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Exploration of the Q factor for a parallel RLC circuit
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An important property of oscillating systems like RLC circuits is the Q factor, which quantifies the
strength of damping in the system. The Q factor is inversely proportional to the resistance for a
series RLC circuit but increases with the resistance in a parallel RLC circuit. The surprising
behavior of the parallel RLC circuit makes building and modeling this circuit an interesting project
for a student laboratory. We describe an experiment that has been performed to explore this topic,
share an example of the results that can be obtained, and suggest analyses that students might
perform. © 2022 Published under an exclusive license by American Association of Physics Teachers.
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I. INTRODUCTION

Resonant circuits that contain combinations of resistors,
capacitors, and inductors (known as RLC circuits) are one of
the basic building blocks of modern electronics. Their ability
to be tuned to a certain frequency makes them very useful in
scientific instrumentation as, for example, a first step in sig-
nal extraction." A basic understanding of RLC circuits can
be gained using concepts of the harmonic oscillator, but a
deeper look into such systems reveals more complex behav-
ior. RLC circuits are, therefore, an interesting system for
upper-level physics students to explore.>® For example, a
student could use basic concepts of the harmonic oscillator
to develop a simple model describing the current in the cir-
cuit but would quickly find that the model does not accu-
rately predict how the circuit actually behaves. They would
then need to determine where the model fails and revise it
accordingly. Such a project provides an excellent opportu-
nity to learn about the scientific process in a laboratory.

An important concept of oscillating systems is the quality
factor (also known as the Q factor, or just Q), which quanti-
fies the dissipation in the system. The Q factor is inversely
proportional to the damping in the system; therefore, as the
strength of the dissipation increases, the Q factor decreases.
In an RLC circuit, energy is usually dissipated by electrical
resistances in the circuit.

Interesting behavior becomes apparent when comparing the
Q factor for series (Fig. 1, top) and parallel (Fig. 1, bottom)
RLC circuits. For the series configuration, Q decreases as R
increases,”® exactly as one might expect for a component that
dissipates energy. For the parallel circuit, however, the opposite
is found: Q increases as R increases.*® At first, this behavior
appears to be counterintuitive. A resistor is typically a compo-
nent that dissipates energy, so intuitively one might expect that
increasing the value of a resistor should increase the dissipation
in the system. Surprisingly, most textbooks that treat the paral-
lel RLC circuit state the result but do not explain this behavior,
though one textbook makes a brief mention of it when analyz-
ing leakage current in the capacitor.® Some previous studies of
RLC circuits have also shown this effect,3 but do not elaborate
on it. How is it possible that increasing the resistance in the par-
allel RLC circuit can actually reduce the energy loss? Studying
the circuit’s behavior to come up with an answer to this ques-
tion is an excellent project for students to explore in a labora-
tory activity.

In this paper, we present an activity for students in an
electronics or advanced laboratory class that explores the
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behavior of the parallel RLC circuit. We begin in Sec. II by
presenting the theory of resonant circuits, drawing parallels
between RLC circuits and harmonic oscillators, and develop-
ing a simple model for the dependence of the Q factor on the
circuit resistance. In Sec. III, we demonstrate an experiment
where we use the decay of transient oscillations to determine
the circuit’s Q factor and then in Sec. IV, we show that the
simple model is not sufficient to accurately predict the
behavior of the circuit. We provide a revised model that
includes non-ideal factors in the circuit, and we show that
this updated model is consistent with the experiment.
Finally, we propose an explanation for the difference in
behavior between the parallel and series circuits by examin-
ing energy transfer between the circuit components and
show an example analysis that students can perform to dem-
onstrate the energy losses in the circuit. In the end, it will be
shown that the behavior of the parallel RLC circuit makes
for an instructive project that includes non-trivial behavior,
which can be accurately modeled and explained using con-
cepts accessible to most advanced undergraduate students.

