
Cross product

In mathematics, the cross product or vector product (occasionally directed area product, to emphasize
its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean
vector space (named here ), and is denoted by the symbol . Given two linearly independent vectors a
and b, the cross product, a × b (read "a cross b"), is a vector that is perpendicular to both a and b,[1] and
thus normal to the plane containing them. It has many applications in mathematics, physics, engineering,
and computer programming. It should not be confused with the dot product (projection product).

If two vectors have the same direction or have the exact opposite direction from each other (that is, they are
not linearly independent), or if either one has zero length, then their cross product is zero.[2] More
generally, the magnitude of the product equals the area of a parallelogram with the vectors for sides; in
particular, the magnitude of the product of two perpendicular vectors is the product of their lengths.

The cross product is anticommutative (that is, a × b = − b × a) and is distributive over addition (that is,
a × (b + c) = a × b + a × c).[1] The space  together with the cross product is an algebra over the
real numbers, which is neither commutative nor associative, but is a Lie algebra with the cross product
being the Lie bracket.

Like the dot product, it depends on the metric of Euclidean space, but unlike the dot product, it also
depends on a choice of orientation (or "handedness") of the space (it's why an oriented space is needed). In
connection with the cross product, the exterior product of vectors can be used in arbitrary dimensions (with
a bivector or 2-form result) and is independent of the orientation of the space.

The product can be generalized in various ways, using the orientation and metric structure just as for the
traditional 3-dimensional cross product, one can, in n dimensions, take the product of n − 1 vectors to
produce a vector perpendicular to all of them. But if the product is limited to non-trivial binary products
with vector results, it exists only in three and seven dimensions.[3] The cross-product in seven dimensions
has undesirable properties (e.g. it fails to satisfy the Jacobi identity), however, so it is not used in
mathematical physics to represent quantities such as multi-dimensional space-time.[4] (See §
Generalizations, below, for other dimensions.)
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The cross product of two vectors a and b is defined only in three-dimensional space and is denoted by
a × b. In physics and applied mathematics, the wedge notation a ∧ b is often used (in conjunction with the
name vector product),[5][6][7] although in pure mathematics such notation is usually reserved for just the
exterior product, an abstraction of the vector product to n dimensions.
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Finding the direction of the cross
product by the right-hand rule

The cross product a × b (vertical, in
purple) changes as the angle
between the vectors a (blue) and b
(red) changes. The cross product is
always orthogonal to both vectors,
and has magnitude zero when the
vectors are parallel and maximum
magnitude ‖a‖‖b‖ when they are
orthogonal.

The cross product a × b is defined as a vector c that is
perpendicular (orthogonal) to both a and b, with a direction given
by the right-hand rule[1] and a magnitude equal to the area of the
parallelogram that the vectors span.[2]

The cross product is defined by the formula[8][9]

where:

θ is the angle between a and b in the plane containing
them (hence, it is between 0° and 180°)
‖a‖ and ‖b‖ are the magnitudes of vectors a and b
and n is a unit vector perpendicular to the plane
containing a and b, in the direction given by the right-hand rule (illustrated).[2]

If the vectors a and b are parallel (that is, the angle θ between them is either 0° or 180°), by the above
formula, the cross product of a and b is the zero vector 0.

By convention, the direction of the vector n is given by the right-
hand rule, where one simply points the forefinger of the right hand
in the direction of a and the middle finger in the direction of b.
Then, the vector n is coming out of the thumb (see the adjacent
picture). Using this rule implies that the cross product is anti-
commutative; that is, b × a = −(a × b). By pointing the forefinger
toward b first, and then pointing the middle finger toward a, the
thumb will be forced in the opposite direction, reversing the sign of
the product vector.

As the cross product operator depends on the orientation of the
space (as explicit in the definition above), the cross product of two
vectors is not a "true" vector, but a pseudovector. See
§ Handedness for more detail.

In 1842, William Rowan Hamilton discovered the algebra of
quaternions and the non-commutative Hamilton product. In
particular, when the Hamilton product of two vectors (that is, pure
quaternions with zero scalar part) is performed, it results in a
quaternion with a scalar and vector part. The scalar and vector part

of this Hamilton product corresponds to the negative of dot product and cross product of the two vectors.

