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Graphical analysis of an oscillator with constant magnitude
sliding friction
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We treat a horizontal oscillator damped by constant-magnitude sliding friction by extending the

analogy between the simple harmonic motion of a mass on a spring and the uniform circular

motion of a mass attached to the end of a string. In the presence of sliding friction, the motion of

the mass on a spring becomes the horizontal projection of the path of a mass attached to a string

winding around two nails separated by a well-defined distance; this path is a spiral consisting of

connected semi-circles of diminishing radii. This graphical analysis is very simple and

pedagogically useful. It can also be generalized to any oscillation affected by other forces of

constant magnitude but not necessarily constant direction. # 2022 Published under an exclusive license by
American Association of Physics Teachers.

https://doi.org/10.1119/5.0073812

I. INTRODUCTION

The standard presentation of harmonic motion in an intro-
ductory physics course begins with a mass moving on a
horizontal surface whilst attached to a spring. Under ideal
no-friction conditions, the mass performs simple harmonic
motion (SHM). The next natural step should be relaxing the
idealization of the system by adding sliding friction, but this
is nearly never done. Instead one usually adds drag, a
velocity-dependent force representing the resistance of a
fluid (possibly air). The resulting behavior is damped har-
monic motion (DHM).

Up to this point, however, drag is routinely ignored in the
introductory course, even where it would be natural, as in
projectile motion. One common way to motivate its intro-
duction in harmonic motion is to first treat the vertical spring
system in which a block is hung from the ceiling by a spring
and oscillates vertically. When solid surfaces are absent,
sliding friction is irrelevant and drag becomes a natural con-
sideration. However, the vertical spring system requires a bit
of care because gravitation shifts the system’s equilibrium
position.

Some (admittedly a minority) of our more curious students
wonder why we do not also treat the apparently natural case
of solid-on-solid friction. Furthermore, once exposed to
DHM, they sometimes ask whether a horizontal spring with
sliding friction also settles eventually at its relaxed length,
whether it requires an infinite time to stop, whether its period
is affected, and whether it has a constant period at all. This
motivated us to look for a simple approach to the horizontal
spring with sliding friction.

The oscillator with solid-on-solid friction has been treated
several times before.1–7 Unfortunately, most teachers seem
to feel that the problem is either conceptually challenging,
mathematically tedious, or both. Indeed, previous treatments
use either work-energy considerations, in which every semi-
cycle must be treated independently and anew, or differential
equations that produce a split-function, and are possibly a lit-
tle advanced for introductory courses.

In this paper, we offer an elementary treatment of the
problem based on an intuitive visualization of the solution
and analogies with SHM. Qualitative properties become
transparent, and many quantitative results can also be

obtained easily. One important pedagogical advantage of
this treatment is in teaching the power of analogies. The idea
of using simple systems as analogies of more complex ones
is an important tool for any student of science. The present
approach is a very good example of how to analyze a much
more complex problem (oscillations with solid-on-solid fric-
tion) by using only the solution of simple harmonic motion,
which is far better known and more accessible. We consider
this pedagogical aspect to be one of the important advantages
of our treatment.

We begin in Sec. II by recalling the fundamental relation
between SHM and circular motion. Section III then extends
this analogy to the case of an oscillator with solid-on-solid
friction and presents the fundamental visualization we apply
throughout the paper. Sections IV and V use this visualiza-
tion to obtain quantitative results, including the number of
cycles the system performs before stopping and the time-
dependence of the motion. Section VI extends the treatment
to arbitrary initial conditions, which is much easier to do in
the present approach than in previous ones. Section VII sum-
marizes the main advantages of our treatment.

II. HARMONIC OSCILLATIONS AS PROJECTIONS

OF CIRCULAR MOTION

It is well known that SHM can be viewed as the projection
of the circular motion of a “virtual” mass m attached to a
string of length A, and rotating (counterclockwise, by con-
vention) at a constant angular velocity x (see Fig. 1), hence
the angle of the radius-vector of the virtual mass to the posi-
tive x-axis is /ðtÞ ¼ xt.

The horizontal component of the centripetal force is
Fx ¼ mx2A cos /ðtÞ ¼ mx2xðtÞ, which is identical to the
force of a horizontal spring, hence the horizontal projection
of the circular motion is a SHM, i.e.,

xðtÞ ¼ A cos /ðtÞ ¼ A cos xtð Þ: (1)

We will make an important analogy with the vertical
spring, where gravity is an additional constant force. The
effect is to shift the equilibrium point from the spring’s
relaxation point (the point at which the spring’s length is at
its unstretched value), by an amount
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D ¼ mg

k
: (2)

The visualization of the system is the same as before,
except that the virtual string is now attached to the equilib-
rium point, a distance D from the spring’s relaxation point.
Note that the system’s period is unchanged

T ¼ 2p

ffiffiffiffi
m

k

r
; (3)

and the system’s motion is symmetrical with respect to the
equilibrium position D.

