

Learning-Augmented Streaming Algorithms for Correlation Clustering

²Nanjing University

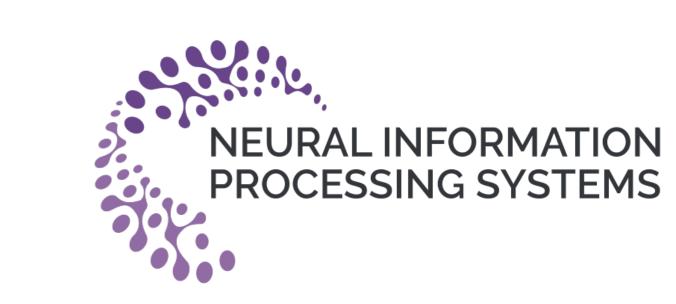
Yinhao Dong¹

Shan Jiang¹

Shi Li^{2,3}

Pan Peng¹

³New Cornerstone Science Laboratory



¹University of Science and Technology of China

Problem Setting

Correlation Clustering

- Input: Graph $G=(V,E=E^+\cup E^-)$ with each edge labeled as either positive (+) or negative (-)
- Output: Clustering/Partition of V
- Goal: Minimize the number of disagreements:
- # of positive (+) edges across different clusters
- # of negative (-) edges within same clusters

- \blacksquare G is presented as a sequence of edge insertions and deletions
- Insertion-Only Streams: consists of edge insertion only
- Dynamic Streams: has both insertions and deletions
- Observation: Outputting the clustering requires $\Omega(n)$ space
- **Goal:** In one pass, using small space (usually $\tilde{O}(n)$ space), compute the clustering

Learning-Augmented Algorithms

- The algorithm has access to a learned oracle providing a certain type of predictions about the input instance
- Goals:
- Consistency: Better performance when the input has some "learnable" pattern (i.e., under high prediction quality)
- Robustness: Similar worst-case guarantee as the best-known classical algorithms (regardless of the prediction quality)

Our Prediction Model

- Oracle access to pairwise distance $d_{uv} \in [0,1]$ between any $u,v \in V$
- Arises in many scenarios: multiple graphs on the same vertex set
- Healthcare: disease network, provider network, clinical trial network
- Biology: protein-protein interaction network, gene co-expression network, signaling pathway network
- Temporal Graphs: same vertices, different edges over time
- Observation: Two vertices similar in one network are likely similar in another – cluster structure can thus be extracted!

β -Level Predictor ($\beta \geq 1$)

. (triangle ineq.) $d_{uv} + d_{vw} \ge d_{uw}, \ \forall u, v, w \in V$ 2. $\sum_{(u,v)\in E^+} d_{uv} + \sum_{(u,v)\in E^-} (1-d_{uv}) \leq \beta \cdot \mathsf{OPT}$

Natural LP of Correlation Clustering

min $\sum x_{uv} + \sum (1-x_{uv})$ $(u,v)\in E^ \textbf{s.t.} \quad x_{uw} + x_{wv} \ge x_{uv} \quad \forall u, v, w \in V$ $x_{uv} \in [0,1] \qquad \forall (u,v) \in E$

Our Results

Setting	Best-Known Approx-Space Trade-offs (without Predictions)	Our Results (with Predictions)
Complete Graphs	$(3+\varepsilon)$ -approx,	$\min\{2.06eta,3\}+arepsilon\}$ -approx, $\tilde{O}(arepsilon^{-2}n)$ total space
	$\tilde{O}(arepsilon^{-1}n)$ total space [CKL ⁺ 24]	
	$(\alpha_{BEST} + \varepsilon)$ -approx,	
	$\widetilde{O}(arepsilon^{-2}n)$ space during the stream,	
	poly(n) space for post-processing [AKP25]	
General	$O(\log E^-)$ -approx,	$O(\beta \log E^-)$ -approx,
Graphs	$\tilde{O}(arepsilon^{-2}n+ E^-)$ total space [ACG ⁺ 21]	$ ilde{O}(arepsilon^{-2}n)$ total space

