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ES,T)|=|{u,v)yeEE:ueSAvelT}]

e NP-hard

e -approximation: outputs a cut (S, 7), s.t.

a-OPT < |E(S,T)| < OPT

S
e SDP rounding: O.878—approx [Goemans, Williamson, JACM’95]

Kindler, Mossel, O’Donnell, SICOMP’07]
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Goal: Find a bipartition of V into § and 7 that maximizes the cut value

ES,T)|=|{u,vyeE.:ueSAveT}]

e (x-approximation: outputs a value v, s.t.

a - OPT <v < OPT
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Graph Streaming Model

* Input graph is presented as a sequence of edge insertions and deletions
* /nsertion-only streams: contains of edge insertions only
* dynamic streams: has both insertions and deletions

 Goal: in one pass, using small space, compute the solution
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Estimating Max-Cut Value in Streaming

Input: An undirected, unweighted graph G = (V, E) as a graph stream

Goal: Compute an estimate of the Max-Cut value using small space

o Atrivial 1/2-approximation using O(log n) bits of space: count the number
of edges m and output m1/2

* A series of works explored the approximation ratio vs space trade-offs

[Kapralov, Khanna, Sudan, SODA’'15] [Kogan, Krauthgamer, ITCS’15] [Kapralov, Khanna, Sudan, Velingker, SODA’17]
[Kapralov, Krachun, STOC’19]

» Any (randomized) algorithm that achieves (1/2 + ¢)-approximation requires
QG(I/I) bits of SPAacCE [Kapralov, Krachun, STOC’19]

What if we can obtain extra information about the input?
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 Robustness: Low prediction quality

—> Performs no worse than the best-
known classical algorithm

An up-to-date repository of publications
(https://algorithms-with-predictions.github.io)

How to define predictions!?
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Our Prediction Model

e c¢-accurate predictions [Cohen-Addad, d’Orsi, Gupta, Lee, Panigrahi, NeurlPS’24] [Braverman,
Dharangutte, Shah, Wang, APPROX’24] [Ghoshal, Makarychev, Makarychev, SODA’25]

10



Our Prediction Model

e c¢-accurate predictions [Cohen-Addad, d’Orsi, Gupta, Lee, Panigrahi, NeurlPS’24] [Braverman,
Dharangutte, Shah, Wang, APPROX’24] [Ghoshal, Makarychev, Makarychev, SODA’25]

e Letx™® € {—1,1}" denote some fixed but unknown optimal solution

10



Our Prediction Model

e c¢-accurate predictions [Cohen-Addad, d’Orsi, Gupta, Lee, Panigrahi, NeurlPS’24] [Braverman,
Dharangutte, Shah, Wang, APPROX’24] [Ghoshal, Makarychev, Makarychev, SODA’25]

e Letx™® € {—1,1}" denote some fixed but unknown optimal solution

10



Our Prediction Model

e c¢-accurate predictions [Cohen-Addad, d’Orsi, Gupta, Lee, Panigrahi, NeurlPS’24] [Braverman,
Dharangutte, Shah, Wang, APPROX’24] [Ghoshal, Makarychev, Makarychev, SODA’25]

e Letx™® € {—1,1}" denote some fixed but unknown optimal solution

» Oracle access to a prediction vector Y € {—1,1}"

10



Our Prediction Model

e c¢-accurate predictions [Cohen-Addad, d’Orsi, Gupta, Lee, Panigrahi, NeurlPS’24] [Braverman,
Dharangutte, Shah, Wang, APPROX’24] [Ghoshal, Makarychev, Makarychev, SODA’25]

e Letx™® € {—1,1}" denote some fixed but unknown optimal solution

» Oracle access to a prediction vector Y € {—1,1}"
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Our Prediction Model

e c¢-accurate predictions [Cohen-Addad, d’Orsi, Gupta, Lee, Panigrahi, NeurlPS’24] [Braverman,
Dharangutte, Shah, Wang, APPROX’24] [Ghoshal, Makarychev, Makarychev, SODA’25]

e Letx™® € {—1,1}" denote some fixed but unknown optimal solution

» Oracle access to a prediction vector Y € {—1,1}"

 Each entry Y, is independently correct with probability 1/2 + ¢

1
VveV, Pr[Yv=x;‘<]=5+€

Only slightly better than a random guess!
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Our Results

Theorem [D., Peng, Vakilian, ITCS’25]:
Given e-accurate predictions, there exists a single-pass streaming algorithm
achieving a (1/2 + Q(e?))-approx with high probability, that uses

- poly(1/€) words of space in insertion-only streams, and

- poly(1/e,log n) words of space in dynamic streams.
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Our Results

Theorem [D., Peng, Vakilian, ITCS’25]:
Given e-accurate predictions, there exists a single-pass streaming algorithm
achieving a (1/2 + Q(e?))-approx with high probability, that uses

- poly(1/€) words of space in insertion-only streams, and

- poly(1/e,log n) words of space in dynamic streams.