III. APPLICATION TO A SYSTEM WITH SLIDING

FRICTION

We now consider a mass m attached to a horizontal spring
of stiffness k. The mass is constrained to move along a
straight line on a horizontal surface with static and kinetic
coefficients of friction ls and lk, respectively. We have as
usual lk < ls. For simplicity, we assume here that the mass
is initially at rest and the spring is stretched in the positive
direction by some amount x0 (see Sec. VI for the general
case).

We must distinguish two cases, as in all motions contain-
ing sliding friction:

Case 1. Static friction overcomes the elastic force.
This happens if

kjx0j < lsmg: (4)

Defining

Ds ¼ ls

mg

k
; (5)

we see that if jx0j < Ds, the system remains at rest and no
oscillations occur.

Case 2. Elastic force overcomes static friction.
If jx0j > Ds, the mass begins to move and friction

becomes kinetic. Under our assumption of an initial stretch,
the motion begins in the negative direction and the total
force is

F ¼ �kxþ lkmg: (6)

This has the form of the force in a vertical spring system.
By analogy, the resulting motion is simply harmonic around
a new “equilibrium” point

x ¼ Dk ¼
lkmg

k
: (7)

It is non-trivial but clear that, as in the case of the vertical
spring, the time between extremal positions (local maxima
and minima of the position) remains unchanged from the
frictionless case, Eq. (3). This is not the case, for example, in
DHM, where that time, although constant, is different from
the undamped case.

From the analysis of the vertical spring system, the initial
motion of the spring with sliding friction is the x-projection
of a uniform circular motion centered on the point x ¼ Dk,
with radius A0 ¼ x0 � Dk. To visualize this easily, we imag-
ine a virtual string, stretched along the positive x-axis, and
fixed with a nail at the point x ¼ Dk. (Alternatively, one can
also imagine the string to be fixed at the origin and merely
passing under the nail at x ¼ Dk.) The string rotates counter-
clockwise at a constant speed and traces a circular arc until
it is horizontal again, and the mass is at the point
x1 ¼ Dk � A0. As long as jx1j > Ds, the block will move
again, this time in the positive direction. Friction reverses
direction, and the total force is now

F ¼ �kx� lkmg: (8)

This force describes a SHM, but the “equilibrium” point is
shifted to x ¼ �Dk, as seen in Fig. 2.

It is at this point that usual treatments become disjointed,
treating the next leg of the motion as a separate problem
from the first. The graphical analogy of a winding string that
we present here offers, by contrast, an appealing alternative
in which the motion is seen to be one continuous process. To
see how, imagine that we have a second nail driven at the
point x ¼ �Dk. When the mass reaches point x1, the string is
horizontal and touches that nail. As the string continues to
rotate, the second nail now serves as a new pivot around
which the string starts winding. The next phase of the motion
is, thus, clear: it is another semi-circle, centered on x ¼ �Dk.
At the same time, the string is shortened, and the new radius
of motion is A1 ¼ A0 � 2Dk.

The entire motion can, thus, be visualized as the projection
of a spiral described by a string wrapping itself around two
nails hammered at x ¼ 6Dk, as seen in Fig. 3. This is

Fig. 1. SHM as a projection on the x-axis of a uniform circular motion in the

x-y plane. The angular velocity of the circular motion is the same as the

angular frequency of the SHM. The equilibrium position of the SHM coin-

cides with the center of the circular rotation.

Fig. 2. Motion of a horizontal spring with added solid-on-solid friction. In

the top figure, the mass moves to the left, and the corresponding SHM is

centered on x ¼ Dk. In the bottom figure, the mass moves to the right, and

the corresponding SHM is centered on x ¼ �Dk . In both cases, ~x is the dis-

placement of the mass, and the magnitude of which is equal to the string’s

extension or compression relative to its relaxed state.
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relatively easy to visualize, and all the motion’s properties
can be deduced from this picture with minimal calculations.

