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Charging a supercapacitor through a lamp: A power-law RC decay
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A circuit involving a charging supercapacitor in series with a non-Ohmic tungsten lamp displays

a wealth of interesting behavior. Most notably, the current through the lamp decreases in time

according to a power-law function as opposed to the exponential time dependence observed

in RC circuits with Ohmic resistors. We use a combination of computational and analytical

techniques to model this power-law behavior as well as the behavior of the filament’s

temperature and resistance as the supercapacitor charges. Our results agree well with experiment,

and the experiment described here can be modified to be appropriate for physics courses at a wide

range of levels. # 2022 Published under an exclusive license by American Association of Physics Teachers.

https://doi.org/10.1119/5.0065500

I. INTRODUCTION

The availability of low-cost, high-capacitance supercapa-
citors has made it possible to construct RC circuits with time
constants on the order of tens of seconds, even with rela-
tively modest resistance values. In one popular lecture dem-
onstration, the resistor is replaced by a small incandescent
lamp, allowing students to visualize how the current changes
as the capacitor charges and discharges. This circuit differs
from an idealized RC circuit in that the supercapacitor has a
non-negligible internal resistance, and the lamp filament’s
resistance varies significantly with temperature.

Even a qualitative description of this circuit should
address the effect of the supercapacitor’s internal resistance,
which, being on the order of a few ohms, is comparable to
the resistance of the lamp.1 In addition, the effective capaci-
tance of a supercapacitor can depend on whether the capaci-
tor is being charged or discharged and can vary significantly
from its nominal capacitance.2 For a given supercapacitor,
the internal resistance RC and the capacitance C can be deter-
mined experimentally by measuring the time constants for a
series of RC circuits with various Ohmic external resistors
(see Appendix A).

The non-Ohmic nature of the lamp poses an additional
challenge for quantitative descriptions of this circuit. When
the capacitor is being charged, for example, the charge
buildup on the plates of the capacitor combined with
decreasing resistance of the lamp as it cools results in the
current decaying more slowly than the familiar exponential
relationship. Previous research has produced either numeri-
cal results for the current-time relationship3 or a transcen-
dental equation that must be solved numerically for the
current at a given time.4 In this study, we assume that both
the lamp resistance and the power emitted by the filament
can be modeled as having a polynomial dependence on the
filament temperature. This allows us to obtain a simple,
closed-form analytic expression for the current’s dependence
on time.

In Sec. II, we discuss our experimental results that show
the lamp resistance is a linearly decreasing function of time
for a significant portion of the capacitor’s charging period.
This is a new result, to the best of our knowledge. We also
show that, as a consequence, the measured current through
the lamp is well described by a power-law relationship with
time of the form IðtÞ ¼ I0ð1� btÞc, for constants I0, b, and c.
In Sec. III, we demonstrate that the linear time dependence

of the resistance is a robust phenomenon, occurring for a
wide range of circuit parameters. The linear behavior
emerges from a numerical solution of coupled differential
equations for the circuit, obtained by applying Kirchhoff’s
loop rule and conservation of energy for the lamp filament.
In Sec. IV, we explore analytically how the parameters b and
c in the power law depend on circuit parameters. Using an
analytic result for the lamp’s resistance as a function of time,
we discuss how the duration of the linear regime depends on
the supercapacitor’s capacitance, its internal resistance, and
any external resistance in the circuit. We conclude with a
discussion of pedagogical implications and potential areas of
further research.

II. EXPERIMENT

A. Procedure

Our circuit, shown in Fig. 1, included a supercapacitor
(NEC/TOKIN FYH0H105ZF) with a measured capaci-
tance of C ¼ 1:158 6 0:016 F and an internal resistance of
RC ¼ 2:54 6 0:14 X (see Appendix A for details). The
capacitor was connected in series with a No. 47 lamp of
variable resistance R, a decade resistor (General Radio
1433-B) Rext, and a DC power supply (Agilent E3633A)
set to an emf of e ¼ 5:0 6 0:1 V.

