
Multiple-scale analysis
In mathematics and physics, multiple-scale analysis (also called the method of multiple scales) comprises
techniques used to construct uniformly valid approximations to the solutions of perturbation problems, both
for small as well as large values of the independent variables. This is done by introducing fast-scale and
slow-scale variables for an independent variable, and subsequently treating these variables, fast and slow, as
if they are independent. In the solution process of the perturbation problem thereafter, the resulting
additional freedom – introduced by the new independent variables – is used to remove (unwanted) secular
terms. The latter puts constraints on the approximate solution, which are called solvability conditions.

Mathematics research from about the 1980s proposes that coordinate transforms and invariant manifolds
provide a sounder support for multiscale modelling (for example, see center manifold and slow manifold).
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As an example for the method of multiple-scale analysis, consider the undamped and unforced Duffing
equation:[1]

which is a second-order ordinary differential equation describing a nonlinear oscillator. A solution y(t) is
sought for small values of the (positive) nonlinearity parameter 0 < ε ≪ 1. The undamped Duffing equation
is known to be a Hamiltonian system:
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Here the differences between  approaches for both regular
perturbation theory and multiple-scale analysis can be seen, and how
they compare to the exact solution for 

with q = y(t) and p = dy/dt.
Consequently, the Hamiltonian
H(p, q) is a conserved quantity, a
constant, equal to H = ½ + ¼ ε
for the given initial conditions.
This implies that both y and dy/dt
have to be bounded:

A regular perturbation-series
approach to the problem proceeds by writing  and substituting this into
the undamped Duffing equation. Matching powers of  gives the system of equations

Solving these subject to the initial conditions yields

Note that the last term between the square braces is secular: it grows without bound for large |t|. In
particular, for  this term is O(1) and has the same order of magnitude as the leading-order term.
Because the terms have become disordered, the series is no longer an asymptotic expansion of the solution.

To construct a solution that is valid beyond , the method of multiple-scale analysis is used.
Introduce the slow scale t1:
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and assume the solution y(t) is a perturbation-series solution dependent both on t and t1, treated as:

So:

using dt1/dt = ε. Similarly:

Then the zeroth- and first-order problems of the multiple-scales perturbation series for the Duffing equation
become:

The zeroth-order problem has the general solution:

with A(t1) a complex-valued amplitude to the zeroth-order solution Y0(t, t1) and i2 = −1. Now, in the first-
order problem the forcing in the right hand side of the differential equation is

where c.c. denotes the complex conjugate of the preceding terms. The occurrence of secular terms can be
prevented by imposing on the – yet unknown – amplitude A(t1) the solvability condition

The solution to the solvability condition, also satisfying the initial conditions y(0) = 1 and dy/dt(0) = 0,
is:
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As a result, the approximate solution by the multiple-scales analysis is

using t1 = εt and valid for εt = O(1). This agrees with the nonlinear frequency changes found by
employing the Lindstedt–Poincaré method.

This new solution is valid until . Higher-order solutions – using the method of multiple scales –

require the introduction of additional slow scales, i.e., t2 = ε2 t, t3 = ε3 t, etc. However, this introduces
possible ambiguities in the perturbation series solution, which require a careful treatment (see Kevorkian &
Cole 1996; Bender & Orszag 1999).[2]

Alternatively, modern approaches derive these sorts of models using coordinate transforms, like in the
method of normal forms, [3] as described next.

A solution  is sought in new coordinates  where the amplitude  varies slowly and the
phase  varies at an almost constant rate, namely  Straightforward algebra finds the
coordinate transform

transforms Duffing's equation into the pair that the radius is constant  and the phase evolves
according to

That is, Duffing's oscillations are of constant amplitude  but have different frequencies  depending
upon the amplitude.[4]

More difficult examples are better treated using a time-dependent coordinate transform involving complex
exponentials (as also invoked in the previous multiple time-scale approach). A web service will perform the
analysis for a wide range of examples.[5]
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