In 1881, Josiah Willard Gibbs, and independently Oliver Heaviside, introduced the notation for both the dot
product and the cross product using a period (a . b) and an "x" (a x b), respectively, to denote them.[10]
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According to Sarrus's rule, the determinant of a
3×3 matrix involves multiplications between
matrix elements identified by crossed diagonals

Standard basis vectors (i, j, k, also denoted e1,
e2, e3) and vector components of a (ax, ay, az,
also denoted a1, a2, a3)

In 1877, to emphasize the fact that the result of a dot
product is a scalar while the result of a cross product is a
vector, William Kingdon Clifford coined the alternative
names scalar product and vector product for the two
operations.[10] These alternative names are still widely
used in the literature.

Both the cross notation (a × b) and the name cross
product were possibly inspired by the fact that each
scalar component of a × b is computed by multiplying
non-corresponding components of a and b. Conversely, a
dot product a ⋅ b involves multiplications between
corresponding components of a and b. As explained
below, the cross product can be expressed in the form of a
determinant of a special 3 × 3 matrix. According to Sarrus's rule, this involves multiplications between
matrix elements identified by crossed diagonals.

If (i, j,k) is a positively oriented orthonormal basis, the
basis vectors satisfy the following equalities[1]

which imply, by the anticommutativity of the cross
product, that

The anticommutativity of the cross product (and the
obvious lack of linear independence) also implies that

 (the zero vector).

These equalities, together with the distributivity and
linearity of the cross product (though neither follows easily from the definition given above), are sufficient
to determine the cross product of any two vectors a and b. Each vector can be defined as the sum of three
orthogonal components parallel to the standard basis vectors:

Their cross product a × b can be expanded using distributivity:
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Use of Sarrus's rule to find the cross
product of a and b

This can be interpreted as the decomposition of a × b into the sum of nine simpler cross products involving
vectors aligned with i, j, or k. Each one of these nine cross products operates on two vectors that are easy
to handle as they are either parallel or orthogonal to each other. From this decomposition, by using the
above-mentioned equalities and collecting similar terms, we obtain:

meaning that the three scalar components of the resulting vector s = s1i + s2j + s3k = a × b are

Using column vectors, we can represent the same result as follows:

The cross product can also be expressed as the formal
determinant:[note 1][1]

This determinant can be computed using Sarrus's rule or cofactor
expansion. Using Sarrus's rule, it expands to

Using cofactor expansion along the first row instead, it expands to[11]
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Figure 1. The area of a parallelogram
as the magnitude of a cross product

Figure 2. Three vectors defining a
parallelepiped

which gives the components of the resulting vector directly.

In any basis, the cross-product  is given by the tensorial formula  where  is
the covariant Levi-Civita tensor (we note the position of the indices). That corresponds to the
intrinsic formula given here.
In an orthonormal basis having the same orientation as the space,  is given by the
pseudo-tensorial formula  where  is the Levi-Civita symbol (which is a pseudo-
tensor). That’s the formula used for everyday physics but it works only for this special choice
of basis.

In any orthonormal basis,  is given by the pseudo-tensorial formula 

where  indicates whether the basis has the same orientation as the space or
not.

The latter formula avoids having to change the orientation of the space when we inverse an orthonormal
basis.

The magnitude of the cross product can be interpreted as the
positive area of the parallelogram having a and b as sides (see
Figure 1):[1]

Indeed, one can also compute the volume V of a parallelepiped
having a, b and c as edges by using a combination of a cross
product and a dot product, called scalar triple product (see Figure
2):

Since the result of the scalar triple product may be negative, the
volume of the parallelepiped is given by its absolute value:

Because the magnitude of the cross product goes by the sine of
the angle between its arguments, the cross product can be
thought of as a measure of perpendicularity in the same way
that the dot product is a measure of parallelism. Given two unit
vectors, their cross product has a magnitude of 1 if the two are
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Cross product scalar multiplication. Left: Decomposition of
b into components parallel and perpendicular to a. Right:
Scaling of the perpendicular components by a positive real
number r (if negative, b and the cross product are
reversed).