Two multimeters (HP E2373A) were used as voltmeters.
One was connected across the lamp, and the other was con-
nected across the decade resistor to determine the voltage
drop across it, which was used to measure the current in the
loop. This method was chosen because we found that these
multimeters included some significant but unknown resis-
tance when used as milliammeters. The resistance Rext of the
decade resistor was found to be 12.01 6 0.01 X using an
LCR meter (BK Precision 878).

We recorded a video of the displays of both multimeters, a
stopwatch, and the power supply. We found it easiest to
begin the stopwatch and video recording first and then toggle
the output of the power supply on. This allows for a more
accurate determination of t¼ 0 for the charging process,
which we also define to be the time when the lamp is at its
maximum temperature and, thus, has a maximum resistance
R0. In reality, the lamp must first warm from room tempera-
ture after the power supply is toggled on, but we find this
process to be nearly instantaneous. The more significant
source of systematic error is the determination of t¼ 0 from
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the video. We also note that these multimeters have a rela-
tively low refresh rate of about 2 Hz, which limits our
precision.

The video was used to obtain the time t since charging
began, the voltage drops Vlamp across the lamp, and the volt-
age drops VRext

across the external resistor. The current I
through the loop was determined from the values of VRext

and
the measurement of Rext, and then the values of I and Vlamp

were used to determine the resistance R of the lamp at each
time.

B. Results

Figure 2 demonstrates that the lamp’s resistance decays
linearly with time for nearly a full minute while the capacitor
charges, obeying the equation

RðtÞ ¼ R0 � at: (1)

A linear fit, also shown in Fig. 2, produces values of
a ¼ 0:296 6 0:003 X/s and R0 ¼ 31:34 6 0:10 X. In Fig. 2,
as well as all figures containing data, error bars were esti-
mated from the uncertainty in each constituent measurement.
Because the error bars were estimated to be slightly smaller
than the symbol size used, they are not included.

For convenience, the values of measured constants used
throughout this paper are displayed in Table I. These values
allow us to determine the appropriate functional form with
which to fit the current vs time data. We begin by rewriting
Kirchhoff’s loop rule for the circuit in Fig. 1 in terms of pre-
viously defined quantities as well as the charge Q on the
capacitor and the current I through the loop

e ¼ VC þ VRC
þ VRext

þ Vlamp

¼ Q

C
þ IðRC þ RextÞ þ IR: (2)

Taking the time derivative of Eq. (2) and assuming that e, C,
RC, and Rext are constant produces a differential equation
involving I(t) and R(t),

0 ¼ I

C
þ dI

dt
ðRC þ RextÞ þ

dI

dt
Rþ I

dR

dt
: (3)

If the lamp resistance is modeled according to Eq. (1), then
Eq. (3) becomes

0 ¼ 1

C
� a

� �
I þ RC þ Rext þ R0 � atð Þ dI

dt
: (4)

This differential equation can be solved by separation of var-
iables, which leads to

IðtÞ ¼ I0 1� btð Þc; (5)

where b ¼ a=Rnet, with Rnet ¼ RC þ Rext þ R0, and the expo-
nent is given by c ¼ ðaCÞ�1 � 1. The initial current is
I0 ¼ e=Rnet. It is interesting to note that taking the limit
a! 0 in Eq. (5) results in constant filament resistance and,
thus, produces the usual exponentially decaying current
IðtÞ ¼ I0e�t=s, where the time constant s ¼ RnetC.

Manipulating Eq. (5) and using the values of a and R0

from Table I to determine values of I0 and b allows us to pro-
duce a linear plot with the current and time data, shown in
Fig. 3. A linear fit produces a slope of c ¼ 1:944 6 0:010,
which is in agreement with the value of c ¼ 1:92 6 0:03 cal-
culated using the relationship c ¼ ðaCÞ�1 � 1.

To emphasize visually the non-exponential behavior of
the current, Fig. 4 shows a semi-log plot of the current vs
time as well as the familiar exponential decay and the more
appropriate power-law expression given in Eq. (5).
Constants from Table I were used to produce both the

Fig. 2. Lamp resistance as a function of time for C¼ 1.158 F, RC ¼ 2:54 X,

and Rext ¼ 12:01 X. The dashed line shows a linear fit to the data,

R ¼ R0 � at, with a ¼ 0:296 6 0:003 X/s and R0 ¼ 31:34 6 0:10 X.

