
The size of the Sun
M. A. Fardin and M. Hautefeuille

Citation: American Journal of Physics 90, 914 (2022); doi: 10.1119/5.0081964
View online: https://doi.org/10.1119/5.0081964
View Table of Contents: https://aapt.scitation.org/toc/ajp/90/12
Published by the American Association of Physics Teachers

ARTICLES YOU MAY BE INTERESTED IN

Approximate insightful ODE solutions
American Journal of Physics 90, 887 (2022); https://doi.org/10.1119/5.0131531

An introduction to the Markov chain Monte Carlo method
American Journal of Physics 90, 921 (2022); https://doi.org/10.1119/5.0122488

Graphical analysis of an oscillator with constant magnitude sliding friction
American Journal of Physics 90, 889 (2022); https://doi.org/10.1119/5.0073812

Exploration of the Q factor for a parallel RLC circuit
American Journal of Physics 90, 903 (2022); https://doi.org/10.1119/5.0074843

Charging a supercapacitor through a lamp: A power-law RC decay
American Journal of Physics 90, 895 (2022); https://doi.org/10.1119/5.0065500

A Bose horn antenna radio telescope (BHARAT) design for 21 cm hydrogen line experiments for radio astronomy
teaching
American Journal of Physics 90, 948 (2022); https://doi.org/10.1119/5.0065381

https://images.scitation.org/redirect.spark?MID=176720&plid=1953383&setID=405125&channelID=0&CID=715916&banID=520851873&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=1bc8b3d27f0e6d96c68af8370f214ee6ecfa4fd2&location=
https://aapt.scitation.org/author/Fardin%2C+M+A
https://aapt.scitation.org/author/Hautefeuille%2C+M
/loi/ajp
https://doi.org/10.1119/5.0081964
https://aapt.scitation.org/toc/ajp/90/12
https://aapt.scitation.org/publisher/
https://aapt.scitation.org/doi/10.1119/5.0131531
https://doi.org/10.1119/5.0131531
https://aapt.scitation.org/doi/10.1119/5.0122488
https://doi.org/10.1119/5.0122488
https://aapt.scitation.org/doi/10.1119/5.0073812
https://doi.org/10.1119/5.0073812
https://aapt.scitation.org/doi/10.1119/5.0074843
https://doi.org/10.1119/5.0074843
https://aapt.scitation.org/doi/10.1119/5.0065500
https://doi.org/10.1119/5.0065500
https://aapt.scitation.org/doi/10.1119/5.0065381
https://aapt.scitation.org/doi/10.1119/5.0065381
https://doi.org/10.1119/5.0065381


The size of the Sun

M. A. Fardina)

Universit�e de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France and The Academy of Bradylogists,
75013 Paris, France

M. Hautefeuille
Institut de Biologie Paris Seine, Sorbonne Universit�e, 7 quai Saint Bernard, 75005 Paris, France

(Received 11 December 2021; accepted 2 October 2022)

Why does the Sun have a radius around 696 000 km? We will see in this article that dimensional

arguments can be used to understand the size of the Sun and of a few other things along the way.

These arguments are not new and can be found scattered in textbooks. They are presented here in a

succinct way in order to better confront the kinematic and mechanical viewpoints on size. We

derive and compare a number of expressions for the size of the Sun and relate large and small

scales. We hope that such presentation will be useful to students, instructors, and researchers alike.
# 2022 Published under an exclusive license by American Association of Physics Teachers.
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I. INTRODUCTION

In The Character of Physical Law, Richard Feynman
stated that “every theoretical physicist who is any good
knows six or seven different theoretical representations for
exactly the same physics. He knows that they are all equiva-
lent, and that nobody is ever going to be able to decide which
one is right at that level, but he keeps them in his head, hop-
ing that they will give him different ideas for guessing.”1

Following Feynman’s advice, we provide several different
expressions for the radius of the Sun. More generally, this
will lead us to expressions for the size of other stars and
astronomical bodies like planets and satellites, and eventu-
ally to a discussion of size in a broader sense.

Many excellent textbooks review the multiple sciences
involved in the understanding of stars, their mechanics,
thermodynamics, acoustics, the intricacies of radiative and
convective processes, the interplay of atomic and nuclear
physics, or the crossover between quantum and relativistic
phenomena. To assist writing this article, we principally used
the book Stellar Structure and Evolution.2 These many
approaches cover widely varying scales and viewpoints, and
they can be followed quite rigorously in many cases, yielding
very good agreement with observations. The present article
proposes a walk through some of the most thought-provoking
formulas offered by this field in order to show how the differ-
ent viewpoints are related, painting a kaleidoscopic answer to
the question: “what is the size of the Sun?”

