbitrary Order Streams
Arbitrary Order Stream: Edges of the input graph arrive in an arbitrary/adversarial order

29

H

L

H̃

• Approx:

• Space: words

1/2 + Ω(ϵ2)

poly(1/ϵ)

Algorithm in Arbitrary Order Streams
• Streaming Phase:
• Perform reservoir sampling to obtain edges

• Store the degree info of all vertices to and using

CountMin Sketch (or Misra-Gries)

• Post-Processing Phase:
• Detect and from the sampled edges

• Compute Estimate (1) and Estimate (2) approximately

poly(1/ϵ)
V+ V−

H̃ ⊇ H L̃ ⊆ L

Our Algorithm in Dynamic Streams

30

Our Algorithm in Dynamic Streams
Dynamic Stream: The stream contains both edge insertions and deletions

30

Offline Algorithm
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

• Follow predictions on , compute the cut value of

• Extend with vertices in via a greedy approach

• Candidate Estimate (2):

• Compute the cut value of

V H L

G[L] (L+, L−)
(L+, L−) H

(H, L)

Our Algorithm in Dynamic Streams
Dynamic Stream: The stream contains both edge insertions and deletions

30

Algorithm in Dynamic Streams
• Streaming Phase:
• Perform -sampling to obtain edges

• Store the degree info of all vertices to and using

CountMin Sketch

• Post-Processing Phase:
• Detect and from the sampled edges

• Compute Estimate (1) and Estimate (2) approximately

ℓ0 poly(1/ϵ)
V+ V−

H̃ ⊇ H L̃ ⊆ L

Offline Algorithm
• Divide into (high-degree) and (low-degree)

• Output the maximum of the following Max-Cut estimates:

• Candidate Estimate (1):

• Follow predictions on , compute the cut value of

• Extend with vertices in via a greedy approach

• Candidate Estimate (2):

• Compute the cut value of

V H L

G[L] (L+, L−)
(L+, L−) H

(H, L)

Our Algorithm in Dynamic Streams
Dynamic Stream: The stream contains both edge insertions and deletions

30

• Approx: 1/2 + Ω(ϵ2)

• Space: wordspoly(1/ϵ, log n)

Algorithm in Dynamic Streams
• Streaming Phase:
• Perform -sampling to obtain edges

• Store the degree info of all vertices to and using

CountMin Sketch

• Post-Processing Phase:
• Detect and from the sampled edges

• Compute Estimate (1) and Estimate (2) approximately

ℓ0 poly(1/ϵ)
V+ V−

H̃ ⊇ H L̃ ⊆ L

Summary

31

Summary
• Streaming Max-Cut with predictions

• Takeaway: -accurate predictions can help bypass the classical
-approx vs space trade-off!

ϵ
(1/2 + ϵ) Ωϵ(n)

31

Summary
• Streaming Max-Cut with predictions

• Takeaway: -accurate predictions can help bypass the classical
-approx vs space trade-off!

ϵ
(1/2 + ϵ) Ωϵ(n)

• Open Problems

• Extension to weighted graphs?

• Other graph problems in streaming?

• Other prediction model? E.g., -accurate edge predictions [Aamand, Chen,
Gollapudi, Silwal, Wu, ICML’25]

ϵ

31

Summary
• Streaming Max-Cut with predictions

• Takeaway: -accurate predictions can help bypass the classical
-approx vs space trade-off!

ϵ
(1/2 + ϵ) Ωϵ(n)

• Open Problems

• Extension to weighted graphs?

• Other graph problems in streaming?

• Other prediction model? E.g., -accurate edge predictions [Aamand, Chen,
Gollapudi, Silwal, Wu, ICML’25]

ϵ

Thank you!
31