Cross product distributivity over vector addition. Left: The
vectors b and c are resolved into parallel and perpendicular
components to a. Right: The parallel components vanish in
the cross product, only the perpendicular components
shown in the plane perpendicular to a remain.[12]

perpendicular and a magnitude of zero if the two are parallel. The dot product of two unit vectors behaves
just oppositely: it is zero when the unit vectors are perpendicular and 1 if the unit vectors are parallel.

Unit vectors enable two convenient identities: the dot product of two unit vectors yields the cosine (which
may be positive or negative) of the angle between the two unit vectors. The magnitude of the cross product
of the two unit vectors yields the sine (which will always be positive).

If the cross product of two vectors is the zero
vector (that is, a × b = 0), then either one or
both of the inputs is the zero vector, (a = 0 or
b = 0) or else they are parallel or antiparallel
(a ∥ b) so that the sine of the angle between
them is zero (θ = 0° or θ = 180° and sin θ = 0).

The self cross product of a vector is the zero
vector:

The cross product is anticommutative,

distributive over addition,

and compatible with scalar multiplication so
that

It is not associative, but satisfies the Jacobi
identity:

Distributivity, linearity and Jacobi identity show that the R3 vector space together with vector addition and
the cross product forms a Lie algebra, the Lie algebra of the real orthogonal group in 3 dimensions, SO(3).
The cross product does not obey the cancellation law; that is, a × b = a × c with a ≠ 0 does not imply b = c,
but only that:

Algebraic properties
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The two nonequivalent triple cross products of three
vectors a, b, c. In each case, two vectors define a plane,
the other is out of the plane and can be split into parallel
and perpendicular components to the cross product of the
vectors defining the plane. These components can be
found by vector projection and rejection. The triple product
is in the plane and is rotated as shown.

This can be the case where b and c cancel, but
additionally where a and b − c are parallel;
that is, they are related by a scale factor t,
leading to:

for some scalar t.

If, in addition to a × b = a × c and a ≠ 0 as
above, it is the case that a ⋅ b = a ⋅ c then

As b − c cannot be simultaneously parallel (for
the cross product to be 0) and perpendicular
(for the dot product to be 0) to a, it must be the
case that b and c cancel: b = c.

From the geometrical definition, the cross
product is invariant under proper rotations
about the axis defined by a × b. In formulae:

, where  is a rotation matrix with .

More generally, the cross product obeys the following identity under matrix transformations:

where  is a 3-by-3 matrix and  is the transpose of the inverse and  is the cofactor matrix. It
can be readily seen how this formula reduces to the former one if  is a rotation matrix. If  is a 3-by-3
symmetric matrix applied to a generic cross product , the following relation holds true:

The cross product of two vectors lies in the null space of the 2 × 3 matrix with the vectors as rows:

For the sum of two cross products, the following identity holds:

The product rule of differential calculus applies to any bilinear operation, and therefore also to the cross
product:

Differentiation
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where a and b are vectors that depend on the real variable t.

The cross product is used in both forms of the triple product. The scalar triple product of three vectors is
defined as

It is the signed volume of the parallelepiped with edges a, b and c and as such the vectors can be used in
any order that's an even permutation of the above ordering. The following therefore are equal:

The vector triple product is the cross product of a vector with the result of another cross product, and is
related to the dot product by the following formula

The mnemonic "BAC minus CAB" is used to remember the order of the vectors in the right hand member.
This formula is used in physics to simplify vector calculations. A special case, regarding gradients and
useful in vector calculus, is

where ∇2 is the vector Laplacian operator.

Other identities relate the cross product to the scalar triple product:

where I is the identity matrix.

The cross product and the dot product are related by:

The right-hand side is the Gram determinant of a and b, the square of the area of the parallelogram defined
by the vectors. This condition determines the magnitude of the cross product. Namely, since the dot product
is defined, in terms of the angle θ between the two vectors, as:

the above given relationship can be rewritten as follows:

Triple product expansion

Alternative formulation
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Invoking the Pythagorean trigonometric identity one obtains:

which is the magnitude of the cross product expressed in terms of θ, equal to the area of the parallelogram
defined by a and b (see definition above).

