
Dot product
In mathematics, the dot product or scalar product[note 1] is an algebraic operation that takes two equal-
length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean
geometry, the dot product of the Cartesian coordinates of two vectors is widely used. It is often called the
inner product (or rarely projection product) of Euclidean space, even though it is not the only inner
product that can be defined on Euclidean space (see Inner product space for more).

Algebraically, the dot product is the sum of the products of the corresponding entries of the two sequences
of numbers. Geometrically, it is the product of the Euclidean magnitudes of the two vectors and the cosine
of the angle between them. These definitions are equivalent when using Cartesian coordinates. In modern
geometry, Euclidean spaces are often defined by using vector spaces. In this case, the dot product is used
for defining lengths (the length of a vector is the square root of the dot product of the vector by itself) and
angles (the cosine of the angle between two vectors is the quotient of their dot product by the product of
their lengths).

The name "dot product" is derived from the centered dot " · " that is often used to designate this
operation;[1] the alternative name "scalar product" emphasizes that the result is a scalar, rather than a vector,
as is the case for the vector product in three-dimensional space.
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The dot product may be defined algebraically or geometrically. The geometric definition is based on the
notions of angle and distance (magnitude) of vectors. The equivalence of these two definitions relies on
having a Cartesian coordinate system for Euclidean space.

In modern presentations of Euclidean geometry, the points of space are defined in terms of their Cartesian
coordinates, and Euclidean space itself is commonly identified with the real coordinate space Rn. In such a
presentation, the notions of length and angles are defined by means of the dot product. The length of a
vector is defined as the square root of the dot product of the vector by itself, and the cosine of the (non
oriented) angle between two vectors of length one is defined as their dot product. So the equivalence of the
two definitions of the dot product is a part of the equivalence of the classical and the modern formulations
of Euclidean geometry.

The dot product of two vectors a =  and b =  is defined as:[2]

where Σ denotes summation and n is the dimension of the vector space. For instance, in three-dimensional
space, the dot product of vectors [1, 3, −5] and [4, −2, −1] is:

Likewise, the dot product of the vector [1, 3, −5] with itself is:

If vectors are identified with row matrices, the dot product can also be written as a matrix product

where  denotes the transpose of .

Expressing the above example in this way, a 1 × 3 matrix (row vector) is multiplied by a 3 × 1 matrix
(column vector) to get a 1 × 1 matrix that is identified with its unique entry:

.
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Illustration showing how to find the
angle between vectors using the dot
product

Calculating bond angles of a
symmetrical tetrahedral molecular
geometry using a dot product

Scalar projection

In Euclidean space, a Euclidean vector is a geometric object that
possesses both a magnitude and a direction. A vector can be
pictured as an arrow. Its magnitude is its length, and its direction is
the direction to which the arrow points. The magnitude of a vector
a is denoted by . The dot product of two Euclidean vectors a
and b is defined by[3][4][1]

where θ is the angle between a and b.

In particular, if the vectors a and b are orthogonal (i.e., their angle
is π / 2 or 90°), then , which implies that

At the other extreme, if they are codirectional, then the angle
between them is zero with  and

This implies that the dot product of a vector a with itself is

which gives

the formula for the Euclidean length of the vector.

The scalar projection (or scalar component) of a Euclidean vector a
in the direction of a Euclidean vector b is given by

where θ is the angle between a and b.

In terms of the geometric definition of the dot product, this can be
rewritten

where  is the unit vector in the direction of b.

The dot product is thus characterized geometrically by[5]
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Distributive law for the dot product

The dot product, defined in this manner, is homogeneous under
scaling in each variable, meaning that for any scalar α,

It also satisfies a distributive law, meaning that

These properties may be summarized by saying that the dot product
is a bilinear form. Moreover, this bilinear form is positive definite,
which means that  is never negative, and is zero if and only if —the zero vector.

The dot product is thus equivalent to multiplying the norm (length) of b by the norm of the projection of a
over b.