Table I. Values of measured constants used throughout this paper.

Symbol Definition Value

C Capacitance 1:158 6 0:016 F

e Power supply setting 5:0 6 0:1 V

a Slope of R vs t 0:296 6 0:003 X=s

RC Internal resistance of supercapacitor 2:54 6 0:14 X
Rext External resistance 12:01 6 0:01 X
R0 Maximum filament resistance 31:4 6 0:10 X

Fig. 1. A diagram of the circuit under study.

Fig. 3. The dashed line shows a linear fit to the manipulated current and

time data with slope c ¼ 1:944 6 0:010 and intercept �0:017 6 0:002.
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exponential and power-law graphs. It is clear that the power-
law relationship better describes the data using the same cir-
cuit parameters. While the exponential relationship could be
forced to better agree with the data using a different value of
the time constant s, we believe the most appropriate choice
is s ¼ RnetC. In an RC circuit involving a lamp and a typical
capacitor, the lamp would not have time to cool significantly
and, therefore, would exhibit its original resistance R0

throughout the decay. The significantly longer discharge
time of a supercapacitor causes the power-law behavior to be
apparent.

The small systematic shift between the power-law rela-
tionship and the experimental data evident in Fig. 4 is likely
a result of inaccurately determining t¼ 0 for the charging
process. We took t¼ 0 to be the time at which the power sup-
ply signaled that the output had been turned on, but this may
occur after current is supplied to the circuit. This would
cause our time measurements to be systematically small,
accounting for some of the disagreement in Fig. 4. In addi-
tion, systematically small time measurements would cause
the value of R0 produced in Fig. 2 to be systematically small.
This would, in turn, result in a slightly high value of I0 for
the models.

III. EXPLORING THE LINEAR LAMP RESISTANCE

A natural question to ask is whether the linear time depen-
dence of the lamp resistance (which is essential to the
power-law decay of the current) is particular to certain cir-
cuit parameters, or whether this behavior occurs more gener-
ally. By numerically solving a system of coupled differential
equations, we show that this behavior is robust for a range of
C and Rext values. We also gain intuition about the duration
of the linear regime for R(t).

We return to Eq. (3) with the goal of solving for R without
the assumption that it is linear in time. As in previous studies,3,4

we assume that the thermal relaxation time of the filament is
insignificant compared to the time over which the current (and
therefore filament temperature T) is changing significantly,
allowing us to replace dR/dt with ðdR=dTÞðdT=dtÞ. This
assumption is reasonable because of the small mass of the
filament and slow decay of current through the lamp, which
is due in part to the large capacitance in the circuit. We
also assume that the resistance is at most cubic in temperature,5

R ¼
P3

n¼0 knTn and produce the coefficients kn in the supple-
mentary material.10 With these substitutions, Eq. (3) becomes a
differential equation involving I(t) and T(t),

0 ¼ I

C
þ dI

dt
ðRC þ RextÞ þ

dI

dt

X3

n¼0

knTn

 !

þ I
X3

n¼1

nknTn�1

 !
dT

dt
: (6)

A full solution requires a second equation involving I(t) and
T(t), which we find from conservation of energy for the sys-
tem of the tungsten filament. The electrical power entering
the filament, I2R, serves to increase the temperature, while
any power leaving the filament Pout serves to decrease the
temperature, such that the rate of temperature change dT=dt
obeys

mc
dT

dt
¼ I2R� Pout; (7)

where m is the mass of the filament and c is the specific heat
capacity of tungsten. The mass of the filament is most pre-
cisely measured by measuring the dimensions of the filament
with a microscope. In our case, a scanning electron micro-
scope image of a No. 47 lamp filament revealed a total vol-
ume of 1:43� 10�11 m3, for a mass of 2:76� 10�7 kg,
assuming a mass density of 19.3 g/cm3 for tungsten.6 The spe-
cific heat capacity of tungsten was taken to be 132 J/kg K.6