The combination of this requirement and the property that the cross product be orthogonal to its constituents
a and b provides an alternative definition of the cross product.[13]

The relation:

can be compared with another relation involving the right-hand side, namely Lagrange's identity expressed
as:[14]

where a and b may be n-dimensional vectors. This also shows that the Riemannian volume form for
surfaces is exactly the surface element from vector calculus. In the case where n = 3, combining these two
equations results in the expression for the magnitude of the cross product in terms of its components:[15]

The same result is found directly using the components of the cross product found from:

In R3, Lagrange's equation is a special case of the multiplicativity |vw | = |v ||w | of the norm in the
quaternion algebra.

It is a special case of another formula, also sometimes called Lagrange's identity, which is the three
dimensional case of the Binet–Cauchy identity:[16][17]

If a = c and b = d this simplifies to the formula above.

Lagrange's identity

Infinitesimal generators of rotations
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The cross product conveniently describes the infinitesimal generators of rotations in R3. Specifically, if n is
a unit vector in R3 and R(φ, n) denotes a rotation about the axis through the origin specified by n, with
angle φ (measured in radians, counterclockwise when viewed from the tip of n), then

for every vector x in R3. The cross product with n therefore describes the infinitesimal generator of the
rotations about n. These infinitesimal generators form the Lie algebra so(3) of the rotation group SO(3), and
we obtain the result that the Lie algebra R3 with cross product is isomorphic to the Lie algebra so(3).

The vector cross product also can be expressed as the product of a skew-symmetric matrix and a vector:[16]

where superscript T refers to the transpose operation, and [a]× is defined by:

The columns [a]×,i of the skew-symmetric matrix for a vector a can be also obtained by calculating the
cross product with unit vectors. That is,

or

where  is the outer product operator.

Also, if a is itself expressed as a cross product:

then
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Proof by substitution

Evaluation of the cross product gives

Hence, the left hand side equals

Now, for the right hand side,

And its transpose is

Evaluation of the right hand side gives

Comparison shows that the left hand side equals the right hand side.

This result can be generalized to higher dimensions using geometric algebra. In particular in any dimension
bivectors can be identified with skew-symmetric matrices, so the product between a skew-symmetric matrix
and vector is equivalent to the grade-1 part of the product of a bivector and vector.[18] In three dimensions
bivectors are dual to vectors so the product is equivalent to the cross product, with the bivector instead of its
vector dual. In higher dimensions the product can still be calculated but bivectors have more degrees of
freedom and are not equivalent to vectors.[18]

This notation is also often much easier to work with, for example, in epipolar geometry.

From the general properties of the cross product follows immediately that

  and  
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and from fact that [a]× is skew-symmetric it follows that

The above-mentioned triple product expansion (bac–cab rule) can be easily proven using this notation.

As mentioned above, the Lie algebra R3 with cross product is isomorphic to the Lie algebra so(3), whose
elements can be identified with the 3×3 skew-symmetric matrices. The map a → [a]× provides an
isomorphism between R3 and so(3). Under this map, the cross product of 3-vectors corresponds to the
commutator of 3x3 skew-symmetric matrices.

Matrix conversion for cross product with canonical base vectors
Denoting with  the -th canonical base vector, the cross
product of a generic vector  with  is given by: ,
where

These matrices share the following properties:

 (skew-symmetric);
Both trace and determinant are zero;

;

 (see below);

The orthogonal projection matrix of a vector  is given by 

. The projection matrix onto the orthogonal

complement is given by , where  is the identity matrix. For
the special case of , it can be verified that

For other properties of orthogonal projection matrices, see projection
(linear algebra).
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Mnemonic to calculate a cross
product in vector form

The cross product can alternatively be defined in terms of the Levi-Civita tensor Eijk and a dot product ηmi,
which are useful in converting vector notation for tensor applications:

where the indices  correspond to vector components. This characterization of the cross product is
often expressed more compactly using the Einstein summation convention as

in which repeated indices are summed over the values 1 to 3.

In a positively-oriented orthonormal basis ηmi = δmi (the Kronecker delta) and  (the Levi-Civita
symbol). In that case, this representation is another form of the skew-symmetric representation of the cross
product:

In classical mechanics: representing the cross product by using the Levi-Civita symbol can cause
mechanical symmetries to be obvious when physical systems are isotropic. (An example: consider a particle
in a Hooke's Law potential in three-space, free to oscillate in three dimensions; none of these dimensions
are "special" in any sense, so symmetries lie in the cross-product-represented angular momentum, which
are made clear by the abovementioned Levi-Civita representation).