Volumes have been written on the physics of stars because
each argument that we will highlight can actually be pushed
to a high degree of precision through adequate consideration
of the geometric and dynamical subtleties underlying them.
To enable a wide-ranging exploration in the short span of
this article, we will have to neglect these subtleties; we will
rely mostly on dimensional arguments. Formulas that will be
presented have to be understood as approximate, neglecting
small numerical factors of order 1. For instance, we will say
that the volume of a sphere of radius R is R3, omitting the
factor 4p=3. Similarly, we will neglect careful integration of
spatially varying fields like pressure and density and only
rely on approximate bulk averages. At no point shall we ven-
ture to state exact results, so we have used the sign “¼” to
stand for approximate equality, where others usually use

“/” or “’.” We have reserved these last two symbols to,
respectively, stand for scaling relations and approximate
numerical results. Thus, when we will say that A / B, we
mean that A is proportional to B, and when we say that
A ’ aua, we mean that the value of A in units ua is approxi-
mately the number a.

II. HYDROSTATIC EQUILIBRIUM

The most common way to approach the size of the Sun
and similar stars is to consider that it derives from an equilib-
rium between two competing factors. The first factor is grav-
ity, which tends to compress the Sun. It can be expressed as
a force per unit volume W (dimensionsML�2T �2). The sec-
ond factor is the pressure inside the sun, resisting further
compression. It can be expressed as a force per unit area R
(ML�1T �2). From these two quantities, dimensions can
combine to produce a length

R ¼ R
W
: (1)

This length R is the radius of the Sun, understood as a ratio
of pressure and force density. This approach is generally
called that of “hydrostatic equilibrium,” because it basically
has the same form as the relation between the pressure inside
a fluid and its own weight.3 This argument of hydrostatic
equilibrium first emerged in the late 19th century in studies
by Lane, Kelvin, and Helmholtz.4,5 The equilibrium can also
be written as W ¼ R=R, which relates the force density to a
pressure gradient, or as WR ¼ R, which relates the gravita-
tional inward pressure on the left to the outward pressure on
the right. The radius can also be seen as the result of the bal-
ance of forces WR3 ¼ RR2. Of course, neither pressure nor
force density are homogeneous inside the Sun, so the quanti-
ties W and R should be understood as giving average orders
of magnitude.

To evaluate the relevance of Eq. (1), we can express the
force density as the product between the average density of
the Sun and the acceleration of gravity on its surface:

W ¼ qg. Using the experimental values q ’ 103 kg/m3 and

g ’ 3 102 m/s2, this gives W ’ 3 105 N/m3.6 Since the

observed radius of the Sun is R ’ 7 108 m, for Eq. (1) to be
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valid would imply that the average pressure of the Sun is

R ’ 2 1014 Pa. In practice, the pressure of the Sun varies

from about 10�2 Pa in its corona7 to 3 1016 Pa in the core, so

R ’ 2 1014 Pa must be understood as a bulk average.6

III. SOUND SPEED AND GRAVITATIONAL

ACCELERATION

The hydrostatic equilibrium as expressed in Eq. (1) is the
archetype of a mechanical expression for a length scale. By
this, we mean that the radius R, with dimension L, is
expressed as a ratio between two “mass-carrying quantities,”
i.e., quantities with mass in their units. In the case where the
force density can be expressed as a weight density W ¼ qg,
the hydrostatic equilibrium can also be turned into a purely
kinematic expression

R ¼ v2
s

g
; (2)

where vs ¼ ðR=qÞ
1
2 is the “speed of sound” inside the Sun,

i.e., the speed of mechanical waves.3 In this expression of the
radius, the terms of the ratio on the right-hand side do not
have any mass in their units. The dimensions of the speed vs

are LT �1, and the dimensions of the acceleration g are

LT �2. Overall, the ratio v2
s=g has the dimensions of a dis-

tance. Here again, the terms of the equation can be moved
around so as to gain new insight. For instance, one can notice
that R=vs is the time required for sound waves to travel across
the Sun. According to Eq. (2), this time scale should be equal
to vs=g. We will shortly see how to interpret this time scale.