As discussed in the supplementary material,10 we may treat
the relationship between Pout and T as quintic,
Pout ¼

P5
n¼0 jnTn, and the determination of the coefficients jn

involves repeating the familiar laboratory exercise verifying
the Stefan– Boltzmann law.7–9 While our data are sufficiently
well fit by the simpler Stefan–Boltzmann law, in which
Pout / T4, other terms are included to account for the effects
of conduction, convection, and filament oxidation that may
be significant for other types of bulbs. Inserting the polyno-
mial relationships for both R and Pout into Eq. (7) gives

mc
dT

dt
¼ I2

X3

n¼0

knTn

 !
�
X5

n¼0

jnTn: (8)

Equations (6) and (8) constitute a system of coupled, first-
order, non-linear differential equations which can be solved
numerically for I(t) and T(t). The initial temperature is taken
to be room temperature, 293 K, and designated as T293, and
the initial current I293 ¼ e=ðRC þ Rext þ R293Þ for room tem-
perature resistance R293.

Once the solution for T(t) is known, it can be substituted
into the expression for R(T) to find the resistance of the lamp
as a function of time. As seen in Fig. 5, the combined effects
of the capacitor charging and the resistance of the lamp
decreasing as it cools leads to a linear R(t) curve (after the
initial rapid warming from room temperature) for a signifi-
cant portion of the capacitor’s charging period. Larger
capacitance values allow the decay to occur more slowly
and, therefore, produce a longer linear regime for R(t). Even
a 0.5 F supercapacitor produces a linear regime of roughly
30 s, which can be extended by increasing Rext if necessary.
The slope and duration of this linear regime will be further
explored in Sec. IV.

Fig. 4. A semi-log plot of the current through a non-Ohmic lamp in series

with a resistor and a charging supercapacitor reveals that the data are not

well described by the familiar exponential decay equation IðtÞ ¼ I0e�t=s

(solid red line) but are well described by a power-law relationship

IðtÞ ¼ I0ð1� btÞc (dashed black line).
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For the circuit parameters used in this experiment (see
Table I), the numerical solution for R(t) is in excellent agree-
ment with the experimental data, as shown in Fig. 6.
Because the numerical solution begins with the lamp at room
temperature, we also measured R293 ¼ 3:971 6 0:001 X
using an LCR meter. The rapid warming to reach the maxi-
mum resistance of R0 is demonstrated by the numerical solu-
tion but is not feasible to observe in our data because of
limited time sampling.

IV. DEPENDENCE OF c AND b ON CIRCUIT

PARAMETERS

In this section, we present analytic expressions for both the
exponent c and the coefficient b appearing in Eq. (5). For the
reader who is interested in the details of the calculation, please
refer to Appendix B. We find it possible to express c in terms of
RC, Rext, R0, and p0. The quantity p0 appears in a linear relation-
ship between filament resistance R and temperature T,
R ¼ p0 þ p1T. This relationship is discussed in Appendix B,
and in the supplementary material,10 it is found that p0

¼ �4:12 6 0:12 X and p1 ¼ ð2:215 6 0:013Þ � 10�2 X=K.
Our result for c is

c ¼ 1

2
1þ RC þ Rext

R0

� �
3R0 þ p0

R0 � p0

� �
: (9)

The above equation is independent of C, which tells us that
the exponent in the power-law decay of the current is, in
fact, universal with respect to capacitance, which is perhaps
surprising given the expression c ¼ ðaCÞ�1 � 1 discussed in
Sec. II. As described in Appendix B, the maximum filament
resistance, R0, depends on e, RC, and Rext, and is found by
solving the following equation implicitly:

e2R0

RC þ Rext þ R0ð Þ2
¼ g

R0 � p0

p1

� �4

; (10)

where g ¼ 5:55� 10�14 W=K4 is the coefficient of the
Stefan–Boltzmann Law for the filament power output,
Pout ¼ gT4 (see the supplementary material10 for a discus-
sion of Pout).