The word "xyzzy" can be used to remember the definition of the
cross product.

If

where:

then:

Index notation for tensors

Mnemonic
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The second and third equations can be obtained from the first by simply vertically rotating the subscripts,
x → y → z → x. The problem, of course, is how to remember the first equation, and two options are
available for this purpose: either to remember the relevant two diagonals of Sarrus's scheme (those
containing i), or to remember the xyzzy sequence.

Since the first diagonal in Sarrus's scheme is just the main diagonal of the above-mentioned 3×3 matrix, the
first three letters of the word xyzzy can be very easily remembered.

Similarly to the mnemonic device above, a "cross" or X can be visualized between the two vectors in the
equation. This may be helpful for remembering the correct cross product formula.

If

then:

If we want to obtain the formula for  we simply drop the  and  from the formula, and take the next
two components down:

When doing this for  the next two elements down should "wrap around" the matrix so that after the z
component comes the x component. For clarity, when performing this operation for , the next two
components should be z and x (in that order). While for  the next two components should be taken as x
and y.

For  then, if we visualize the cross operator as pointing from an element on the left to an element on the
right, we can take the first element on the left and simply multiply by the element that the cross points to in
the right hand matrix. We then subtract the next element down on the left, multiplied by the element that the
cross points to here as well. This results in our  formula –

We can do this in the same way for  and  to construct their associated formulas.

The cross product has applications in various contexts. For example, it is used in computational geometry,
physics and engineering. A non-exhaustive list of examples follows.

Cross visualization

Applications
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The cross product appears in the calculation of the distance of two skew lines (lines not in the same plane)
from each other in three-dimensional space.

The cross product can be used to calculate the normal for a triangle or polygon, an operation frequently
performed in computer graphics. For example, the winding of a polygon (clockwise or anticlockwise)
about a point within the polygon can be calculated by triangulating the polygon (like spoking a wheel) and
summing the angles (between the spokes) using the cross product to keep track of the sign of each angle.

In computational geometry of the plane, the cross product is used to determine the sign of the acute angle
defined by three points  and . It corresponds to the direction
(upward or downward) of the cross product of the two coplanar vectors defined by the two pairs of points 

 and . The sign of the acute angle is the sign of the expression

which is the signed length of the cross product of the two vectors.

In the "right-handed" coordinate system, if the result is 0, the points are collinear; if it is positive, the three
points constitute a positive angle of rotation around  from  to , otherwise a negative angle. From
another point of view, the sign of  tells whether  lies to the left or to the right of line 

The cross product is used in calculating the volume of a polyhedron such as a tetrahedron or parallelepiped.

The angular momentum L of a particle about a given origin is defined as:

where r is the position vector of the particle relative to the origin, p is the linear momentum of the particle.

In the same way, the moment M of a force FB applied at point B around point A is given as:

In mechanics the moment of a force is also called torque and written as 

Since position r, linear momentum p and force F are all true vectors, both the angular momentum L and
the moment of a force M are pseudovectors or axial vectors.

The cross product frequently appears in the description of rigid motions. Two points P and Q on a rigid
body can be related by:

where  is the point's position,  is its velocity and  is the body's angular velocity.

Since position  and velocity  are true vectors, the angular velocity  is a pseudovector or axial vector.

Computational geometry

Angular momentum and torque

Rigid body
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The cross product in relation to the
exterior product. In red are the
orthogonal unit vector, and the
"parallel" unit bivector.

The cross product is used to describe the Lorentz force experienced by a moving electric charge qe:

Since velocity v, force F and electric field E are all true vectors, the magnetic field B is a pseudovector.

In vector calculus, the cross product is used to define the formula for the vector operator curl.

The trick of rewriting a cross product in terms of a matrix multiplication appears frequently in epipolar and
multi-view geometry, in particular when deriving matching constraints.