- α -approx: OPT \leq ALG $\leq \alpha \cdot$ OPT
- α_{BEST} : best approx ratio of any poly-time classical alg for Correlation Clustering

Our Streaming Algorithm for Complete Graphs

- Building Blocks: Two pivot-based algorithms. In each iteration, randomly pick a pivot p from the current graph, construct a cluster $C \ni p$, and add the remaining vertices v to C:
- 3-Approx Combinatorial Algorithm (PIVOT) [ACN08]: iff $(p, v) \in E^+$
- 2.06-Approx LP Rounding Algorithm [CMSY15]: with prob. $1 f(x_{pv})$
- Challenge: Solving LPs in streaming is difficult!

Our Algorithm with Predictions

- During the Stream: Maintain a truncated subgraph G' of G (refer to [CKL⁺24])
- After the Stream (Post-Processing):
- Run the 3-approx PIVOT algorithm on G', obtain clustering \mathcal{C}_1
- Run the 2.06-approx LP rounding algorithm on G' (use predictions d_{uv} to replace LP solution x_{uv}), obtain clustering C_2
- Output the clustering with the lower cost between \mathcal{C}_1 and \mathcal{C}_2

Our Streaming Algorithm for General Graphs

Our Algorithm with Predictions

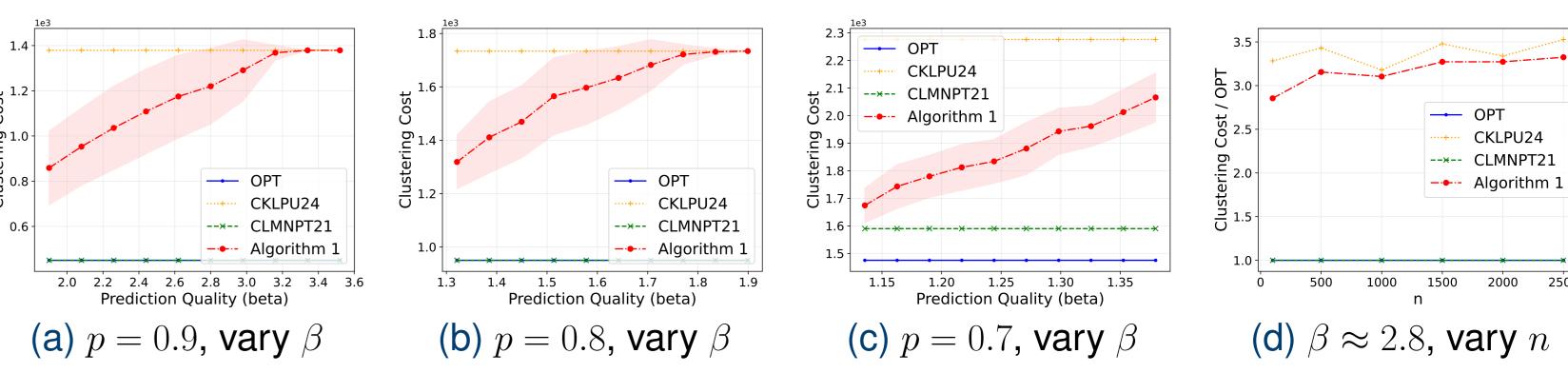
- During the Stream: Maintain a spectral sparsifier H^+ for $G^+ = (V, E^+)$
- After the Stream (Post-Processing): Perform ball-growing on H^+
- In each iteration:
- 1. Pick an arbitrary vertex u from the current graph
- 2. Grow a ball $B(u, r_u)$ using predictions d_{uv} as distance metric, until a certain condition is satisfied
- 3. Remove the ball from the current graph
- Output the balls as the final clustering
- Unlike [ACG+21], our algorithm does not solve an LP and therefore does not require storing E^- during the stream.