II. BACKGROUND
A. Damped harmonic oscillator

RLC circuits can be understood as a damped harmonic
oscillator’® that consists of a mass, m, attached to a spring
with spring constant k, along with a velocity dependent
damping characterized by b. As we are only concerned with
the transient response of the system, there is no driving force
and the system is allowed to evolve freely. The equation of
motion for x, the displacement from equilibrium, is

¥+ 2% + wix =0, D

where § = b/2m is the damping constant and wg = \/k/m is
the resonant (or natural) frequency of the system. The solu-
tion to Eq. (1) in the underdamped region is

x(1) = Age /" cos (wt — 5), (2)

where A is the initial amplitude of the transient oscillations,
0 is a phase offset, T = 1/ is the time constant for the decay

envelope of the oscillations, and @ = 4/ w% — [32 is the natu-
ral frequency of the damped oscillator.
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Fig. 1. Idealized RLC circuits showing the series configuration (top) and
parallel configuration (bottom). The parallel circuit also shows the currents
at junction J when the pulse generator outputs a positive voltage.

The quality factor is proportional to the ratio between the
natural frequency of the damped oscillator and the damping
constant given by’*

_or_ (o)1
0=5;~ <) . 3)

This definition of Q is equivalent to the ratio of the energy
stored in the system to the energy lost in one cycle, so O can
also be used as a measure of the amount of energy leaving
the system (i.e., damping). Importantly, as the damping coef-
ficient b increases, Q decreases.

Equation (3) also gives us a method for determining Q for
a damped harmonic oscillator from the decay of the system’s
transient oscillations. Since f is related to 7 (the time con-
stant for the decay envelope of the transient oscillations), we
can compute the oscillator’s Q-factor by measuring the oscil-
lation frequency and this time constant.

B. Series RLC circuit

The series RLC circuit, shown in the top of Fig. 1, is math-
ematically analogous to the damped harmonic oscillator. In
this case, Kirchhoff’s loop rule yields a second-order differ-
ential equation for the current, / ,4_6

I+2pI + oyl =0, )

where the resonant frequency is wy = 1/1/LC and the dissi-
pation factor is § = R/2L. This leads to the same decaying
exponential solution as Eq. (2), only with the initial ampli-
tude, Ao, replaced by I, the initial amplitude of the current
oscillations,

I(t) = Toe P cos(w 1 — d). 5)

With m — L, k — 1/C, and b — R,”” we find from Eq. (3)
that Q varies as 1/R. As the resistance increases, the
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damping constant increases and more energy is lost per cycle
resulting in a lower value of Q.

C. Parallel RLC circuit

The parallel RLC circuit is shown in the bottom of Fig. 1.
The capacitor and inductor are connected in parallel, and
both are in series with a resistor, R, which we call the input
resistance. This resistance could be a resistor placed in the
circuit, the output resistance of the voltage source in the cir-
cuit, or a combination of the two.

For this circuit, there are three branches with currents /g,
I;, and I, as shown in Fig. 1, and the voltage source supplies
a voltage V(¢). This leads to the following two loop equations
(here g is the charge on the capacitor):

q

IrR + c- V(1), 6)

dl
IR +L=L=V(1), (7)
dt
along with the junction equation at the junction marked as J
in Fig. 1,

Ig=1.+Ic. ®)

To proceed, we differentiate Eqs. (6) and (7) and combine
them while taking advantage of the fact that dg/dt = I to
get

lc Lﬁ

c ar’ ©
We then use Eq. (8) to eliminate /-, while Iz can be found
using Eq. (7). Combining all of this together, and noting that
we are only interested in the transient oscillations when
V(t) =0, yields the equation of motion for the current
through the inductor

. 1 . 1
IL+RCIL+LC1L70' (10)
Equation (10) has the same form as Eq. (4), and the solu-
tion is again the decaying oscillations described in Eq. (5).
Comparing Eqgs. (10) and (4), it is found that a)% =1/LC
exactly as before, but now ff = 1/(2RC). Thus, the damping
constant in this circuit is inversely proportional to R, mean-
ing that larger resistances lead to less damping and a higher
value for Q. This is the opposite of the series RLC circuit
and the harmonic oscillator where increasing the value of the
dissipative element decreases the value of Q. The Q factor
for the parallel RLC circuit is found using Eq. (3)

RC 1
0= VT o (11)

showing the non-intuitive behavior that Q increases as R is

increased. For R > /L/(4C), Q =~ R\/C/L, and Q is pro-

portional to R.