The analytic result of Eq. (9) is plotted in Fig. 7 along
with a numerical solution for c beginning from Eqs. (6)
and (8), but with the simplification that R ¼ p0 þ p1T and
Pout ¼ gT4 instead of the full polynomial forms. Once the
solution for R(t) is known, a is determined from its time
derivative, and c is found via c ¼ ðaCÞ�1 � 1. The results
are plotted in Fig. 7 for C ¼ 5:0 F. The agreement between
the numerical and analytical results is respectable. The dif-
ference in the signs of the (slight) concavities in the two
plots is presumably a result of the approximations made to
obtain Eq. (9) and discussed in Appendix B.

Figure 7 shows c is an increasing function of RC þ Rext,
which is not surprising given Eq. (9) and the term
ðRC þ RextÞ=R0. Note, additionally, that the maximum fila-
ment resistance R0 is found from Eq. (10) to be a decreasing
function of RC þ Rext and independent of C, consistent with
Fig. 5. Perhaps more unexpected is the dependence of c on
the ratio ð3R0 þ p0Þ=ðR0 � p0Þ. This implies that, for suffi-
ciently large RC þ Rext, and thus small value of R0, c should
peak and then approach zero (for R0 ¼ �p0=3, where
p0 ¼ �4:12 X for our tungsten filament). This behavior of c
is not observed in the numerical solution to Eqs. (6) and (8).
However, the difference between the behaviors of Eq. (9)
and the numerical solution is not surprising in this situation,
because Eq. (9) requires that at=R0 � 1. As R0 becomes suf-
ficiently small and/or t become sufficiently large, this condi-
tion is no longer satisfied, and Eq. (9) is no longer valid.

Using the relationship from Sec. II B, c ¼ ðaCÞ�1 � 1, we
can obtain an analytic expression for the time rate of
decrease a in the resistance. Substituting Eq. (9) for c gives

Fig. 5. Numerical solutions indicate that the lamp resistance varies linearly

with time for a range of C and Rext values. Here, RC ¼ 2:0 X; e ¼ 5:0 V, and

R293 ¼ 4:0 X.

Fig. 6. Numerical solutions (solid red line) agree well with experimental

data during the linear R vs t regime.

Fig. 7. The dependence of c on the combination RC þ Rext, showing both the

numerical solution for c using the simplified Eqs. (6) and (8) (black dots) as

well as the analytical expression given in Eq. 9 (solid red line). Both plots

were made with C ¼ 5:0 F.
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a¼ 1

C cþ 1ð Þ ¼
1

C 1þ 1

2
1þRC þRext

R0

� �
3R0þ p0

R0� p0

� �" # ;

(11)

which shows a simple inverse relationship between a and C. This
result, in turn, provides insight into the duration of the filament
resistance’s linear (in time) regime. As demonstrated in Fig. 5,
the numerical solution for the lamp resistance is, to a good
approximation, linear in time until decreasing back to its room-
temperature value, R293. Since a is the slope of the resistance vs
time plot, the smaller the value of a, the longer the duration of the
linear regime until the value of R293 is reached for a given R0. We
can see from the analytic result that the slope is inversely propor-
tional to C, so a larger capacitance results in a longer linear
regime, which is in agreement with Fig. 5. Equation (11) is also
consistent with the observation in Fig. 5 that increasing Rext for a
fixed C results in a longer linear regime.

For pedagogical reasons, it is interesting to contrast the
slower power-law current decay with the more common
exponential decay. To make such a comparison, consider
some characteristic decay time, such as the half-life. In the
power-law current decay expression, IðtÞ ¼ I0ð1� btÞc, the
coefficient b has dimensions of inverse time, where
b ¼ a=Rnet. Using Eq. (11), we obtain

b¼ 1

RnetC 1þ 1

2
1þRCþRext

R0

� �
3R0þ p0

R0� p0

� �" # : (12)

Let us denote b�1 as a characteristic time seff for the current
decay,

seff ¼ b�1¼RnetC 1þ1

2
1þRCþRext

R0

� �
3R0þp0

R0�p0

� �" #
:

(13)