If the radius and accelerations are known, Eq. (2) can be
used to estimate the average sound speed inside the Sun, as

vs ¼ ðRgÞ
1
2 ’ 4 105 m/s. This value is indeed the right order

of magnitude of the bulk average.6,8

IV. THE GRAVITATIONAL CONSTANTS

We mentioned that at the surface of the Sun, the gravita-
tional acceleration is g ’ 275 m/s2, yet on Earth it is g ’ 9:8
m/s2. This difference is due to the fact that behind the accelera-
tion g hides the mass and the radius R itself. Indeed, the weight
Fi ¼ mig of an object of mass mi at the surface of the Sun can
be expressed more generally from Newton’s formula as
Fi ¼ GMmi=R2, where G ’ 6 10�11 kg� 1 m3 s� 2 is the uni-
versal gravitational constant, and where M ’ 2 1030 kg is the
mass of the Sun. Then, we can replace g by GM=R2 and
express the density of the Sun as q ¼ M=R3. By inserting these
expressions for g and q into Eq. (2) and solving for R, we get

R ¼ GM2

R

� �1
4

: (3)

If instead we express the mass in terms of the density, we get

R ¼ R
Gq2

� �1
2

: (4)

These two equations are mechanical in the sense defined
above: they involve quantities with mass in their dimensions.
However, in contrast to Eq. (1), these equations involve three
rather than two quantities.

V. SOUND/ESCAPE SPEED AND FREE-FALL TIME

To a gravitational field with acceleration g ¼ GM=R2, one

can also associate an “escape speed” ve ¼ ðGM=RÞ
1
2, which

gives the typical speed necessary to escape the attraction of a
body of mass M and radius R. Coincidentally, this speed is
also the orbital speed at a distance R. Either way, ve is the scale
of speed set by gravity. One can see that the escape speed can

be expressed as ve ¼ ðgRÞ
1
2, which is also the expression of the

sound speed deduced from Eq. (2). Hence, the radius of the
sun can be understood as corresponding to the identity
between the sound speed and the escape speed, ve ¼ vs

GM

R

� �1
2

¼ R
q

� �1
2

: (5)

This approach is usually associated with Jeans, who derived
the condition for a gas cloud to collapse into a star to be
ve � vs.

9

Now that we know that for a gravity-bound body at hydro-
static equilibrium, the sound speed is equal to the escape
speed, and we can give an interpretation to the time scale

vs=g. Indeed, since vs ¼ ve ¼ ðgRÞ
1
2, then we can define a

time scale s ¼ vs=g ¼ ðR=gÞ
1
2 ¼ ðGqÞ�

1
2. This time scale is

often called the “free-fall time” and corresponds to the time
that a body would take to collapse under its own gravita-
tional attraction.2 For the Sun, s ’ 1 h. This time scale does
not depend on the absolute size of the object but on its den-
sity. Since the Sun and a human being have similar densities,
they would collapse after a similar time of one hour.

The radius R can be understood as the distance traveled by
sound over a time equal to s. Generally, we have

R ¼ vss ¼ ves: (6)

VI. SCHWARZSCHILD RADIUS

Gravitation associates a special radius to any object with a
given mass. This is the Schwarzschild radius,10 which corre-
sponds to the size of a black hole with that mass. For the Sun,
this radius is Rs ¼ GM=c2 ’ 1 km, where c ’ 3 108 m/s is
the speed of light. We can use Eq. (3) to express the size of
the Sun in terms of its Schwarzschild radius as

R ¼ Rs
c2

ðv3
evsÞ

1
2

¼ Rs
c

ve

� �2

¼ Rs
c

vs

� �2

: (7)

In this identity, the dimension of length is provided by Rs,
and the rest of the equation is a dimensionless ratio built out
of the speeds vs, ve, and c. In the limit where ve ¼ vs ¼ c, we
have R ¼ Rs, i.e., if the escape/sound speed is equal to the
speed of light, then the object is a black hole.

VII. SOLAR INTERNAL ENERGY

So far, we expanded on Eq. (1) by specifying the content
of the force density W ¼ qg ¼ q2GR ¼ GM2=R5 when the
inward force comes from gravity. In contrast, we barely
investigated the pressure R; we just related it to the sound
speed. Density is quite naturally connected to a ratio between

mass and volume, as in q ¼ M=R3. In a similar way, the
dimensions of pressure suggest that it can be expressed as a

density of energy since ML�1T �2¼ML2T �2=L3. Thus,
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one can define a solar energy as E ¼ RR3 and express the
radius of the Sun as

