
Drawing showing how a Kapitza
pendulum can be constructed: a
motor rotates a crank at a high
speed, the crank vibrates a lever arm
up and down, which the pendulum is
attached to with a pivot.

Kapitza's pendulum
Kapitza's pendulum or Kapitza pendulum is a rigid pendulum in which
the pivot point vibrates in a vertical direction, up and down. It is named
after Russian Nobel laureate physicist Pyotr Kapitza, who in 1951
developed a theory which successfully explains some of its unusual
properties.[1] The unique feature of the Kapitza pendulum is that the
vibrating suspension can cause it to balance stably in an inverted position,
with the bob above the suspension point. In the usual pendulum with a
fixed suspension, the only stable equilibrium position is with the bob
hanging below the suspension point; the inverted position is a point of
unstable equilibrium, and the smallest perturbation moves the pendulum
out of equilibrium. In nonlinear control theory the Kapitza pendulum is
used as an example of a parametric oscillator that demonstrates the concept
of "dynamic stabilization".

The pendulum was first described by A. Stephenson in 1908, who found
that the upper vertical position of the pendulum might be stable when the
driving frequency is fast.[2] Yet until the 1950s there was no explanation
for this highly unusual and counterintuitive phenomenon. Pyotr Kapitza
was the first to analyze it in 1951.[1] He carried out a number of
experimental studies and as well provided an analytical insight into the
reasons of stability by splitting the motion into "fast" and "slow" variables
and by introducing an effective potential. This innovative work created a
new subject in physics – vibrational mechanics. Kapitza's method is used
for description of periodic processes in atomic physics, plasma physics and
cybernetical physics. The effective potential which describes the "slow"
component of motion is described in "Mechanics" volume (§30) of
Landau's Course of Theoretical Physics.[3]

Another interesting feature of the Kapitza pendulum system is that the bottom equilibrium position, with the
pendulum hanging down below the pivot, is no longer stable. Any tiny deviation from the vertical increases in
amplitude with time.[4] Parametric resonance can also occur in this position, and chaotic regimes can be realized in
the system when strange attractors are present in the Poincaré section.
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Kapitza's pendulum scheme

Denote the vertical axis as  and the horizontal axis as  so that the
motion of pendulum happens in the ( - ) plane. The following notation
will be used

—frequency of the vertical oscillations of the suspension,
 — amplitude of the oscillations of the suspension,

 — proper frequency of the mathematical

pendulum,
 — free fall acceleration,
 — length of rigid and light pendulum,

 — mass.

Denoting the angle between pendulum and downward direction as  the time dependence of the position of
pendulum gets written as

The potential energy of the pendulum is due to gravity and is defined by, in terms of the vertical position, as

The kinetic energy in addition to the standard term , describing velocity of a mathematical
pendulum, there is a contribution due to vibrations of the suspension

The total energy is given by the sum of the kinetic and potential energies  and the Lagrangian
by their difference .

The total energy is conserved in a mathematical pendulum, so time  dependence of the potential  and
kinetic  energies is symmetric with respect to the horizontal line. According to the virial theorem the mean
kinetic and potential energies in harmonic oscillator are equal. This means that the line of symmetry corresponds to
half of the total energy.

In the case of vibrating suspension the system is no longer a closed one and the total energy is no longer
conserved. The kinetic energy is more sensitive to vibration compared to the potential one. The potential energy 

 is bound from below and above  while the kinetic energy is
bound only from below . For high frequency of vibrations  the kinetic energy can be large compared
to the potential energy.

Motion of pendulum satisfies Euler–Lagrange equations. The dependence of the phase  of the pendulum on its
position satisfies the equation:[5]
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where the Lagrangian  reads

up to irrelevant total time derivative terms. The differential equation

which describes the movement of the pendulum is nonlinear due to the  factor.

Kapitza's pendulum model is more general than the simple pendulum. The Kapitza model reduces to the latter in
the limit . In that limit, the tip of the pendulum describes a circle: . If the energy
in the initial moment is larger than the maximum of the potential energy  then the trajectory will be
closed and cyclic. If the initial energy is smaller  then the pendulum will oscillate close to the only stable
point .