The cross product can be defined in terms of the exterior product. It
can be generalized to an external product in other than three
dimensions.[19] This view allows for a natural geometric
interpretation of the cross product. In exterior algebra the exterior
product of two vectors is a bivector. A bivector is an oriented plane
element, in much the same way that a vector is an oriented line
element. Given two vectors a and b, one can view the bivector
a ∧ b as the oriented parallelogram spanned by a and b. The cross
product is then obtained by taking the Hodge star of the bivector
a ∧ b, mapping 2-vectors to vectors:

This can be thought of as the oriented multi-dimensional element
"perpendicular" to the bivector. Only in three dimensions is the
result an oriented one-dimensional element – a vector – whereas,
for example, in four dimensions the Hodge dual of a bivector is
two-dimensional – a bivector. So, only in three dimensions can a vector cross product of a and b be defined
as the vector dual to the bivector a ∧ b: it is perpendicular to the bivector, with orientation dependent on the
coordinate system's handedness, and has the same magnitude relative to the unit normal vector as a ∧ b has
relative to the unit bivector; precisely the properties described above.

When physics laws are written as equations, it is possible to make an arbitrary choice of the coordinate
system, including handedness. One should be careful to never write down an equation where the two sides
do not behave equally under all transformations that need to be considered. For example, if one side of the
equation is a cross product of two polar vectors, one must take into account that the result is an axial vector.
Therefore, for consistency, the other side must also be an axial vector. More generally, the result of a cross

Lorentz force

Other

As an external product

Handedness

Consistency

https://en.wikipedia.org/wiki/File:Exterior_calc_cross_product.svg
https://en.wikipedia.org/wiki/Unit_vector
https://en.wikipedia.org/wiki/Lorentz_force
https://en.wikipedia.org/wiki/Vector_calculus
https://en.wikipedia.org/wiki/Vector_operator
https://en.wikipedia.org/wiki/Curl_(mathematics)
https://en.wikipedia.org/wiki/Epipolar_geometry
https://en.wikipedia.org/wiki/Cross_product#External_product
https://en.wikipedia.org/wiki/Exterior_algebra
https://en.wikipedia.org/wiki/Hodge_star
https://en.wikipedia.org/wiki/P-vector
https://en.wikipedia.org/wiki/Polar_vector
https://en.wikipedia.org/wiki/Pseudovector


product may be either a polar vector or an axial vector, depending on the type of its operands (polar vectors
or axial vectors). Namely, polar vectors and axial vectors are interrelated in the following ways under
application of the cross product:

polar vector × polar vector = axial vector
axial vector × axial vector = axial vector
polar vector × axial vector = polar vector
axial vector × polar vector = polar vector

or symbolically

polar × polar = axial
axial × axial = axial
polar × axial = polar
axial × polar = polar

Because the cross product may also be a polar vector, it may not change direction with a mirror image
transformation. This happens, according to the above relationships, if one of the operands is a polar vector
and the other one is an axial vector (e.g., the cross product of two polar vectors). For instance, a vector
triple product involving three polar vectors is a polar vector.

A handedness-free approach is possible using exterior algebra.

Let (i, j,k) be an orthonormal basis. The vectors i, j and k don't depend on the orientation of the space.
They can even be defined in the absence of any orientation. They can not therefore be axial vectors. But if i
and j are polar vectors then k is an axial vector for i × j = k or j × i = k. This is a paradox.

"Axial" and "polar" are physical qualifiers for physical vectors; that is, vectors which represent physical
quantities such as the velocity or the magnetic field. The vectors i, j and k are mathematical vectors, neither
axial nor polar. In mathematics, the cross-product of two vectors is a vector. There is no contradiction.

There are several ways to generalize the cross product to higher dimensions.

The cross product can be seen as one of the simplest Lie products, and is thus generalized by Lie algebras,
which are axiomatized as binary products satisfying the axioms of multilinearity, skew-symmetry, and the
Jacobi identity. Many Lie algebras exist, and their study is a major field of mathematics, called Lie theory.

For example, the Heisenberg algebra gives another Lie algebra structure on  In the basis  the
product is 

The paradox of the orthonormal basis

Generalizations

Lie algebra

Quaternions
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The cross product can also be described in terms of quaternions. In general, if a vector [a1, a2, a3] is
represented as the quaternion a1i + a2j + a3k, the cross product of two vectors can be obtained by taking
their product as quaternions and deleting the real part of the result. The real part will be the negative of the
dot product of the two vectors.