R ¼ E

F
¼ GM2

E
; (8)

where F ¼ WR3 ¼ GM2=R2 is the scale of the self gravita-
tional force. The second expression will later be useful. The
first equation can also be rearranged to express the solar
energy as E ¼ Mv2

e ¼ MgR ’ 1042 J. As a comparison, type
Ia supernovae release an energy on the order of 1044 J.11

If one uses the density q ¼ M=R3, the energy E, and the
free-fall time s ¼ ðGqÞ�

1
2, then the radius of the Sun can be

written as

R ¼ E

q

� �1
5

s
2
5: (9)

This expression is reminiscent of the formula for the spread-
ing of an explosion blast in the Taylor–Sedov regime,12,13

which includes supernovae. Here, the free-fall time s repla-
ces the time since the beginning of the explosion. The size of
the Sun is similar to that of an explosion frozen at a time s
after ignition.

VIII. EQUATION OF STATE AND POLYTROPE

Note that Eq. (3) should not be used to infer that R / R�
1
4,

nor should Eq. (4) be used to infer that R / R
1
2. Indeed, both

mass and density can depend on pressure. The actual scaling
between size and pressure will depend on the “equation of
state” of the body; i.e., on the specification of an additional
relation between R and q.3 We will see later that in some
contexts this relation can be specified from microscopic con-
siderations, but it can also be set phenomenologically by pre-
scribing that the equation of state be that of a “polytrope”14

R ¼ Kqc ¼ Rr
q
qr

� �c

; (10)

where in the first equation, the dimensions of the proportion-

ality factor K are M1�cL3c�1T �2. The dimensionless expo-
nent is usually written as c ¼ ðnþ 1Þ=n, where n is called
the “polytrope index.” In the rightmost equation, we define
the proportionality factor in terms of a reference density and
pressure as K ¼ Rr=qc

r . The polytrope is expected to be valid
in the vicinity of the reference values.

Using Eq. (4) in conjunction with the polytrope equation,
we can express the radius R as

R ¼ K

G

� �1
2

q
c�2

2 ¼ R
1
2
r

qG
1
2

q
qr

� �c
2

: (11)

This approach is usually associated with Lane and Emden.15,16

We will now see that values of K and c can sometimes be
computed from microscopic models.

IX. MICROSCOPIC DENSITY AND PRESSURE

Whereas mass and energy are typically understood as
“extensive” properties and depend on the size of the system,
density and pressure are “intensive” and are expected to be
independent of the size of the test volume. In fact, this

independence of size only holds down to microscopic scales.
Let us call r, m, and e be the size, mass, and energy of the
smallest scale where m=r3 ¼ q and where e=r3 ¼ R. We call
this scale the microscopic scale. For sizes smaller than r,
density and/or pressure significantly vary from the macro-
scopic values. Using Eq. (4), we can write

R2 ¼ e
Gm2

r3 ¼ r3

d
: (12)

We know from Eq. (8) that d ¼ Gm2=e is the size of a body
of mass m at hydrostatic equilibrium under its own gravity

and pressure e=r3. However, this size d must be different
from r. Indeed, by construction we have r<R and d<R, and

Eq. (12) states that R2d ¼ r3, thus d< r < R.
The identity between the microscopic and macroscopic

pressures, e=r3 ¼ E=R3 is sometimes formulated as the
“Virial theorem”17

e ¼ GmqR2 ¼ Gm
M

R
: (13)

This equation relates the potential energy between the mac-
roscopic mass M and the microscopic mass m to the micro-
scopic energy e. The energy e is usually understood as a

kinetic energy involving the sound speed ðe=mÞ
1
2 ¼ ðR=qÞ

1
2.

X. MICROSCOPIC EQUILIBRIUM

In Eq. 12, both lengths d and r are associated with the
same energy e and mass m, but not in the same way. How
can one express the size r? Can this be done in analogy with
what we derived for the size of the Sun? Expressions, such
as R ¼ R=W or R ¼ E=F, are too vague to ever be false. They
owe their generality to their vagueness. If one specifies the
mass M, or the force F, or the energy E—or their densities (q,
W, R), then one can express more detailed results. This is
what we did for the Sun, where the force comes from gravity.
For the size r, we can similarly state without too much risk
that

r ¼ e
f
; (14)

where f is a yet unspecified force. The only thing we know is
that f 6¼ Gm2=r2; i.e., the dominant force at the microscopic
scale is not self-gravity. Indeed, otherwise we would have
r ¼ er2=Gm2 ¼ d ¼ R according to Eq. (12). Density and
pressure would be far from intensive. If density and pressure
are constant down to a scale of size r<R, then this scale
must be governed by forces beyond gravity.