When the suspension is vibrating with a small amplitude  and with a frequency  much higher than
the proper frequency , the angle  may be viewed as a superposition  of a "slow" component 
and a rapid oscillation  with small amplitude due to the small but rapid vibrations of the suspension. Technically,
we perform a perturbative expansion in the "coupling constants"  while treating the ratio 

 as fixed. The perturbative treatment becomes exact in the double scaling limit .
More precisely, the rapid oscillation  is defined as

The equation of motion for the "slow" component  becomes

Time-averaging over the rapid -oscillation yields to leading order

The "slow" equation of motion becomes
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by introducing an effective potential

It turns out[1] that the effective potential  has two minima if , or equivalently, 
. The first minimum is in the same position  as the mathematical pendulum

and the other minimum is in the upper vertical position . As a result the upper vertical position,
which is unstable in a mathematical pendulum, can become stable in Kapitza's pendulum.

The rotating solutions of the Kapitza's pendulum occur when the pendulum rotates around the pivot point at the
same frequency that the pivot point is driven. There are two rotating solutions, one for a rotation in each direction.
We shift to the rotating reference frame using  and the equation for  becomes:

Again considering the limit in which  is much higher than the proper frequency , we find that the rapid-
slow-  limit leads to the equation:

The effective potential is just that of a simple pendulum equation. There is a stable equilibrium at  and an
unstable equilibrium at .

Interesting phase portraits might be obtained in regimes which are not accessible within analytic descriptions, for
example in the case of large amplitude of the suspension .[6][7] Increasing the amplitude of driving
oscillations to half of the pendulum length  leads to the phase portrait shown in the figure.

Further increase of the amplitude to  leads to full filling of the internal points of the phase space: if before
some points of the phase space were not accessible, now system can reach any of the internal points. This situation
holds also for larger values of .

Kapitza noted that a pendulum clock with a vibrating pendulum suspension always goes faster
than a clock with a fixed suspension.[8]

Walking is defined by an 'inverted pendulum' gait in which the body vaults over the stiff limb or
limbs with each step. Increased stability during walking might be related to stability of Kapitza's
pendulum. This applies regardless of the number of limbs - even arthropods with six, eight or more
limbs.[9]

1. Kapitza P. L. (1951). "Dynamic stability of a pendulum when its point of suspension vibrates".
Soviet Phys. JETP. 21: 588–597.; Kapitza P. L. (1951). "Pendulum with a vibrating suspension".

Rotating solutions

Phase portrait

Interesting facts

Literature

https://en.wikipedia.org/wiki/Effective_potential
https://en.wikipedia.org/wiki/Pendulum_clock
https://en.wikipedia.org/wiki/Walking


Usp. Fiz. Nauk. 44: 7–15. doi:10.3367/UFNr.0044.195105b.0007 (https://doi.org/10.3367%2FUFN
r.0044.195105b.0007).

2. Stephenson Andrew (1908). "XX.On induced stability" (https://zenodo.org/record/1430846).
Philosophical Magazine. 6. 15 (86): 233–236. doi:10.1080/14786440809463763 (https://doi.org/10.
1080%2F14786440809463763).

3. L. D. Landau, E. M. Lifshitz (1960). Mechanics. Vol. 1 (1st ed.). Pergamon Press.
ASIN B0006AWV88 (https://www.amazon.com/dp/B0006AWV88).

4. Бутиков Е. И. «Маятник с осциллирующим подвесом (к 60-летию маятника Капицы»),
учебное пособие (http://faculty.ifmo.ru/butikov/Russian/ParamPendulum.pdf).

5. V. P. Krainov (2002). Selected Mathematical Methods in Theoretical Physics (1st ed.). Taylor &
Francis. ISBN 978-0-415-27234-6.

6. G. E. Astrakharchik, N. A. Astrakharchik «Numerical study of Kapitza pendulum» arXiv:1103.5981
(https://arxiv.org/abs/1103.5981) (2011)

7. Time motion of Kapitza's pendulum can be modeled in online java applets on the following sites:
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