Experiments

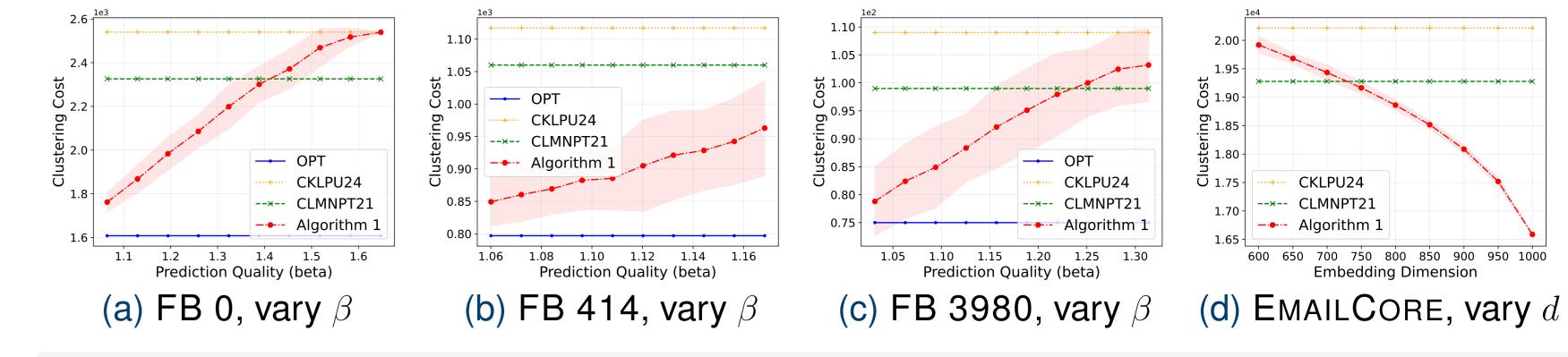
Datasets

- Synthetic Datasets: generated from the Stochastic Block Model (SBM) with parameter p > 0.5
- Real-World Datasets: EMAILCORE, FACEBOOK, LASTFM, DBLP from Stanford SNAP Collection
- Predictors: Noisy predictor, Spectral embedding, Binary classifier
- Baselines
- [CKL⁺24]: $(3 + \varepsilon)$ -approx streaming algorithm without predictions
- [CLM+21]: based on agreement decomposition, 701-approx in theory, performs well on certain types of graphs in practice

Performance on Synthetic Datasets



Performance on Real-World Datasets



Takeaways

- . Better performance under good predictions; robust under bad predictions
- 2. Empirical performance much better than theoretical guarantee

Open Problems

- Better approx ratio in $\tilde{O}(n)$ total space for complete graphs?
- Better approx-space trade-off for general graphs?

References

[ACG+21] Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth. Correlation Clustering in Data Streams. Algorithmica, 83(7):1980-2017, 2021. Conference version in *ICML*, 2015.

[ACN08] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating Inconsistent Information: Ranking and Clustering. J. ACM, 55(5):23:1–23:27, 2008. [AKP25] Sepehr Assadi, Sanjeev Khanna, and Aaron Putterman. Correlation Clustering and (De)Sparsification: Graph Sketches Can Match Classical Algorithms. In

[CKL $^+$ 24] Mélanie Cambus, Fabian Kuhn, Etna Lindy, Shreyas Pai, and Jara Uitto. A $(3 + \varepsilon)$ -Approximate Correlation Clustering Algorithm in Dynamic Streams. In

[CLM+21] Vincent Cohen-Addad, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard, Nikos Parotsidis, and Jakub Tarnawski. Correlation Clustering in Constant Many Parallel Rounds. In ICML, 2021.

[CMSY15] Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near Optimal LP Rounding Algorithm for Correlation Clustering on Complete and Complete *k*-partite Graphs. In *STOC*, 2015.