» Bypass the classical (1/2 + €)-approx vs €2 _(n) space trade-off [kapralov, Krachun,
STOC'19]

 No need to store predictions (only oracle access suffices)
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Algorithm for Low-Degree Graphs
- initially X = 0
- for each edge (u, v) in the stream do:

e Y, =0),Y,=0()
e ifY, #Y thenX=X+1
 return X
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Simple Case: Low-Degree Graphs

Algorithm for Low-Degree Graphs

» initially X = 0O

- for each edge (u, v) in the stream do:
e Y, =0),Y,=0()
e ifY, #Y thenX =X+ 1

e return X

What to do in general graphs?
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Offline Algorithm for General Graphs
- Divide V' into // (high-degree) and L (low-degree)
 Output the maximum of the following Max-Cut estimates:
 Candidate Estimate (1):
- Follow predictions on G| L], compute the cut value

of (L7, L")

Observation on Low-Degree Graphs:
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¢-accurate predictions Wp—} (1/2 + €%)-approx., O(1) words of space
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Offline Algorithm for General Graphs » Goal: To prove max{Z;,Z,} > (1/2 + Q(ez)) - OPT

- Divide V into // (high-degree) and L (low-degree) « Z,=|EH,L)| > (1/2 62) . OPT. DONE
* Output the maximum of the following Max-Cut estimates:
« Candidate Estimate (1):

- Follow predictions on G|L], compute the cut value

. Otherwise, |E(H,L)| < (1/2 + ¢*) - OPT, it
suffices to prove Z; > (1/2 + Q(e?)) - OPT

of (L™, L7)
- Extend (L™, L) with vertices in // via a greedy Z, = |EWLT,L7)| + 2 max{ |Ew,LY)|,|E(v,L7)]|}
approach veH
« Candidate Estimate (2): 1 |E(H, L))
- Compute the cut value of (/7, L) > (— + €2> - OPT; + ’

1
Lemma: Suppose |E(H,L)| = a - OPT where > (5 + €2> (1—a—e*) - OPT -

a < 1/2+¢e?, then OPT; > (1 —a —e*) - OPT

. OPT <OPT; + OPTy + |E(H,L)|
. OPTy<|EH)| <1/
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Approximation Analysis of Our Algorithm

Offline Algorithm for General Graphs » Goal: To prove max{Z;,Z,} > (1/2 + Q(e?)) - OPT
- Divide V into // (high-degree) and L (low-degree) + IfZ, = |E(H,L)| > (1/2 62) . OPT. DONE
. Output th i f the following Max-Cut estimates: - |

utput the maximum of the following Max-Cut estimates . Otherwise, | E(H.L)| < (1/2 + €2) - OPT, it

« Candidate Estimate (1): | NP
- Follow predictions on G[L], compute the cut value |~ Suffices to prove Z; > (1/2 + £2(e7)) - OPT

of (L", L")
- Extend (L™, L™) with vertices in // via a greedy Z, =|EL",L7)|+ 2 max{ |E(v,L")|,|E(v,L7)|}
approach veH

e Candidate Estimate (2): 1 |E(H, L) |
> <—+€2> - OPT; + ,

- Compute the cut value of (/7, L)

a- OPT

> <%+€2> (1—0[—64>°OPT |

1 2
> <5+Q(€ )) . OPT
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Implementation of Our Algorithm in Streaming
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Implementation of Our Algorithm in Streaming

 Random Order Streams (insertion-only)
e Arbitrary Order Streams (insertion-only)

 Dynamic Streams
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Our Algorithm in Random Order Streams

Random Order Stream: Edges of the input graph arrive in a uniformly random order
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Our Algorithm in Random Order Streams

Random Order Stream: Edges of the input graph arrive in a uniformly random order

Offline Algorithm
- Divide Vinto // (high-degree) and L (low-degree) H
 Qutput the maximum of the following Max-Cut estimates:

 Candidate Estimate (1):

» Follow predictions on G[L], compute the cut value of (L™, L7) L

 Extend (L™, L ™) with vertices in // via a greedy approach
 Candidate Estimate (2):

« Compute the cut value of (/7, L)
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Our Algorithm in Random Order Streams

Random Order Stream: Edges of the input graph arrive in a uniformly random order

Offline Algorithm
- Divide V' into // (high-degree) and L (low-degree)
 Qutput the maximum of the following Max-Cut estimates:
 Candidate Estimate (1):
e Follow predictions on G[L], compute the cut value of (L™, L")