Using this expression along with Eq. (5), the time for the cur-
rent to decay to one half of I0 is

t1=2 ¼ 1� 1

2

� �1=c
" #

seff ; (14)

which is linear in C through seff while being a complicated
function of RC and Rext. For comparison, the half-life for
exponentially decaying current in an RC circuit with only
Ohmic resistors is

t1=2; exp ¼ ln ð2Þs; (15)

where s ¼ RnetC. For Rnet ¼ 45:89 X and C ¼ 1:158 F, Eq.
(15) gives t1=2; exp ¼ 36:8 s, while Eq. (14) gives
t1=2 ¼ 45:9 s. Both values can be checked visually by refer-
ring to the plots in Fig. 4. An instructor can, in turn, use this
to reinforce the idea that the charge buildup on the capacitor
and the decreasing resistance of the lamp combine to pro-
duce truly non-exponential behavior.

V. CONCLUSION

In this paper, we show with a combination of experiment,
computation, and analytical work that the current in an RC

circuit consisting of a charging supercapacitor, and an incan-
descent lamp is described by a power-law function of the
form IðtÞ ¼ I0ð1� btÞc. This is a direct result of the lamp
resistance decreasing linearly with time, a phenomenon we
observe for a range of circuit parameters. We are able to
both measure and compute analytically the exponent c, and
we find that c depends in a complicated manner on the super-
capacitor’s internal resistance RC as well as filament parame-
ters and any external Ohmic resistance Rext in the circuit, but
that c is independent of the capacitance C. We are also able
to determine how the prefactor b depends on RC, Rext, R0

(the maximum resistance of lamp filament), and C.
The experiment described in Sec. II (and the supporting

experiments described in Appendix A and the supplemen-
tary material10) is suitable for inclusion in an advanced lab
course. The experiment offers a new take on a more tradi-
tional RC circuit experiment, in which exponential time
dependence is observed. For additional study, students
could test Eq. (11) by studying the duration of the linear-
in-time regime of the lamp resistance as a function of the
supercapacitor properties C and RC. They could also extend
the experiment described in Appendix A to explore in more
detail how the measured values of C and RC depend on
whether the supercapacitor is being charged or discharged
and whether these values are constant during the entirety of
the charging/discharging process. While the experiment
was designed to be low-cost and accessible, it can be
improved by developing more accurate or automated
measurement techniques. By providing students more scaf-
folding (and the results from Appendix A and the supple-
mentary material10), the experiment could also be used as
an introductory or intermediate lab exercise, especially if
the instructor wishes to provide an example of power-law
behavior in contrast to exponential behavior. Although the
analysis depends on the product mc (mass of lamp filament
multiplied by its specific heat), our numerical solution to
the coupled system (Eqs. (6) and (8)) shows that the result-
ing current behavior is not a sensitive function of mc. Thus,
measuring m, for example, need not be a concern. If neces-
sary, using our provided value for the mass of the filament
of a No. 47 lamp should suffice for an introductory lab. This
variation of a standard experiment provides a wealth of
interesting physics for students to pursue. We encourage
instructors to take advantage of it.
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APPENDIX A: DETERMINING SUPERCAPACITOR

QUANTITIES

There is a good deal of subtlety in defining and measuring
the properties of supercapacitors due to the way in which
they store charge.2 For our purposes, it is sufficient to follow
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a previous publication1 in modeling the supercapacitor as an
ideal capacitor of capacitance C in series with an Ohmic
resistor of resistance RC. By charging the supercapacitor in
series with a power supply of emf e and external resistor of
resistance Rext, the voltage drop across the supercapacitor
VSC can be analyzed to determine the time constant s for the
process. Repeating this experiment with several values of
Rext allows for the determination of both C and RC.

The total voltage drop across the supercapacitor is the sum
of the capacitive and resistive terms and so becomes

VSC ¼ VC þVRC
¼ e 1� e�t=sð Þ þ RC

RCþRext

ee�t=s (A1)

when the supercapacitor is charging. Note that if the resistors
are Ohmic, exponential behavior is observed since the circuit
is effectively an ideal RC circuit with total resistance
RC þ Rext. Rearranging Eq. (A1) and taking the natural log
of both sides produces

ln 1� VSC

e

� �
¼ � 1

s

� �
tþ ln

Rext

RC þ Rext

� �
; (A2)

such that the time constant can be determined from the slope
of a plot of ln ð1� VSC=eÞ vs time, as shown in Fig. 8. Note
that it is unnecessary to determine the exact time at which
the charging process begins, because the physical quantity of
interest is determined only from the slope.