XI. ELECTROMAGNETIC EQUILIBRIUM

The dominant force f at scale r can take many forms
depending on contexts, but one example has proven to be
very fruitful. This is the case where Newton’s law of gravita-
tion (15) is replaced by Coulomb’s law of electrostatics (16)

F ¼ GM2

R2
; (15)

f ¼ kðneÞ2

r2
: (16)
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For the gravitational force, we assumed self-gravitation of a
mass M and size R, as in the case of the Sun. For the electro-
static force, we assumed two opposite charges ne, where e
’1:6 10�19 C is the elementary charge and n is an integer.
The two charges are separated by a distance r. The Coulomb
constant k’9 109 kg m3 s�2 C–2 and the elementary charge
can be combined into a single quantity S0¼ke2’2 10�28

kgm3s�2 (no more units of charge). We then define S¼n2S0.
The number n is usually small due to screening between posi-
tive and negative charges.

Using f ¼ S=r2 and r ¼ e=f , we can obtain the electro-
magnetic equivalent of the hydrostatic equilibrium

r ¼ S

e
: (17)

In the same way that the energy E and pressure R were left
unspecified in the gravitational case, here the nature of the
energy e is unknown. For the gravitational case, we used the
values of M and R to deduce the values of E or R. Here, val-
ues of r and S would be enough to deduce a value of the
energy e or pressure e=r3.

XII. ELECTROMAGNETIC KINEMATICS

The substitution of the electromagnetic force in place of
the gravitational force changes the definition of the kine-
matic quantities described so far. The formulas derived for
the hydrostatic equilibrium of a body under its own gravity
can be extended to the electromagnetic case by using the fol-
lowing substitutions:

g ¼ GM

R2
! S

mr2
; (18)

v2
s ¼

R
q
! e

m
; (19)

v2
e ¼

GM

R
! S

mr
; (20)

s2 ¼ 1

Gq
! mr3

S
; (21)

Rs ¼
GM

c2
! S

mc2
: (22)

For instance, in analogy with Eq. (2) one can say that

r ¼ v2
s=g, only if the sound speed is redefined as

vs � ðe=mÞ
1
2, and if the “electromagnetic acceleration” is

redefined as g � S=ðmr2Þ.

XIII. STONEY MASS AND PLANCK MASS

In the electromagnetic expressions, we have used the
radius r, mass m, and energy e, the same symbols we used in
Eq. (12) to describe the smallest scale at which density and
pressure are equal to their macroscopic values. How can one
be sure that electromagnetic forces dominate over gravity at
the scale r? Using Eqs. (12) and (17), we can write the size
of the Sun in terms of the size obtained from electromagnetic
equilibrium as

R ¼ ðSG�1Þ
1
2

m
r: (23)

This expression is legitimate if electromagnetism is the rele-
vant force at the scale r. The strengths of the gravitational
and electromagnetic forces can be expressed, respectively, as
Gm2 and S (both with dimensions ML3T �2). When m¼M,
the electromagnetic force is completely negligible since
GM2 � S (1050 � 10�28 kg m3 s�2, assuming S ¼ S0). One
can then derive the mass mS that would correspond to the
case where the electromagnetic and gravitational forces have
similar strengths, i.e., when R¼ r

mS ¼
S

G

� �1
2

: (24)

In cases where the strength of the electromagnetic forces is
well characterized by the value S0 obtained for a pair of ele-
mentary charges, then mS ’ 10�9 kg. This mass is called the
Stoney mass.18 Thus, Eq. (23) can be rewritten as

R ¼ mS

m
r: (25)

Similarly, we can write d ¼ ðm=mSÞ2r. Note that if a mate-
rial can locally deviate substantially from neutrality then the
value of S and mS must be increased accordingly.

One can also define the fine structure constant as a ¼ S0=
�hc ’ 1=137 with Planck’s constant �h ’ 10�34 kg m2 s�1 and
reach

R ¼ a
1
2
mP

m
r; (26)

where the Planck mass is mP ¼ mS=a
1
2 ¼ ð�hc=GÞ

1
2.18

So far, we have used electromagnetism to derive a relation
between the macroscopic R and the microscopic r, but we
have not specified any value for r and m. From Eq. (17), we
know that specifying e will lead to r, but m seems relatively
free, as long as m� mS. We know from Eq. (25) that if the
mass m associated with the size r is much smaller than mS

then electromagnetism will be dominant over gravity.
However, other forces may dominate over electromagnetism,
in which case Eq. (25) or Eq. (26) loose their validity.