It may seem surprising that the radius of motion remains
constant during each half-cycle despite the presence of fric-
tion. In the string visualization, the radius of motion changes
abruptly and instantaneously at every turning point when the
mass comes to momentary rest. However, this is true only
with respect to the current center of motion. With respect to
the spring’s unstretched state (its relaxation point), the maxi-
mum stretch and contraction in each half cycle are not equal.
Each turning point is closer to the relaxation point than the
last, in accordance with intuition.

IV. QUANTITATIVE ANALYSIS

Let us denote by x0; x1; x2;…f g the series of positions
where the mass is instantaneously at rest, x0 being the initial
position. All other xif g for i � 1 are the turning points at
which the mass changes directions and the virtual string
touches one of the nails and switches its winding center.

Next, let A0;A1;A2;…f g be the series of consecutive radii
of the semi-circles described by the virtual string. The first
semi-circle extends from the position x0 to x1. It is centered
at x ¼ Dk, and its radius is, thus,

A0 ¼ x0 � Dk: (9)

Thereafter, the string is shortened by 2Dk, the distance
between the two nails, every semi-revolution. Thus,

Apþ1 ¼ Ap � 2Dk; p � 0: (10)

Since the string’s length is finite (in fact equal to A0), there is
some definite p for which Ap becomes negative, which is
impossible. Thus, the number of windings must be finite,
which means that the block will stop after a finite number of
semi-cycles, unlike the case of DHM where the number of
cycles is theoretically infinite. Combining Eqs. (9) and (10),
we have that

Ap ¼ A0 � 2pDk ¼ x0 � 2pþ 1ð ÞDk: (11)

Let pmax be the index of the final turning point, i.e., the index
for which Apmax

� 0 and the motion cannot continue. This
condition implies that

pmax �
A0

2Dk
¼ x0

2Dk
� 1

2
(12)

or equivalently,

pmax ¼ ceil
A0

2Dk

� �
; (13)

where ceil½�, the ceiling function, denotes the smallest integer
equal to or larger than the function’s argument.

However, although this sets an upper limit on the number
of windings, the motion may stop earlier. The reason is that
once jxpj � Ds, the elastic force cannot overcome the static
friction and the block will not start another revolution, even
if there is enough leftover string to apparently allow it. The
instantaneous center of rotation shifts between Dk and �Dk

every semi-cycle. Since the turning points are measured with
respect to the origin, i.e., the string’s relaxation point, they
verify the relation

jxpj ¼ jxp�1j � 2Dk ¼ x0 � 2pDk: (14)

If the motion ceases at the N-th turning point, then the stop-
ping criterion jxNj � Ds implies that

N � x0 � Ds

2Dk
: (15)

Since ls � lk, Eq. (15) is more restrictive than Eq. (12).
Based on the definitions of Ds and Dk, from Eqs. (5) and (7),
the motion stops at the N-th turning point, i.e., after N half-
cycles, where N is

N ¼ ceil
x0

2Dk
� Ds

2Dk

� �
¼ ceil

x0

2Dk
� ls

2lk

� �
(16a)

or

N ¼ ceil
A0

2Dk
� Ds � Dk

2Dk

� �
¼ ceil

A0

2Dk
� ls � lk

2lk

� �
: (16b)

The last form of the relation is obtained from Eq. (9).
We can easily calculate the total distance traveled by the

mass attached to the spring, since every half cycle it goes
over a distance of two amplitudes, i.e.,

L ¼ 2
XN�1

p¼0

Ap ¼ 2
XN�1

p¼0

A0 � 2pDk½ �: (17)

This is an arithmetic series, so that

L ¼ 2N A0 � N � 1ð ÞDk½ �: (18)

In the last two equations, N is given in Eq. (16).

V. DESCRIPTION OF THE MOTION IN TIME

The winding string visualization allows us to write down
with relative ease the time evolution of the block’s position
without the need for differential equations.

During each semi-cycle, the block performs a SHM cen-
tered on alternating pivots. The centers and amplitudes
change at every turning point. At t0 ¼ 0, the block is at x0,

Fig. 3. The spiral-like trajectory of the virtual string is composed of semi-

circles with amplitudes Ap, each centered alternately on the “kinetic equi-

librium” positions 6Dk .
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the first point where the velocity vanishes. Hereafter, it
comes to momentary rest every half cycle. Since the period
remains constant throughout the motion, the p-th turning
point occurs at

tp ¼ pT1=2; (19)

where

T1=2 ¼
T

2
¼ p

ffiffiffiffi
m

k

r
: (20)

We now write the rotating radius-vector of the endpoint of
the virtual string, around its instantaneous center

rðtÞ ¼ Ap cos xt;Ap sin xtð Þ p ¼ 0; 1; 2;…; (21)

where the amplitude from Eq. (11) is

Ap ¼ x0 � 2pþ 1ð ÞDk for pT1=2 � t � ðpþ 1ÞT1=2:

(22)

To obtain the actual harmonic motion of the block, we
project this vector on the horizontal axis and add the dis-
placement of the center of rotation. Since this center alter-
nates between Dk and �Dk every half-cycle, we have that
during the p-th cycle,

xcenter; p ¼ �1ð ÞpDk: (23)

Thus, the final result is

xðtÞ ¼ �1ð ÞpDk þ x0 � 2pþ 1ð ÞDk½ �cos ðxtÞ
for pT1=2 � t � ðpþ 1ÞT1=2: (24)

This solution holds for p � N, where N is given in Eq.
(16). For larger times, the mass remains stationary at its
stopping point. Our solution agrees with that appearing in
Refs. 1, 2, and 6 but without the need to solve differential
equations.

The function x(t) is drawn in Fig. 4. The two dotted inner
lines represent the alternating instantaneous centers of the
motion, x ¼ 6Dk. Each extremum of the function (either a
crest or a trough) represents a turning point. The two dashed
outer lines represent the positions x ¼ 6Ds. When a turning
point falls between these lines, the systems stops.

From Eq. (19), the times of the turning points verify the
relation xtp ¼ pp, so that their positions are (from Eq. (24))

xp ¼ ð�1Þp x0 �
2xDk

p
tp

� �
: (25)

These are the crests (even p) and troughs (odd p) of the
graph. Notice that the envelope following these turning
points decays linearly in time, not exponentially as found in
damped harmonic motion.

We immediately see that the oscillator stops after a
finite number of periods, because when the envelope
crosses the horizontal axis, the amplitude of the motion
vanishes. In contrast, the envelope of the damped oscilla-
tor only tends asymptotically to zero but never actually
reaches it, thus accommodating (in theory) an infinite
number of oscillations.

Note that the distance from crest [trough] to the origin dif-
fers from the distance from the origin to trough [crest], thus
showing that with respect to the spring’s relaxed state, the
motion of the block is asymmetrical when it is to the right of
the origin compared to when it is to its left. When measured
with respect to the appropriate red inner dashed line, how-
ever, the distances are identical. These are the amplitudes of
the SHM with respect to alternating instantaneous centers,
and this motion is indeed symmetric with respect to these
centers during each half-cycle. The changes in amplitudes
with respect to the instantaneous centers of motion occur
only from one half-cycle to the next, each time the friction
force flips direction.

VI. GENERAL INITIAL CONDITIONS

The winding string visualization allows a simple treat-
ment of general initial conditions. We can represent the ini-
tial position x0 and velocity v0 by shifting the initial
position of the virtual string along its circular path. Instead
of imagining that the virtual mass at the end of the string
starts on the x-axis, we position it along an initial angle /0,
as seen in Fig. 5.

As before, we assume by convention that the virtual mass
rotates counterclockwise along its circular path. Choosing
0 � /0 < 2p, the relevant ranges depend on the signs of the
initial position and velocity

/0 ¼ 0 if v0 ¼ 0 and x0 > 0;

0 < /0 < p if v0 < 0;

/0 ¼ p if v0 ¼ 0 and x0 < 0;

p < /0 < 2p if v0 > 0: (26)

For convenience, define the parameter

g ¼ int
/0

p

� �
; (27)

Fig. 4. The block’s position as a function of time. The pair of outer dashed

lines are the stopping borders at x ¼ 6Ds. When the blocks comes to rest

between these two lines, the motion ends. The pair of inner dotted lines are

the positions of the alternating instantaneous centers of motions, x ¼ 6Dk .

The envelope of the position as a function of time decays linearly and is

determined by the extremal points of the graph. In this graph, we took

m ¼ 1 kg; k ¼ 10 N=m;A0 ¼ 1:75 m;ls ¼ 0:3; and lk ¼ 0:1.
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where intð Þ is the floor function, i.e., the largest integer that
is smaller than or equal to the function’s argument. We now
have that

x0 ¼ �1ð ÞgDk þ A0 cos /0;

v0 ¼ �A0x sin /0: (28)

From this, we obtain the relations

A0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 þ �1ð Þgþ1

Dk

h i2

þ v2
0

x2

r
; (29a)

tan /0 ¼ �
v0

x x0 þ �1ð Þgþ1
Dk

h i : (29b)