A cross product for 7-dimensional vectors can be obtained in the same way by using the octonions instead
of the quaternions. The nonexistence of nontrivial vector-valued cross products of two vectors in other
dimensions is related to the result from Hurwitz's theorem that the only normed division algebras are the
ones with dimension 1, 2, 4, and 8.

In general dimension, there is no direct analogue of the binary cross product that yields specifically a vector.
There is however the exterior product, which has similar properties, except that the exterior product of two
vectors is now a 2-vector instead of an ordinary vector. As mentioned above, the cross product can be
interpreted as the exterior product in three dimensions by using the Hodge star operator to map 2-vectors to
vectors. The Hodge dual of the exterior product yields an (n − 2)-vector, which is a natural generalization
of the cross product in any number of dimensions.

The exterior product and dot product can be combined (through summation) to form the geometric product
in geometric algebra.

As mentioned above, the cross product can be interpreted in three dimensions as the Hodge dual of the
exterior product. In any finite n dimensions, the Hodge dual of the exterior product of n − 1 vectors is a
vector. So, instead of a binary operation, in arbitrary finite dimensions, the cross product is generalized as
the Hodge dual of the exterior product of some given n − 1 vectors. This generalization is called external
product.[20]

Interpreting the three-dimensional vector space of the algebra as the 2-vector (not the 1-vector) subalgebra
of the three-dimensional geometric algebra, where , , and , the cross product
corresponds exactly to the commutator product in geometric algebra and both use the same symbol . The
commutator product is defined for 2-vectors  and  in geometric algebra as:

where  is the geometric product.[21]

The commutator product could be generalised to arbitrary multivectors in three dimensions, which results in
a multivector consisting of only elements of grades 1 (1-vectors/true vectors) and 2 (2-
vectors/pseudovectors). While the commutator product of two 1-vectors is indeed the same as the exterior
product and yields a 2-vector, the commutator of a 1-vector and a 2-vector yields a true vector,
corresponding instead to the left and right contractions in geometric algebra. The commutator product of

Octonions

Exterior product

External product

Commutator product
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two 2-vectors has no corresponding equivalent product, which is why the commutator product is defined in
the first place for 2-vectors. Furthermore, the commutator triple product of three 2-vectors is the same as the
vector triple product of the same three pseudovectors in vector algebra. However, the commutator triple
product of three 1-vectors in geometric algebra is instead the negative of the vector triple product of the
same three true vectors in vector algebra.

Generalizations to higher dimensions is provided by the same commutator product of 2-vectors in higher-
dimensional geometric algebras, but the 2-vectors are no longer pseudovectors. Just as the commutator
product/cross product of 2-vectors in three dimensions correspond to the simplest Lie algebra, the 2-vector
subalgebras of higher dimensional geometric algebra equipped with the commutator product also
correspond to the Lie algebras.[22] Also as in three dimensions, the commutator product could be further
generalised to arbitrary multivectors.

In the context of multilinear algebra, the cross product can be seen as the (1,2)-tensor (a mixed tensor,
specifically a bilinear map) obtained from the 3-dimensional volume form,[note 2] a (0,3)-tensor, by raising
an index.

In detail, the 3-dimensional volume form defines a product  by taking the determinant
of the matrix given by these 3 vectors. By duality, this is equivalent to a function  (fixing
any two inputs gives a function  by evaluating on the third input) and in the presence of an inner
product (such as the dot product; more generally, a non-degenerate bilinear form), we have an isomorphism

 and thus this yields a map  which is the cross product: a (0,3)-tensor (3 vector
inputs, scalar output) has been transformed into a (1,2)-tensor (2 vector inputs, 1 vector output) by "raising
an index".

Translating the above algebra into geometry, the function "volume of the parallelepiped defined by 
" (where the first two vectors are fixed and the last is an input), which defines a function ,

can be represented uniquely as the dot product with a vector: this vector is the cross product  From
this perspective, the cross product is defined by the scalar triple product, 

In the same way, in higher dimensions one may define generalized cross products by raising indices of the
n-dimensional volume form, which is a -tensor. The most direct generalizations of the cross product
are to define either:

a -tensor, which takes as input  vectors, and gives as output 1 vector – an 
-ary vector-valued product, or

a -tensor, which takes as input 2 vectors and gives as output skew-symmetric
tensor of rank n − 2 – a binary product with rank n − 2 tensor values. One can also define 

-tensors for other k.