XIV. ATOMIC UNITS

A particularly interesting choice of microscopic size and
mass considers the standard atomic units based on the hydro-
gen model with one nucleon (proton) of mass m0 and one
electron of mass me. This model is particularly useful for
stars since they are mostly composed of hydrogen. In this
context, we have S ¼ S0, m ¼ m0 ’ 1:7� 10�27 kg, and the
Hartree energy and Bohr radius18

e0 ¼ me
S0

�h

� �2

¼ �h2

mer2
0

’ 4 10�18 J; (27)

r0 ¼
S0

e0

¼ �h

meac
’ 5 10�11 m; (28)

where we used the electron mass me ’ 9 10�31 kg. Note that
the ratio S0=�h has the dimensions of a speed and is often
expressed as ac. With these units, pressure and density have
values comparable to R and q
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R0 ¼
e0

r3
0

’ 3 1013 Pa � R; (29)

q0 ¼
m0

r3
0

’ 104 kg=m3 � q: (30)

With these atomic units, we can obtain the following radius:

R0 ¼
�h2

ðGS0Þ
1
2

1

m0me
¼ m2

P

a
1
2m0me

‘P ’ 5 107 m: (31)

In the last equation, we express the reference size in terms of
the Planck length ‘P ¼ ð�hG=c3Þ

1
2 ’ 6 10�34 m, which is

expected to be the smallest possible size. The radius is asso-
ciated with the following mass:

M0 ¼
m3

S

m2
0

¼ a
3
2
m3

P

m2
0

’ 2 1027 kg: (32)

These expressions only involve fundamental constants. We
will say that R0 and M0 are the reference size and mass,
respectively. These types of expressions for the size and
mass of stars are usually associated with the astrophysicist
Chandrasekhar,19 who used these reference values in the der-
ivation of the maximum mass of stable white dwarfs (now
called the Chandrasekhar limit). The depth of these formulas
has been noticed on several occasions.20–23 Note that
Eq. (32) can also be expressed, referring to Eq. (24), as an
equation expressing the relative strengths of the electromag-
netic and gravitational interactions

ðGM2
0ÞðGm2

0Þ
2 ¼ S3

0: (33)

From the reference size and mass, one can also derive ref-
erence values for speed (sound/escape), acceleration, and
time (free-fall)

v0 ¼
GM0

R0

� �1
2

¼ a

b
1
2

c ’ 5 104 m=s; (34)

g0 ¼
v2

0

R0

¼ a4

b2

FP

M0

¼ a
5
2

b2

FP

mP

m0

mP

� �2

’ 50 m=s2; (35)

s0 ¼
R0

v0

¼ b
a

� �3
2 mP

m0

� �2

sP ’ 103 s; (36)

where b ¼ m0=me ’ 1836 is the dimensionless ratio between
the mass of a nucleon (proton or neutron) and the mass of an

electron. The constant sP ¼ ðG�h=c5Þ
1
2 is the Planck time, and

Fp ¼ c4=G is the Planck force.18

XV. FROM NATURAL SATELLITES TO STARS

Given how we crudely neglected numerical factors, R0 is
not such a bad approximation for the radius of the Sun.
However, there are stars with sizes smaller or larger than the
Sun, for which the mass m and energy e must differ from the
atomic units. There can be atoms larger than hydrogen, with
m > m0, and there could be atomic energies different from
Hartree’s formula. Deviations from the reference value com-
puted in terms of atomic units can be revealed quite strik-
ingly by plotting the density M=R3 vs the radius R for an

array of astronomical bodies from natural satellites to stars,24

as shown in Fig. 1. As can be seen the atomic units provide
the size of the crossover between stars and planets, but stars,
planets, and smaller bodies can significantly deviate from the
reference point. Moreover, stars display a different trend
than smaller bodies.

For stars, the density usually decreases as the radius
increases. Whereas a star like the Sun has a density close to
that of water, stars a hundred times larger can have a density
smaller than that of air. This trend can be understood roughly
by invoking the Virial theorem in Eq. (13), which states that
q ¼ e=GmR2. Thus, if the microscopic energy per unit mass
e=m is constant then q / R�2. In Fig. 1, the dotted line pro-
vides this scaling in the case where e ¼ e0, assuming m ¼ m0.
As is obvious, this choice of atomic energy strongly underes-
timates the density. The dotted dashed line gives a better fit
for an energy e ¼ 100e0. We shall explain such difference
shortly.