The calculated time constants for each of the Rext values
shown Fig. 8 are summarized in Table II. The time constant
depends on Rext according to

s ¼ ðRext þ RCÞC; (A3)

such that C can be determined from the slope of a plot of s
vs Rext and RC can be determined from its intercept, as

shown in Fig. 9. For the nominal 1.0 F supercapacitor used in
our experiment (NEC/TOKIN FYH0H105ZF), we found a
capacitance C ¼ 1:158 6 0:016 F and an effective resistance
RC ¼ 2:54 6 0:14 X.

APPENDIX B: DETERMINING AN EXPRESSION

FOR c

In this appendix, we derive the analytic expression for the
power-law exponent c given in Eq. (9). We begin with the
established linear relationship between filament resistance
and time

R ¼ R0 � at; (B1)

as discussed in Sec. II B. We combine this with a linear rela-
tion between resistance and temperature for metals

R ¼ p0 þ p1T; (B2)

where p0 and p1 are known constants for our tungsten fila-
ment. We note Eq. (B2) is a simplification from an expres-
sion that is cubic in temperature used in Sec. III (see the
supplementary material10). In the temperature regime of
interest to us, however, a linear temperature relationship fits
the data well. Combining Eqs. (B1) and (B2) shows that the
lamp temperature must also be linear in time

TðtÞ ¼ T0 � gt; (B3)

where g ¼ a=p1, and the initial (maximum) temperature is
T0 ¼ ðR0 � p0Þ=p1. The accuracy of Eq. (B3) is demon-
strated by the plot in Fig. 10. This graph was obtained from
the numerical solution of Eqs. (6) and (8).

To proceed, we make use of Eq. (B3) in Eq. (7) by
substituting dT=dt ¼ �g on the left side

�mcg ¼ I2R� Pout: (B4)

We assume that radiative power loss dominates the output
power, and so we write Pout ¼ gT4. (This quartic expression
for output power is a simplification that we justify in the sup-
plementary material.) Next, we solve Eq. (B4) for the square
of the current as a function of time

I2ðtÞ ¼ g T0 � gtð Þ4 � mcg
R0 � at

; (B5)

Fig. 8. Measuring the voltage drop across the supercapacitor VSC as it

charges in series with a known external resistance Rext allows us to deter-

mine the time constant for each circuit.

Table II. Summary of results from Fig. 8.

Rext (X) Slope (s– 1) s (s)

3.026 �0.157 6 0.003 6.37 6 0.12

6.024 �0.0994 6 0.0012 10.06 6 0.12

9.02 �0.0747 6 0.0007 13.39 6 0.13

12.01 �0.0600 6 0.0005 16.67 6 0.14

15.00 �0.0490 6 0.0004 20.41 6 0.17

Fig. 9. The solid black line shows a linear fit to the data with a slope of

C ¼ 1:158 6 0:016 F and intercept CRC ¼ 2:94 6 0:16 s.
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where we used R ¼ R0 � at and T ¼ T0 � gt. Squaring both
sides of Eq. (5) gives us a second expression for I2ðtÞ,

I2ðtÞ ¼ I2
0 1� btð Þ2c: (B6)

Equating the right sides of Eqs. (B5) and (B6) gives, after
some factoring, the following:

I2
0 1� btð Þ2c ¼ gT4

0

R0

1� gt

T0

� �4

� mcg
gT4

0

" #
1� at

R0

� ��1

:

(B7)

Knowledge of the values of the constants in Eq. (B7) allows
us to employ useful approximations. The interested reader
can refer to the values provided in Table III, which are
obtained from a combination of measurements and numeri-
cal computations described throughout this paper. The con-
clusions we draw from the values in Table III are twofold:
that we may drop the dimensionless term mcg=gT4

