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Problem Setting
Correlation Clustering

Input: Graph G = (V, E = E+ ∪ E−) with each edge
labeled as either positive (+) or negative (−)
Output: Clustering/Partition of V
Goal: Minimize the number of disagreements:
- # of positive (+) edges across different clusters
- # of negative (−) edges within same clusters

Graph Streaming Model

G is presented as a sequence of edge insertions and deletions
- Insertion-Only Streams: consists of edge insertion only
- Dynamic Streams: has both insertions and deletions
Observation: Outputting the clustering requires Ω(n) space
Goal: In one pass, using small space (usually Õ(n) space), compute the
clustering

Learning-Augmented Algorithms

The algorithm has access to a learned oracle providing a
certain type of predictions about the input instance
Goals:
- Consistency: Better performance when the input has some “learnable”

pattern (i.e., under high prediction quality)
- Robustness: Similar worst-case guarantee as the best-known classical

algorithms (regardless of the prediction quality)

Our Prediction Model

Oracle access to pairwise distance duv ∈ [0, 1] between any u, v ∈ V

Arises in many scenarios: multiple graphs on the same vertex set
- Healthcare: disease network, provider network, clinical trial network
- Biology: protein-protein interaction network, gene co-expression network,

signaling pathway network
- Temporal Graphs: same vertices, different edges over time
Observation: Two vertices similar in one network are likely similar in another
– cluster structure can thus be extracted!

β-Level Predictor (β ≥ 1)

1. (triangle ineq.) duv + dvw ≥ duw, ∀u, v, w ∈ V

2.
∑

(u,v)∈E+ duv +
∑

(u,v)∈E−(1 − duv) ≤ β · OPT

Natural LP of Correlation Clustering

min
∑

(u,v)∈E+

xuv +
∑

(u,v)∈E−

(1 − xuv)

s.t. xuw + xwv ≥ xuv ∀u, v, w ∈ V

xuv ∈ [0, 1] ∀(u, v) ∈ E

Our Results

Setting Best-Known Approx-Space Trade-offs
(without Predictions)

Our Results
(with Predictions)

Complete
Graphs

(3 + ε)-approx,
Õ(ε−1n) total space [CKL+24]

(min{2.06β, 3} + ε)-approx,
Õ(ε−2n) total space

(αBEST + ε)-approx,
Õ(ε−2n) space during the stream,

poly(n) space for post-processing [AKP25]
General
Graphs

O(log |E−|)-approx,
Õ(ε−2n + |E−|) total space [ACG+21]

O(β log |E−|)-approx,
Õ(ε−2n) total space

α-approx: OPT ≤ ALG ≤ α · OPT
αBEST: best approx ratio of any poly-time classical alg for Correlation Clustering

Our Streaming Algorithm for Complete Graphs

Building Blocks: Two pivot-based algorithms. In each iteration, randomly
pick a pivot p from the current graph, construct a cluster C ∋ p, and add the
remaining vertices v to C:
- 3-Approx Combinatorial Algorithm (PIVOT) [ACN08]: iff (p, v) ∈ E+

- 2.06-Approx LP Rounding Algorithm [CMSY15]: with prob. 1 − f (xpv)
Challenge: Solving LPs in streaming is difficult!

Our Algorithm with Predictions

During the Stream: Maintain a truncated subgraph G′ of G (refer to [CKL+24])
After the Stream (Post-Processing):
- Run the 3-approx PIVOT algorithm on G′, obtain clustering C1
- Run the 2.06-approx LP rounding algorithm on G′ (use predictions duv to

replace LP solution xuv), obtain clustering C2
- Output the clustering with the lower cost between C1 and C2

Our Streaming Algorithm for General Graphs

Our Algorithm with Predictions

During the Stream: Maintain a spectral sparsifier H+ for G+ = (V, E+)
After the Stream (Post-Processing): Perform ball-growing on H+

- In each iteration:
1. Pick an arbitrary vertex u from the current graph
2. Grow a ball B(u, ru) using predictions duv as distance metric, until a certain condition is

satisfied
3. Remove the ball from the current graph

- Output the balls as the final clustering

Unlike [ACG+21], our algorithm does not solve an LP and therefore does not
require storing E− during the stream.

Experiments
Datasets
- Synthetic Datasets: generated from the Stochastic Block Model (SBM) with

parameter p > 0.5
- Real-World Datasets: EMAILCORE, FACEBOOK, LASTFM, DBLP from

Stanford SNAP Collection
Predictors: Noisy predictor, Spectral embedding, Binary classifier
Baselines
- [CKL+24]: (3 + ε)-approx streaming algorithm without predictions
- [CLM+21]: based on agreement decomposition, 701-approx in theory,

performs well on certain types of graphs in practice
Performance on Synthetic Datasets
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(a) p = 0.9, vary β
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(b) p = 0.8, vary β
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(c) p = 0.7, vary β
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(d) β ≈ 2.8, vary n

Performance on Real-World Datasets
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(a) FB 0, vary β
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(b) FB 414, vary β
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(c) FB 3980, vary β
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(d) EMAILCORE, vary d

Takeaways

1. Better performance under good predictions; robust under bad predictions
2. Empirical performance much better than theoretical guarantee

Open Problems

Better approx ratio in Õ(n) total space for complete graphs?
Better approx-space trade-off for general graphs?
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