If e1, ..., en are the standard basis vectors in Rn, then we may write

The vectors ei are an orthonormal basis, which means that they have unit length and are at right angles to
each other. Hence since these vectors have unit length

and since they form right angles with each other, if i ≠ j,

Thus in general, we can say that:

Where δ ij is the Kronecker delta.

Also, by the geometric definition, for any vector ei and a vector a, we note

where ai is the component of vector a in the direction of ei. The last step in the equality can be seen from
the figure.

Now applying the distributivity of the geometric version of the dot product gives

Equivalence of the definitions
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Vector components in an orthonormal
basis

which is precisely the algebraic definition of the dot product. So the geometric dot product equals the
algebraic dot product.

The dot product fulfills the following properties if a, b, and c are real vectors and r is a scalar.[2][3]

1. Commutative:

which follows from the definition (θ is the angle between a and b):[6]

2. Distributive over vector addition:

3. Bilinear:

4. Scalar multiplication:

5. Not associative because the dot product between a scalar (a ⋅ b) and a vector (c) is not
defined, which means that the expressions involved in the associative property, (a ⋅ b) ⋅ c or
a ⋅ (b ⋅ c) are both ill-defined.[7] Note however that the previously mentioned scalar
multiplication property is sometimes called the "associative law for scalar and dot product"[8]

or one can say that "the dot product is associative with respect to scalar multiplication"
because c (a ⋅ b) = (c a) ⋅ b = a ⋅ (c b).[9]

6. Orthogonal:

Two non-zero vectors a and b are orthogonal if and only if a ⋅ b = 0.

7. No cancellation:

Properties
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Triangle with
vector edges a
and b,
separated by
angle θ.

Unlike multiplication of ordinary numbers, where if ab = ac, then b always equals c
unless a is zero, the dot product does not obey the cancellation law:
If a ⋅ b = a ⋅ c and a ≠ 0, then we can write: a ⋅ (b − c) = 0 by the distributive law; the
result above says this just means that a is perpendicular to (b − c), which still allows
(b − c) ≠ 0, and therefore allows b ≠ c.

8. Product rule:

If a and b are (vector-valued) differentiable functions, then the derivative (denoted by a
prime ′) of a ⋅ b is given by the rule (a ⋅ b) ′ = a ′ ⋅ b + a ⋅ b ′.

Given two vectors a and b separated by angle θ (see image right), they form a triangle
with a third side c = a − b. The dot product of this with itself is:

which is the law of cosines.

There are two ternary operations involving dot product and cross product.

The scalar triple product of three vectors is defined as

Its value is the determinant of the matrix whose columns are the Cartesian coordinates of the three vectors.
It is the signed volume of the parallelepiped defined by the three vectors, and is isomorphic to the three-
dimensional special case of the exterior product of three vectors.

The vector triple product is defined by[2][3]

This identity, also known as Lagrange's formula, may be remembered as "ACB minus ABC", keeping in
mind which vectors are dotted together. This formula has applications in simplifying vector calculations in
physics.

Application to the law of cosines
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Physics
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In physics, vector magnitude is a scalar in the physical sense (i.e., a physical quantity independent of the
coordinate system), expressed as the product of a numerical value and a physical unit, not just a number.
The dot product is also a scalar in this sense, given by the formula, independent of the coordinate system.
For example:[10][11]

Mechanical work is the dot product of force and displacement vectors,
Power is the dot product of force and velocity.

For vectors with complex entries, using the given definition of the dot product would lead to quite different
properties. For instance, the dot product of a vector with itself could be zero without the vector being the
zero vector (e.g. this would happen with the vector a = [1 i]). This in turn would have consequences for
notions like length and angle. Properties such as the positive-definite norm can be salvaged at the cost of
giving up the symmetric and bilinear properties of the dot product, through the alternative definition[12][2]

where  is the complex conjugate of . When vectors are represented by column vectors, the dot product
can be expressed as a matrix product involving a conjugate transpose, denoted with the superscript H:

In the case of vectors with real components, this definition is the same as in the real case. The dot product
of any vector with itself is a non-negative real number, and it is nonzero except for the zero vector.
However, the complex dot product is sesquilinear rather than bilinear, as it is conjugate linear and not linear
in a. The dot product is not symmetric, since

The angle between two complex vectors is then given by

The complex dot product leads to the notions of Hermitian forms and general inner product spaces, which
are widely used in mathematics and physics.