For planets and smaller bodies, the density is roughly con-
stant, close to the reference atomic value q0. For the density to
remain constant for bodies of different sizes, the Virial theorem
imposes that the kinetic energy per unit mass should follow
e=m/R2. This can also be stated as e=r3/R2, or as R/R2.
The smaller the size the smaller the internal pressure R.

The mass m, energy e, and size r of the microscopic scale
can be fairly independent from one another. The microscopic
parameters can produce different types of pressure e=r3 and
density m=r3, beyond the values obtained in terms of atomic
units. In the microscopic realm, the relationship between e,
m, and r is the equivalent of the macroscopic equation of
state. In general, we can express the size R in Eq. (13) from
the reference values as

R ¼ e
e0

� �1
2 m

m0

� ��1 r

r0

� �3
2

R0 ¼
R
R0

� �1
2 q0

q
R0: (37)

For stars or for planets, the particular relationships between
the microscopic parameters can then be used to constrain
this equation further.

Fig. 1. The density as a function of radius for a few astronomical objects,

from moons and planets to stars (Ref. 24). The vertical dashed line is R0

defined in Eq. (31). The horizontal dashed line is the density q0 obtained

from Eq. (30). The dotted and dotted-dashed lines represent the predictions

of the Virial theorem (Eq. (13)), respectively, with e ¼ e0 (Hartree energy),

e ¼ kBT (thermal energy), with a constant temperature T ¼ 107 K. Note that

the density is here defined as M=R3 instead of M=ð4p=3ÞR3, which gives val-

ues slightly larger than standard results.
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XVI. THE EDDINGTON MODEL

To give but one example of the ways in which the size of
astronomical bodies can deviate from the reference value, let
us consider the Eddington stellar model.25 This model is
sometimes called “the standard stellar model,” and it is usu-
ally described in textbooks concerned with stars.2 Discussing
this model also gives us the opportunity to underline the fact
that our approach so far has been a bit stereotypical of an
astrophysical viewpoint, in contrast to the astronomical per-
spective. Typical astronomical observations of stars rarely
yield their size or mass, the most common observables being
rather their luminosity and spectral characteristics. These
observables are then transformed to mechanical quantities
like mass, pressure, density, etc. The link for such a transfor-
mation is temperature.

In the Eddington model and others of its kind, the equation
of state relating pressure and density uses the star tempera-
ture T. In practice, the temperature varies inside stars from
the core to the envelope, and T must be understood as a bulk
average. Using Boltzmann’s constant kB ’ 1:38 10�23 m2 kg
s�2 K–1, an energy can be translated into a temperature using
eT ¼ kBT. In this framework, Hartree’s atomic energy would
correspond to a temperature T0 ’ 3 105 K. Thus, for the stars
in Fig. 1, the energy e ¼ 100e0 corresponds to a temperature
T ’ 3 107 K, which is the right order of magnitude for the
temperature in stars like the Sun.6

Eddington’s model proposes that the pressure inside a star
be given as a fixed combination of a gas pressure and a radia-
tion pressure, where the gas pressure follows the ideal gas
law R1 ¼ ðq=mÞeT , and where the radiation pressure follows
Stefan–Boltzmann law R2 ¼ e4

T=ðc�hÞ3. If h 2 ½0; 1� is the
proportion of thermodynamic pressure then 1� h is the pro-
portion of radiation pressure, such that hR ¼ R1 and
ð1� hÞR ¼ R2, where R is the total pressure. One can then
replace the thermal energy e by mhR=q to express the radia-
tion pressure as

ð1� hÞR ¼ R4

ðc�hÞ3
mh
q

� �4

: (38)

This equation can be solved for the total pressure R. By
noticing that c�h ¼ S0=a, the total pressure can then be
expressed as

R ¼ 1

a
1� h

h4

� �1
3 m0

m

� �4
3 q

q0

� �4
3

R0: (39)

If one assumes that m ¼ m0 and that h is constant, then this

equation provides a fully specified polytrope with c ¼ 4
3

(and

references qr ¼ q0 and Rr ¼ ðð1� hÞ=h4Þ
1
3R0). With this

equation of state, the radius and mass of the star become

R ¼ 1

a
1
2

1� h

h4

� �1
6 q

q0

� ��1
3

R0; (40)

M ¼ 1

a
3
2

1� h

h4

� �1
2

M0: (41)

