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Problem Setting

Correlation Clustering

" Input: Graph G = (V, E = ET U E~) with each edge
labeled as either positive (+) or negative (—)

= Qutput: Clustering/Partition of V/

= Goal: Minimize the number of disagreements:
- # of positive (+) edges across different clusters
- # of negative (—) edges within same clusters

Graph Streaming Model

" (7 Is presented as a sequence of edge insertions and deletions
- Insertion-Only Streams: consists of edge insertion only
- Dynamic Streams: has both insertions and deletions

= Observation: Outputting the clustering requires 2(n) space

= Goal: In one pass, using small space (usually O(n) space), compute the
clustering

Learning-Augmented Algorithms

= The algorithm has access to a learned oracle providing a
certain type of predictions about the input instance

= Goals:
- Consistency: Better performance when the input has some “learnable”
pattern (i.e., under high prediction quality)
- Robustness: Similar worst-case guarantee as the best-known classical
algorithms (regardless of the prediction quality)

Our Prediction Model

= Oracle access to pairwise distance d,, € |0, 1| between any u,v € V
= Arises In many scenarios: multiple graphs on the same vertex set
- Healthcare: disease network, provider network, clinical trial network
- Biology: protein-protein interaction network, gene co-expression network,
signaling pathway network
- Temporal Graphs: same vertices, different edges over time

" Observation: Two vertices similar in one network are likely similar in another
— cluster structure can thus be extracteq!

Natural LP of Correlation Clustering
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Our Results

Experiments

Setting Best-Known Approx-Space Trade-offs Our Results
(without Predictions) (with Predictions)
(3 + €)-approx,
Comolete O(e~'n) total space [CKL*24] min{2.065.3} 4+ £)-approx
Graghs < (BesT g)-lapprox, ml%(é%s totalgs alcc):z |
O(s~2n) space during the stream, P
poly(n) space for post-processing [AKP25]
General O(log |E~|)-approx, O(B log | E~|)-approx,
Graphs  O(e?n+ |E~|) total space [ACG*21] O(e~%n) total space

= a-approx: OPT < ALG < « - OPT
= agesT. best approx ratio of any poly-time classical alg for Correlation Clustering

Our Streaming Algorithm for Complete Graphs

* Building Blocks: Two pivot-based algorithms. In each iteration, randomly
pick a pivot p from the current graph, construct a cluster C' 5 p, and add the
remaining vertices v to C-

- 3-Approx Combinatorial Algorithm (P1voT) [ACNO8]: iff (p,v) € ET
- 2.06-Approx LP Rounding Algorithm [CMSY15]: with prob. 1 — f(x,,)

= Challenge: Solving LPs in streaming is difficult!

Our Algorithm with Predictions

" During the Stream: Maintain a truncated subgraph G’ of G (refer to [CKL"24])

= After the Stream (Post-Processing):
- Run the 3-approx P1voT algorithm on G’, obtain clustering C;
- Run the 2.06-approx LP rounding algorithm on G’ (use predictions d,, to
replace LP solution z,,), obtain clustering C
- Output the clustering with the lower cost between C; and Cs

Our Streaming Algorithm for General Graphs

Our Algorithm with Predictions

= During the Stream: Maintain a spectral sparsifier H* for G = (V, E™)

= After the Stream (Post-Processing): Perform ball-growing on H™

- In each iteration:

1. Pick an arbitrary vertex u from the current graph

2. Grow a ball B(u,r,) using predictions d,, as distance metric, until a certain condition is
satisfied

3. Remove the ball from the current graph

- Output the balls as the final clustering

= Unlike [ACG™21], our algorithm does not solve an LP and therefore does not
require storing £~ during the stream.

= Datasets
- Synthetic Datasets: generated from the Stochastic Block Model (SBM) with
parameter p > 0.5
- Real-World Datasets: EMAILCORE, FACEBOOK, LASTFM, DBLP from
Stanford SNAP Collection

" Predictors: Noisy predictor, Spectral embedding, Binary classifier

= Baselines

- [CKL™24]: (3 + ¢)-approx streaming algorithm without predictions

- [CLM™21]: based on agreement decomposition, 701-approx in theory,
performs well on certain types of graphs in practice

" Performance on Synthetic Datasets
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* Performance on Real-World Datasets
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Takeaways

1. Better performance under good predictions; robust under bad predictions
2. Empirical performance much better than theoretical guarantee

Open Problems

= Better approx ratio in O(n) total space for complete graphs?
= Better approx-space trade-off for general graphs?
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