III. EXPERIMENT

To test the dependence of the Q factor on the resistance,
we induced oscillations in a parallel RLC circuit by applying

J. G. Paulson and M. W. Ray 904



a 0 to 5V square wave of frequency 100Hz and then
observed the system’s transient oscillations starting on the
negative edge of the square wave (when the voltage changes
from 5 to 0 V) for various values of R. We measured the volt-
age across the inductor/capacitor parallel combination, V;,
which is related to the current in the inductor by a derivative,
Vy, = Ldl/dt. Using Eq. (5) for the inductor current then
gives

—Llpe P'[Bcos(wit — 8) + wsin(wt — J)]
= Voe P sin(w 1 — ¢), (12)

VL(I)

where ¢ is a phase offset which can be related to w;, f5, and
9. We fit the measured voltage vs. time data using Eq. (12)
with Vy, B, @y, and ¢ as fitting parameters. We performed
this experiment for twelve different values of R ranging
from 47 Q to 67kQ, while L and C were held fixed and
measured separately to be 10.54mH and 0.5639 uF,
respectively.

The results of these measurements are summarized in Fig.
2, which shows V; measured over time for two values of R
(for the full set of data see the supplementary material'?).
The underdamped nature of the oscillations is apparent, and
it is easy to see that there is a longer decay time constant for
the larger value of R. As expected for a circuit consisting of
two impedances in series (the input resistor, R, is in series
with the parallel inductor/capacitor parallel combination),
the size of the initial peak depends strongly on the value of
R. In all, Eq. (12) fits the data (with appropriately chosen val-
ues of wy, B, Vo, and ¢), and hence, it is clear this equation
accurately captures the time dependence of V, for this
circuit.

0.5
0.0
=
='-0.5 R=3260
w=127x10*s"
— 3 -1
~10 B=3.88x10%s
2.0 2.5
0.05
E 0.00 g ST S S ecsssssssss)
Z_0.05 R=55210Q
w=131x10*s"
-0.10 B=157x10%s"

0.0 0.5 1.0 1.5 2.0 2.5
t (ms)

Fig. 2. Voltage measured across the L/C parallel combination after the input
voltage was changed from 5 to OV (blue open circles) for R =326 Q (top)
and R =5.52kQ (bottom). In both cases, C = 0.5639 uF and L = 10.54 mH.
The red solid line shows a fit to the data using Eq. (12), and the red dots
show locations of local minima in the fit.
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IV. ANALYSIS
A. Q factor

In order to judge the validity of the model, students need
to extract w; and f from the fits and use them to compute Q.
An example of this is shown in Fig. 3—a plot of the mea-
sured Q factor of the circuit for the different values of R used
in the experiment. At lower values of R, Q is seen to increase
as R increases, while at higher values (R = 10 kQ), the curve
flattens indicating that Q only depends weakly on R in this
region. Students should quickly realize that the behavior at
large R is not consistent with Eq. (11), which predicts that Q
should continue to increase, approaching a linear relation-
ship. Relatedly, students might realize that there is a discrep-
ancy between the values of f resulting from the fits and
those found from f = 1/(2RC) (using the measured values
of R and C). This presents students with their first challenge:
To determine why the model fails at higher resistances and
revise it accordingly.

In this case, the revision involves relaxing the assumption of
an ideal RLC circuit, where the resistance is only due to the
resistor R. Real circuits have other sources of resistance, often
referred to as parasitic resistances, that need to be incorporated
into the model. In this circuit, the main source of the parasitic
resistance is the inductor, which can be modeled as an ideal
inductor, L, in series with a resistor, 7, as shown in Fig. 4. In this
updated circuit, we have replaced the square-wave function gen-
erator with a switch that can toggle between a DC voltage of V
and 0V. We have also included the output impedance of the
voltage source, Rg, which in our experiment was 50 €.