The self dot product of a complex vector , involving the conjugate transpose of a row vector,
is also known as the norm squared, , after the Euclidean norm; it is a vector generalization
of the absolute square of a complex scalar (see also: squared Euclidean distance).
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The inner product generalizes the dot product to abstract vector spaces over a field of scalars, being either
the field of real numbers  or the field of complex numbers . It is usually denoted using angular brackets
by .

The inner product of two vectors over the field of complex numbers is, in general, a complex number, and
is sesquilinear instead of bilinear. An inner product space is a normed vector space, and the inner product of
a vector with itself is real and positive-definite.

The dot product is defined for vectors that have a finite number of entries. Thus these vectors can be
regarded as discrete functions: a length-n vector u is, then, a function with domain
{k ∈ N ∣ 1 ≤ k ≤ n}, and ui is a notation for the image of i by the function/vector u.

This notion can be generalized to continuous functions: just as the inner product on vectors uses a sum over
corresponding components, the inner product on functions is defined as an integral over some interval
a ≤ x ≤ b (also denoted [a, b]):[2]

Generalized further to complex functions ψ(x) and χ(x), by analogy with the complex inner product
above, gives[2]

Inner products can have a weight function (i.e., a function which weights each term of the inner product
with a value). Explicitly, the inner product of functions  and  with respect to the weight function 

 is

A double-dot product for matrices is the Frobenius inner product, which is analogous to the dot product on
vectors. It is defined as the sum of the products of the corresponding components of two matrices A and B
of the same size:

 (For real

matrices)
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Writing a matrix as a dyadic, we can define a different double-dot product (see Dyadics § Product of dyadic
and dyadic,) however it is not an inner product.

The inner product between a tensor of order n and a tensor of order m is a tensor of order n + m − 2, see
Tensor contraction for details.

The straightforward algorithm for calculating a floating-point dot product of vectors can suffer from
catastrophic cancellation. To avoid this, approaches such as the Kahan summation algorithm are used.

A dot product function is included in:

BLAS level 1 real SDOT, DDOT; complex CDOTU, ZDOTU = X^T * Y, CDOTC ZDOTC =
X^H * Y
Julia as  A' * B 
Matlab as  A' * B  or  conj(transpose(A)) * B  or  sum(conj(A) .* B) 
GNU Octave as  sum(conj(X) .* Y, dim) 
Intel oneAPI Math Kernel Library real p?dot dot = sub(x)'*sub(y); complex p?dotc dotc =
conjg(sub(x)')*sub(y)

Cauchy–Schwarz inequality
Cross product
Dot product representation of a graph
Euclidean norm, the square-root of the self dot product
Matrix multiplication
Metric tensor
Multiplication of vectors
Outer product

1. The term scalar product means literally "product with a scalar as a result". It is also used
sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space.

1. "Dot Product" (https://www.mathsisfun.com/algebra/vectors-dot-product.html).

Tensors

Computation

Algorithms

Libraries

See also

Notes

References

https://en.wikipedia.org/wiki/Dyadics
https://en.wikipedia.org/wiki/Dyadics#Product_of_dyadic_and_dyadic
https://en.wikipedia.org/wiki/Tensor
https://en.wikipedia.org/wiki/Tensor_contraction
https://en.wikipedia.org/wiki/Catastrophic_cancellation
https://en.wikipedia.org/wiki/Kahan_summation_algorithm
https://en.wikipedia.org/wiki/BLAS
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Matlab
https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
https://en.wikipedia.org/wiki/Cross_product
https://en.wikipedia.org/wiki/Dot_product_representation_of_a_graph
https://en.wikipedia.org/wiki/Euclidean_norm
https://en.wikipedia.org/wiki/Matrix_multiplication
https://en.wikipedia.org/wiki/Metric_tensor
https://en.wikipedia.org/wiki/Multiplication_of_vectors
https://en.wikipedia.org/wiki/Outer_product
https://en.wikipedia.org/wiki/Scalar_(mathematics)
https://en.wikipedia.org/wiki/Symmetric_bilinear_form
https://en.wikipedia.org/wiki/Pseudo-Euclidean_space
https://www.mathsisfun.com/algebra/vectors-dot-product.html