These products are all multilinear and skew-symmetric, and can be defined in terms of the determinant and
parity.

The -ary product can be described as follows: given  vectors  in  define
their generalized cross product  as:

perpendicular to the hyperplane defined by the 
magnitude is the volume of the parallelotope defined by the  which can be computed as
the Gram determinant of the 

Multilinear algebra
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oriented so that  is positively oriented.

This is the unique multilinear, alternating product which evaluates to , 
 and so forth for cyclic permutations of indices.

In coordinates, one can give a formula for this -ary analogue of the cross product in Rn by:

This formula is identical in structure to the determinant formula for the normal cross product in R3 except
that the row of basis vectors is the last row in the determinant rather than the first. The reason for this is to
ensure that the ordered vectors (v1, ..., vn−1, Λn–1

i=0 vi) have a positive orientation with respect to (e1, ..., en).
If n is odd, this modification leaves the value unchanged, so this convention agrees with the normal
definition of the binary product. In the case that n is even, however, the distinction must be kept. This 

-ary form enjoys many of the same properties as the vector cross product: it is alternating and linear
in its arguments, it is perpendicular to each argument, and its magnitude gives the hypervolume of the
region bounded by the arguments. And just like the vector cross product, it can be defined in a coordinate
independent way as the Hodge dual of the wedge product of the arguments.

In 1773, Joseph-Louis Lagrange used the component form of both the dot and cross products in order to
study the tetrahedron in three dimensions.[23][note 3]

In 1843, William Rowan Hamilton introduced the quaternion product, and with it the terms vector and
scalar. Given two quaternions [0, u] and [0, v], where u and v are vectors in R3, their quaternion product
can be summarized as [−u ⋅ v, u × v]. James Clerk Maxwell used Hamilton's quaternion tools to develop
his famous electromagnetism equations, and for this and other reasons quaternions for a time were an
essential part of physics education.

In 1844, Hermann Grassmann published a geometric algebra not tied to dimension two or three.
Grassmann develops several products, including a cross product represented then by [uv].[24] (See also:
exterior algebra.)

In 1853, Augustin-Louis Cauchy, a contemporary of Grassmann, published a paper on algebraic keys
which were used to solve equations and had the same multiplication properties as the cross product.[25][26]

In 1878, William Kingdon Clifford published Elements of Dynamic, in which the term vector product is
attested. In the book, this product of two vectors is defined to have magnitude equal to the area of the
parallelogram of which they are two sides, and direction perpendicular to their plane.[27] (See also: Clifford
algebra.)

In 1881 lecture notes, Gibbs represents the cross product by  and calls it the skew product.[28][29] In
1901, Gibb's student Edwin Bidwell Wilson edits and extends these lecture notes into the textbook Vector
Analysis. Wilson keeps the term skew product, but observes that the alternative terms cross product[note 4]

and vector product were more frequent.[30]

History
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In 1908, Cesare Burali-Forti and Roberto Marcolongo introduce the vector product notation u ∧ v.[24]

This is used in France and other areas until this day, as the symbol  is already used to denote
multiplication and the cartesian product.

Cartesian product – a product of two sets
Geometric algebra: Rotating systems
Multiple cross products – products involving more than three vectors
Multiplication of vectors
Quadruple product
× (the symbol)

1. Here, "formal" means that this notation has the form of a determinant, but does not strictly
adhere to the definition; it is a mnemonic used to remember the expansion of the cross
product.

2. By a volume form one means a function that takes in n vectors and gives out a scalar, the
volume of the parallelotope defined by the vectors:  This is an n-ary
multilinear skew-symmetric form. In the presence of a basis, such as on  this is given by
the determinant, but in an abstract vector space, this is added structure. In terms of G-
structures, a volume form is an -structure.

3. In modern notation, Lagrange defines , , and . Thereby, the
modern  corresponds to the three variables  in Lagrange's notation.

4. since A × B is read as "A cross B"
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