Following the same process described in Sec. IIC to find
the equation of motion for the current in the circuit, we still
find a differential equation in the form of Eq. (4); however,
now the natural frequency is

1 r
2
= (1 13
@0 LC<R+RS+ ) (19

5 , . ,
——Fit,r =29.6 £ 0.4Q

0 L L
10’ 102 103 10* 10°
R (Q)

Fig. 3. Computed Q factors of the experimental data as the value of R is
changed. The fitting algorithm’s 95% confidence level bounds on the param-
eters f and @, were used as their uncertainties. The uncertainty in Q was
determined using error propagation in Eq. (3), and these uncertainties were
added as error bars. For all except the last data point, they are smaller than
the size of the symbols. The solid line is a fit to the data using Eq. (15) with
r used as a fitting parameter.
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Fig. 4. Model for a real RLC circuit. The parasitic resistance, r, is mainly
due to the resistance of the inductor. The dashed box shows the components
that make up the function generator including a switch which sets the input
at either 5 or 0V, and the output impedance, Rg = 50 Q. The arrows show
the directions of the currents at junction J when the switch is set to the volt-
age source and the circuit is in a steady state (left), and shortly after the
switch is moved to the ground position (right).

while the damping constant becomes

1 1 r
ﬁzz(m*z) 1

If we use these two relationships in Eq. (3), then we find that
the Q factor of the real RLC circuit is

-
L R + Rg 1

207 L cay
—————+1
<I’(R+R5)C )

In our experiment, the inductor was measured to have a
resistance of about 28 Q. Two other sources that may also
contribute to the parasitic resistance are the equivalent series
resistance (ESR) of the capacitor,” which for the film capaci-
tors used in the experiment has a maximum value of ~1.5 Q,
and resistance from the breadboard connections, which was
found to be up to ~0.5 Q, though there could be considerable
variations on both of these values. In total, we estimate the
total parasitic resistance of the circuit to be r ~ 30 = 2 Q.

To test this revised model, we fit Eq. (15) to the Q vs R
data with the parasitic resistance, r, used as a fitting parame-
ter. The result of this fit is shown in Fig. 3, where it is found
to have excellent agreement with the collected data. The
value of the parasitic resistance extracted from the fit was
found to be r =29.6 = 0.4 Q, which, again, is in excellent
agreement with the measured values of the parasitic resis-
tance described previously.

+1
0=

s)

B. Proposed explanation

We have developed a model that predicts Q increasing
with R and have shown that the model’s predictions are con-
sistent with experiment. A simple explanation for this behav-
ior is that the power delivered to R is simply VI% /R, so as R
increases the amount of energy lost by R will decrease, thus
increasing Q. However, a deeper understanding of the Q fac-
tor in this circuit can be gained by exploring the energy
transfer between various components in the circuit.

We start by noting that the oscillations in the circuit
depend on energy transfer between the capacitor and
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inductor; and if less energy is transferred between the two
components, the oscillations will die out sooner resulting in
a smaller value of Q. The power delivered to the input resis-
tor and inductor (i.e., the energy flow) are Pp =[xV and
P.=1V, respectively.“ Since these two components are
connected in parallel when the switch is set to ground, V; = Vg,
and the energy flowing through each branch of the circuit is
then proportional to the current in that branch.

The dynamics of the currents in the circuit are compli-
cated, with the three branch currents /-, I;, and I all oscillat-
ing with different phases and amplitudes. However, we can
gain insight into the circuit behavior by considering the cur-
rent flow at junction J (shown in Fig. 4) in the moments after
the switch is toggled. We start with the switch set to 5V and
with the circuit in a steady state (Fig. 4, left). At this time,
the charge on the capacitor is at its maximum, meaning that
the energy stored in the capacitor is also at a maximum, and
there is a steady current flowing through both the input resis-
tor and the inductor. When the switch is moved to ground, as
shown in Fig. 4 (right), the capacitor starts to discharge, and
current flows out of the capacitor. At junction J, this current
splits between the inductor and the resistor branches, each
carrying a fraction of the energy originally stored in the
capacitor. The current going through the resistor branch,
which is V, /R, does not transfer any energy to the inductor
and thus can be dissipated across the resistor R. Since r and
L are held constant, then as R is increased, a smaller fraction
of the current goes through R, and a smaller fraction of the
stored energy is dissipated across it, thus increasing the Q
factor.

As R is further increased, a very small fraction of the cir-
cuit’s energy will be dissipated by the input resistor, and
most of the energy losses will instead occur through the para-
sitic resistance, r. This is consistent with Eq. (15), which
reduces to Q = /(L/r?>C) — 1/4 in the limit of large values
of R, which is the same result for the Q factor for the series
RLC circuit.* Using the values of L, C, and r given above,
we find that in this limit, Q — 4.6, which is consistent with
the data shown in Fig. 3.