"Inner product" (https://www.encyclopediaofmath.org/index.php?title=Inner_product),
Encyclopedia of Mathematics, EMS Press, 2001 [1994]
Explanation of dot product including with complex vectors (http://www.mathreference.com/la,
dot.html)
"Dot Product" (http://demonstrations.wolfram.com/DotProduct/) by Bruce Torrence, Wolfram
Demonstrations Project, 2007.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Dot_product&oldid=1109459520"

This page was last edited on 10 September 2022, at 00:23 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 3.0; additional terms may apply. By
using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc., a non-profit organization.

www.mathsisfun.com. Retrieved 2020-09-06.
2. S. Lipschutz; M. Lipson (2009). Linear Algebra (Schaum's Outlines) (4th ed.). McGraw Hill.

ISBN 978-0-07-154352-1.
3. M.R. Spiegel; S. Lipschutz; D. Spellman (2009). Vector Analysis (Schaum's Outlines)

(2nd ed.). McGraw Hill. ISBN 978-0-07-161545-7.
4. A I Borisenko; I E Taparov (1968). Vector and tensor analysis with applications. Translated

by Richard Silverman. Dover. p. 14.
5. Arfken, G. B.; Weber, H. J. (2000). Mathematical Methods for Physicists (5th ed.). Boston,

MA: Academic Press. pp. 14–15. ISBN 978-0-12-059825-0..
6. Nykamp, Duane. "The dot product" (https://mathinsight.org/dot_product). Math Insight.

Retrieved September 6, 2020.
7. Weisstein, Eric W. "Dot Product." From MathWorld--A Wolfram Web Resource.

http://mathworld.wolfram.com/DotProduct.html
8. T. Banchoff; J. Wermer (1983). Linear Algebra Through Geometry. Springer Science &

Business Media. p. 12. ISBN 978-1-4684-0161-5.
9. A. Bedford; Wallace L. Fowler (2008). Engineering Mechanics: Statics (5th ed.). Prentice

Hall. p. 60. ISBN 978-0-13-612915-8.
10. K.F. Riley; M.P. Hobson; S.J. Bence (2010). Mathematical methods for physics and

engineering (https://archive.org/details/mathematicalmeth00rile) (3rd ed.). Cambridge
University Press. ISBN 978-0-521-86153-3.

11. M. Mansfield; C. O'Sullivan (2011). Understanding Physics (4th ed.). John Wiley & Sons.
ISBN 978-0-47-0746370.

12. Berberian, Sterling K. (2014) [1992], Linear Algebra, Dover, p. 287, ISBN 978-0-486-78055-
9

External links

https://www.encyclopediaofmath.org/index.php?title=Inner_product
https://en.wikipedia.org/wiki/Encyclopedia_of_Mathematics
https://en.wikipedia.org/wiki/European_Mathematical_Society
http://www.mathreference.com/la,dot.html
http://demonstrations.wolfram.com/DotProduct/
https://en.wikipedia.org/wiki/Wolfram_Demonstrations_Project
https://en.wikipedia.org/w/index.php?title=Dot_product&oldid=1109459520
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-07-154352-1
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-07-161545-7
https://en.wikipedia.org/wiki/Academic_Press
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-12-059825-0
https://mathinsight.org/dot_product
http://mathworld.wolfram.com/DotProduct.html
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4684-0161-5
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-13-612915-8
https://archive.org/details/mathematicalmeth00rile
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-521-86153-3
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-47-0746370
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-486-78055-9