Stars following this equation of state can have different radii,
but they all share the same mass. If one assumes that the Sun
follows such equation of state, it would imply that radiation
only account for 20% of the pressure. Note that this equation

of state implies q / R�3. The data in Fig. 1 are closer to
q / R�2, which can be interpreted by changing the propor-
tion of radiation and thermodynamic pressures as the size
increases. Arguments aimed at deciphering the value of h for
different populations of stars usually relies on a decomposi-
tion of the size of a star into layers (core, envelopes, etc.)
with different amounts of radiation and convection.
Schematically, greater accuracy on the size of stars requires
their radius to be decomposed additively, for instance, as
R ¼ Rcore þ Renv, where the sizes of the core and envelop are
then decomposed multiplicatively as in the many ways we
followed in this article.2 This degree of precision goes
beyond our scope but is inescapable if one wishes to recover
the properties of the wide variety of stars in the cosmos.

XVII. WHITE DWARFS, NEUTRON STARS,

AND BLACK HOLES

All expressions of R from Eq. (3) to Eq. (9) are essentially
equivalent, they just present the same relations under differ-
ent disguises. All these formulas correspond to an object
bound by its own gravity, which is resisted by an unspecified
internal pressure R, which can be expressed as an energy E if
need be. These expressions are expected to be valid for all
objects in Fig. 1. Actually, these equations are expected to
be valid for some objects beyond the range of the figure, in
particular, for stars outside the “main sequence.”

The stars represented in Fig. 1 all lie on the “main
sequence,” where the internal pressure is some mixture of
thermodynamic or radiation pressures, well described by the
Eddington model. However, some stars are governed by dif-
ferent types of internal pressure, which can lead to masses
and radii lying outside the range of Fig. 1. Table I gives a
few classical examples, left for the reader to ponder.

XVIII. CONCLUSION

A diversity of “ideas for guessing” led us to more than a
dozen formulas providing equivalent approximations of the
size of the Sun. The size of the Sun can be seen as the result

Table I. Pressure and associated radius for different types of astronomical

objects beyond the main sequence of stars. For a given object, the various

expressions for the pressure are equivalent, assuming that the mass of the micro-

scopic scale is m ¼ m0. The ideal neutron star considers a star with a nuclear

density qn ¼ m0=r3
n ’ 1018 kg/m3, where rn ¼ �h=m0c is the Compton wave-

length of the nucleon, and a nuclear energy en ¼ m0c2. For the black hole of

mass M0, the density is qb ¼ c6=G3M2
0. We recall that b ¼ m0=me ’ 1836 and

a ¼ S0=�hc ’ 1=137.

Object Pressure Radius

White dwarf (classical) �h2=mer5 R0ðq0=qÞ
1
6

R0ðr0=rÞ5

R0ðq=q0Þ
5
3

White dwarf (relativistic) �hc=r4 R0a�
1
2ðq0=qÞ

1
3

R0a�1ðr0=rÞ4

R0a�1ðq=q0Þ
4
3

Neutron star (ideal) R0a3ðen=e0Þ4 R0a
1
2b�1 ’ 2 km

R0a�1ðqn=q0Þ
4
3

Black hole (of mass M0) c8=G3M2
0

R0a2b�1 ’ 1 m

R0a�4ðqn=q0Þ
4
3

R0ðqb=q0Þ
4
3
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of a balance of forces or pressures, or as the consequence of
an equation relating sound and escape speed, or as a frozen
explosion. The size of the Sun can be expressed in terms of
the size of its equivalent black hole, or in terms of the size of
its microscopic constituents. We saw that some of these for-
mulas also apply to other objects bound by gravity including
different types of stars, as well as planets, and to some extent
to microscopic objects bound by forces beyond gravity.

The gigantic gap between the microscopic realm of atoms
and the astronomical realm of planets and stars is quite
daunting. In this paper, we provided a few simple arguments
that can help bridge this divide, demonstrating the strong
links between the quantum microcosm and the much larger
scales dominated by gravity.

The path we took to connect all these different formulas is
one out of many. Any written story has a beginning and an
end, so we had to start somewhere, with the hydrostatic equi-
librium, and finish somewhere else, with the Eddington model
and a table of additional cases based on different kinds of
pressure. The beginning was in no way a means to an end, nor
the end our goal. We invite the reader to explore their own
path across the fascinating landscape of stellar physics, which
provides an exciting laboratory for thought experiments about
what we collectively mean by the “size” of something.
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