C. Energy

To demonstrate the role that the input resistor plays in the
energy losses in the circuit, students can use their collected
data to compute the fraction of the energy lost in different
portions of the circuit. According to our explanation, there
are two ways that energy can leave the system: It can either
be dissipated by the parasitic resistance or it can leak out
through the input resistor. Thus, the total energy loss from
the circuit, AE7, is the sum of the energy loss through the
parasitic resistance, AE,, and the energy that leaks out
through the input resistor, AEg,

AEr = AE, + AEg. (16)

Here, we will show how these energy losses can be com-
puted with the data that has been collected.

First, we compute AE7, the total energy lost in one cycle,
by determining the difference in the circuit energy at succes-
sive peaks or troughs in Fig. 2. At these points, the total
energy in the system is the energy stored in the capacitor
plus the energy stored in the inductor. The energy stored in
the capacitor at peak i is (1/2)CV?, where V; is the voltage
at peak i. The energy stored in the inductor, (1/2)LI7, can be

J. G. Paulson and M. W. Ray 906



determined by noting that when the voltage is at a local
extrema, the current through the capacitor, Ic = CdV /dt =0
and Iy =1z =V;/(R +Rs). Thus, the total energy loss
between the first two peaks is

1 L ) )
AET 2 C+ R +Rs)2 (Vi =Vi,). a7
The extrema, which are indicated by the red dots in Fig. 2,
were determined using a peak finding algorithm in Python.
We then used the voltages at the first two minima to deter-
mine AE7.

The energy lost in the left-hand branch of the circuit
includes the energy dissipated by both the input resistor, R,
and the output impedance of the voltage source, Rg. The
energy loss through both of these resistors together can be
computed by

Ve(1)®
AER = dt. 18
. LR+& (18)

Since the input resistor is in parallel with the other two com-
ponents, we can compute AEg by using the measured voltage
vs time data integrated over the same two peaks as was used
to compute AE7.

Finally, once AEr and AER are computed, the energy lost
through the parasitic resistance, AE, can be computed using
Eq. (16). In order to compare energy losses from the differ-
ent data sets, we scaled each value of AE by the maximum
energy in the first peak of each dataset, Ey,,x. We performed
these computations for the 12 data sets shown in the supple-
mentary material,'*> and the results are plotted in Fig. 5. At
lower values of R, it is seen that most of the energy from the
circuit is leaking out through the input resistor within the first
oscillation. As R increases, the amount of energy leaking out
through the input resistor decreases, and as a consequence,
an increasing percentage of the energy is dissipated by the
parasitic resistance. In this region, Q is increasing as evi-
denced by the decreasing AE7 curve, which indicates that
less of the oscillator’s energy is lost in the first period of
oscillation. When R=10 kQ very little energy leaks out
through the input resistance; almost all the energy is lost

: .
114 ¢ ¢ ¢ AE;|]
v v . A AE,
¢ 0‘ v AEg
0.8 v * ¢ N 1
v AA A
§06F AA 8
w A
w v
4 A
0.4 v 1
A v
0.2 A v 1
A A Vv v
or v
. . :
102 108 10* 10°
R(2)

Fig. 5. Computed energy losses through the parasitic resistance and input
resistor along with the total energy lost from the circuit in one cycle.
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through the parasitic resistance, and Q is independent of R.
These observations are entirely consistent with energy loss
analysis presented above.

V. CONCLUSION

The parallel RLC circuit presents students with a mystery:
If resistance is the source of damping, then why does
increasing the resistance decrease the damping? As we have
shown, the circuit can be understood through a simple
model, and students can also gain an intuitive understanding
of its principles, which can then be verified with the data
they have collected in the laboratory. Thus, students can
experience the satisfying process of discovering a mystery
and then explaining it.

Though we have spent some time in this paper drawing
comparisons between the series RLC circuits and the simple
harmonic oscillator, it is not clear that such a mechanical
analog exists for the parallel RLC circuit. One would have to
find a mechanism by which increasing the value of a dissipa-
tive force would decrease the amount of energy leaving the
system, while not affecting the primary route that energy
leaves (in the case of the harmonic oscillator that would be
retarding forces, while in the RLC circuit it would be the par-
asitic resistance). We hope that our readers will be inspired
to search for such a mechanical system.
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