0 because
it is small compared to one; that all three binomial expres-
sions in Eq. (B7) are of the form ð1þ �Þn, where over the
30–60 s time interval in which Eq. (B1) holds it is true that �
is also small compared to one. Thus, dropping the term

mcg=gT4
0 and performing binomial expansions for all bino-

mials in Eq. (B7) gives

I2
0 1� 2bctþOð�2Þ
� �

¼ gT4
0

R0

1� 4gt

T0

þOð�2Þ
� �

� 1þ at

R0

þOð�2Þ
� �

: (B8)

As time t or circuit parameter values cause the ratios
2bct; 4gt=T0, or at=R0 to become comparable to unity in
size, the expressions derived from Eq. (B8) by ignoring all
terms of order Oð�2Þ, specifically Eqs. (B10) and (B14),
become less accurate.

When we equate terms of order t0 on the two sides of Eq.
(B8), we obtain the equality I2

0 ¼ gT4
0=R0. Using

T0 ¼ ðR0 � p0Þ=p1, we can express this as

I2
0R0 ¼ g

R0 � p0

p1

� �4

: (B9)

Next, because I0 ¼ e=ðRC þ Rext þ R0Þ, this becomes

e2R0

RC þ Rext þ R0ð Þ2
¼ g

R0 � p0

p1

� �4

; (B10)

which implicitly determines the value of R0 once the values
of e and RC þ Rext are specified. We solve Eq. (B10) for R0

numerically. For example, if e ¼ 5:0 V; RC ¼ 2:54 X, and
Rext ¼ 12:01 X, then we find that R0 ¼ 31:4 X, as quoted in
Table I, which agrees with the value obtained experimentally
as shown in Fig. 2.

Next, we equate terms of order t1 on both sides of Eq.
(B8) to obtain

2bcI2
0 ¼

gT4
0

R0

4g
T0

� a

R0

� �
: (B11)

Make the substitutions b ¼ a=Rnet and g ¼ a=p1 and cancel
factors of a from both sides

2cI2
0

Rnet

¼ gT4
0

R0

4

p1T0

� 1

R0

� �
: (B12)

Fig. 10. Filament temperature vs time. Numerical solution of Eqs. (6) and

(8) demonstrates a sizable time interval over which the filament’s tempera-

ture is a linearly decreasing function of time. We emphasize that this linear

time dependence is obtained with no simplifications to the polynomials

appearing in both equations.

Table III. Values of constants used throughout this paper.

Symbol Definition How obtained Value

a Slope of R vs t Fit to data (Fig. 2) 0:296 X=s

RC Internal resistance of supercapacitor Fit to data (Fig. 9) 2:94 X
Rext External resistance Measured with LCR meter 12:01 X
p0 Coefficient in Eq. (B2) Fit to data (Fig. S1) �4:12 X
p1 Coefficient in Eq. (B2) Fit to data (Fig. S1) 0:0221 X=K

R293 Room-temperature filament resistance Measured with LCR meter 3:971 X
R0 Maximum filament resistance Numerical solution of Eq. (B10) 31:4 X
T0 Maximum filament temperature From R0; p0; p1 and Eq. (B2) 1607 K

b Coefficient of t in Eq. (5) b ¼ a=ðRC þ Rext þ R0Þ 6:44� 10�3 s�1

g Coefficient of t in Eq. (B3) g ¼ a=p1 13:4 K=s

m Mass of tungsten filament Measured with SEM (Sec. II) 2:76� 10�7 kg

c Specific heat of tungsten Known value (Ref. 6) 132 J=kg K

g Coefficient of filament power in Pout ¼ gT4 Averaging data (Fig. S3) 5:55� 10�14 W=K4
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Next, substitute I2
0 ¼ gT4

0=R0 on the left side of Eq. (B12)
and solve for c,

c ¼ Rnet

2

4

p1T0

� 1

R0

� �
: (B13)

Recalling that Rnet ¼ RC þ Rext þ R0 along with R0 ¼ p0

þp1T0 allows this to be expressed as

c ¼ 1

2
1þ RC þ Rext

R0

� �
3R0 þ p0

R0 � p0

� �
; (B14)

which is provided as Eq. (9) in Sec. IV.
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