 Extend (L™, L ™) with vertices in // via a greedy approach
 Candidate Estimate (2):

. Compute the cut value of (77, L) Algorithm in Random Order Streams

- Streaming Phase:
. Store the first poly(1/¢) edges, detect H D H and
LCL
« Compute Estimate (1) and Estimate (2) w.r.t. Hand L

. Store the degree info of H and E(H)
- Post-Processing Phase:

. Correct H, L and the estimates using degree info of H




Our Algorithm in Random Order Streams

Random Order Stream: Edges of the input graph arrive in a uniformly random order

-

Offline Algorithm
- Divide V' into // (high-degree) and L (low-degree)
 Qutput the maximum of the following Max-Cut estimates:
 Candidate Estimate (1):
e Follow predictions on G[L], compute the cut value of (L™, L")

 Extend (L™, L ™) with vertices in // via a greedy approach
 Candidate Estimate (2):

. Compute the cut value of (77, L) Algorithm in Random Order Streams

- Streaming Phase:
. Store the first poly(1/¢) edges, detect H D H and
LCL
« Compute Estimate (1) and Estimate (2) w.r.t. Hand L

. Store the degree info of H and E(H)
- Post-Processing Phase:

. Correct H, L and the estimates using degree info of H




Our Algorithm in Random Order Streams

Random Order Stream: Edges of the input graph arrive in a uniformly random order

-

Offline Algorithm

- Divide V' into // (high-degree) and L (low-degree)

 Qutput the maximum of the following Max-Cut estimates:
 Candidate Estimate (1):

e Follow predictions on G[L], compute the cut value of (L™, L")

« Extend (L™, L) with vertices in // via a greedy approach
 Candidate Estimate (2):

. Compute the cut value of (77, L) Algorithm in Random Order Streams

- Streaming Phase:
. Store the first poly(1/¢) edges, detect H O H and
. Approx: 1/2 + Q(e?) LCl

« Compute Estimate (1) and Estimate (2) w.r.t. Hand L

o Space: pOlY(l/G) words - Store the degree info of H and E(H )
- Post-Processing Phase:

. Correct H, L and the estimates using degree info of H
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Our Algorithm in Arbitrary Order Streams
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Our Algorithm in Arbitrary Order Streams

Arbitrary Order Stream: Edges of the input graph arrive in an arbitrary/adversarial order

Offline Algorithm
- Divide V' into // (high-degree) and L (low-degree)
 Qutput the maximum of the following Max-Cut estimates:
 Candidate Estimate (1):
e Follow predictions on G[L], compute the cut value of (L™, L")

 Extend (L™, L ™) with vertices in // via a greedy approach
 Candidate Estimate (2):

. Compute the cut value of (/7, L) Algorithm in Arbitrary Order Streams

- Streaming Phase:

- Perform reservoir sampling to obtain poly(1/€) edges

- Store the degree info of all vertices to V* and V™~ using
CountMin Sketch (or Misra-Gries)

- Post-Processing Phase:

. Detect H D H and L C L from the sampled edges
- Compute Estimate (1) and Estimate (2) approximately
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Offline Algorithm
- Divide V' into // (high-degree) and L (low-degree)
 Qutput the maximum of the following Max-Cut estimates:
 Candidate Estimate (1):
e Follow predictions on G[L], compute the cut value of (L™, L")

 Extend (L™, L ™) with vertices in // via a greedy approach
 Candidate Estimate (2):

. Compute the cut value of (/7, L) Algorithm in Arbitrary Order Streams

- Streaming Phase:

- Perform reservoir sampling to obtain poly(1/€) edges

- Store the degree info of all vertices to V* and V™~ using
CountMin Sketch (or Misra-Gries)

- Post-Processing Phase:

. Detect H D H and L C L from the sampled edges
- Compute Estimate (1) and Estimate (2) approximately




Our Algorithm in Arbitrary Order Streams

-

Offline Algorithm

- Divide V' into // (high-degree) and L (low-degree)

 Qutput the maximum of the following Max-Cut estimates:
 Candidate Estimate (1):

e Follow predictions on G[L], compute the cut value of (L™, L")

« Extend (L™, L) with vertices in // via a greedy approach
 Candidate Estimate (2):

. Compute the cut value of (/7, L) Algorithm in Arbitrary Order Streams

- Streaming Phase:

- Perform reservoir sampling to obtain poly(1/€) edges

Since ‘ﬁ‘ : ‘E(H) ‘ — poly(l/e), . Store the degree info of all vertices to V™ and V™~ using

falv d h N th CountMin Sketch (or Misra-Gries)
we can safely drop them in the - Post-Processing Phase:

calculation . Detect H D H and L C L from the sampled edges

- Compute Estimate (1) and Estimate (2) approximately
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Our Algorithm in Arbitrary Order Streams

Offline Algorithm

- Divide V' into // (high-degree) and L (low-degree)

 Qutput the maximum of the following Max-Cut estimates:
 Candidate Estimate (1):

e Follow predictions on G[L], compute the cut value of (L™, L")

« Extend (L™, L) with vertices in // via a greedy approach
 Candidate Estimate (2):

. Compute the cut value of (/7, L) Algorithm in Arbitrary Order Streams

- Streaming Phase:

- Perform reservoir sampling to obtain poly(1/€) edges

Since ‘ﬁ‘ : ‘E(H) ‘ — poly(l/e), . Store the degree info of all vertices to V™ and V™~ using

falv d h N th CountMin Sketch (or Misra-Gries)
we can safely drop them in the - Post-Processing Phase:

calculation . Detect H D H and L C L from the sampled edges

- Compute Estimate (1) and Estimate (2) approximately
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Our Algorithm in Arbitrary Order Streams

Offline Algorithm

- Divide V' into // (high-degree) and L (low-degree)

 Qutput the maximum of the following Max-Cut estimates:
 Candidate Estimate (1):

e Follow predictions on G[L], compute the cut value of (L™, L")

« Extend (L™, L) with vertices in // via a greedy approach
 Candidate Estimate (2):

. Compute the cut value of (/7, L) Algorithm in Arbitrary Order Streams

- Streaming Phase:

- Perform reservoir sampling to obtain poly(1/€) edges

2 . Store the deagree info of all vertices to V™ and V'~ usin
o« Approx: 1/2 4+ Q(e 9 9
PP T ( ) CountMin Sketch (or Misra-Gries)

- Post-Processing Phase:
. Detect H D H and L C L from the sampled edges

+ Space: poly(1/¢) words

- Compute Estimate (1) and Estimate (2) approximately
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Our Algorithm in Dynamic Streams

Offline Algorithm
- Divide V' into // (high-degree) and L (low-degree)
 Qutput the maximum of the following Max-Cut estimates:
 Candidate Estimate (1):
e Follow predictions on G[L], compute the cut value of (L™, L")

 Extend (L™, L ™) with vertices in // via a greedy approach
 Candidate Estimate (2):

. Compute the cut value of (7, L) Algorithm in Dynamic Streams

- Streaming Phase:

- Perform ¢,-sampling to obtain poly(1/¢) edges

- Store the degree info of all vertices to V' and V™ using
CountMin Sketch

- Post-Processing Phase:

. Detect H D H and L C L from the sampled edges
- Compute Estimate (1) and Estimate (2) approximately




Our Algorithm in Dynamic Streams

Offline Algorithm

- Divide V' into // (high-degree) and L (low-degree)

 Qutput the maximum of the following Max-Cut estimates:
 Candidate Estimate (1):

e Follow predictions on G[L], compute the cut value of (L™, L")

« Extend (L™, L) with vertices in // via a greedy approach
 Candidate Estimate (2):

. Compute the cut value of (7, L) Algorithm in Dynamic Streams

- Streaming Phase:

- Perform ¢,-sampling to obtain poly(1/¢) edges

* Approx: 1/2 + Q(Gz) - Store the degree info of all vertices to V¥ and V™ using
CountMin Sketch

- Post-Processing Phase:
. Detect H D H and L C L from the sampled edges

» Space: poly(1l/e,logn) words

- Compute Estimate (1) and Estimate (2) approximately
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Summary

 Streaming Max-Cut with predictions

« Takeaway: ¢-accurate predictions can help bypass the classical
(1/2 + €)-approx vs €2 _(n) space trade-off!

31



Summary

 Streaming Max-Cut with predictions

« Takeaway: ¢-accurate predictions can help bypass the classical
(1/2 + €)-approx vs €2 _(n) space trade-off!

e Open Problems
* Extension to weighted graphs?

* Other graph problems in streaming?

o Other prediction model? E.qg., €-accurate edge predictions [aamand, Chen,
Gollapudi, Silwal, Wu, ICML’25]
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Summary

 Streaming Max-Cut with predictions

« Takeaway: ¢-accurate predictions can help bypass the classical
(1/2 + €)-approx vs €2 _(n) space trade-off!

e Open Problems
* Extension to weighted graphs?

* Other graph problems in streaming?

o Other prediction model? E.qg., €-accurate edge predictions [aamand, Chen,
Gollapudi, Silwal, Wu, ICML’25]

Thank you!