Figure 5 shows the spiral drawn by the virtual string under
general initial conditions. The string does not complete a full
half-cycle before reaching the first turning point x1 (the first
point of instantaneous rest), which occurs at the time t1.
Since the string rotates at a constant angular speed x, how-
ever, the time at which it is horizontal again is easily found
to be

t1 ¼

p� /0

x
if /0 < p;

2p� /0

x
if /0 � p;

8>>>><
>>>>:

(30)

or equivalently,

t1 ¼ 1þ g� /0

p

� �
T1=2: (31)

One of our visualization’s advantages is that a look at
Fig. 5 suffices to see that from x1 onwards, the spiral behaves
exactly as in the case treated previously. This means that the
next turning points t2; t3;…f g, all occur T1=2 after one
another, so that

tp ¼ t1 þ ðp� 1ÞT1=2 p � 2ð Þ; (32)

and the amplitude of each semi-cycle is

Ap ¼ A0 � 2pDk for tp�1 � t � tp: (33)

In the p – th semi-cycle, the radius-vector of the endpoint
of the virtual string is centered on xcenter; p ¼ ð�1ÞgþpDk, as
seen in Eq. (28), and its value is rðtÞ ¼ ðAp cos ðxtþ /0Þ;
Ap sin ðxtþ /0ÞÞ. The motion of the mass on the spring is
the projection of this vector on the horizontal axis with the
displacement of the center of rotation added. The final result
is

xðtÞ ¼ �1ð Þgþp
Dk þ A0 � 2pDk½ �cos ðxtþ /0Þ

for tp�1 � t � tp: (34)

This solution reduces to Eq. (24) when /0 ¼ 0, which
implies that g ¼ 0, v0 ¼ 0, and A0 ¼ x0 � Dk.

As before, this solution holds for p � N, and the maximal
turning point index N is still given in Eq. (16b), i.e.,

N ¼ ceil
A0

2Dk
� ls � lk

2lk

� �
: (35)

The value of A0 from Eq. (29a) differs from the above treated
case, which is why Eq. (16a) no longer holds. For times
larger than tN, the mass remains stationary at its stopping
point.

Although the solution looks fairly elaborate, the virtual
string visualization makes its derivation quite simple, and
the meaning of each term is geometrically clear. This is a
great advantage over alternative methods of solution. Indeed
the general case has not been treated previously and to the
best of our knowledge, its solution is obtained here for the
first time.

One can also reduce the general case to the above treated
special one by introducing negative times. Some students
find this approach helpful (others do not, so it is a matter of
preference). Instead of the actual start of the motion, t¼ 0 is
now considered the start of observation, which occurs whilst
the block is already moving. The “true” initial condition is
again taken to be v0 ¼ 0 and x0 ¼ A0 þ Dk, as before.
However, this occurs at the time

t0 ¼ �
/0

x
(36)

in accordance with the visualization of the “virtual block”
moving at a constant angular speed x. The virtual block’s
radius-vector becomes a generalization of Eq. (21)

rðtÞ ¼ Ap cos x t� t0ð Þ;Ap sin x t� t0ð Þð Þ
p ¼ 0; 1; 2;…; (37)

which is of course identical to the above solution with a dif-
ferent notation.

VII. CONCLUSIONS

In this work, the motion of a harmonic oscillator with slid-
ing friction is seen as the projection of a two dimensional
spiral motion created by a string winding itself around two

Fig. 5. The path of a virtual string representing the frictional oscillator with

general initial conditions. The virtual string starts from an angle /0, which

determines the initial position x0 and velocity v0. The first sequence of the

spiral is not a complete half circle, but all the following ones are identical to

the above considered special case, when v0 ¼ 0.
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nails. This visualization permits a simple geometric analysis
of the oscillator’s motion, using only elementary algebra and
basic trigonometry, with no reliance on differential equa-
tions. Furthermore, the treatment of general initial conditions
is incorporated with minimal changes, and a very minor
increase in mathematical complexity, which is a significant
advantage over previous approaches. All simulations of the
motion presented here were made using the MATLAB software,
which is an added pedagogical advantage, as it can be given
as a project for students to perform themselves.8

Furthermore, the whole visualization is extremely concrete.
One of us (V.R.) built a physical model using only a board,
two nails and an string, to show the behavior of the system.
Students who actually hold the “visualization” tool in their
hands are inclined to play with it and try to extract more
information from it.

The visualization presented here allows the treatment of
any oscillator with added constant-magnitude force. For
example, one can treat easily the case of an oscillator on an
incline plane. The added component of the gravitational
force represents a single shift of the center of the winding
string to a “gravitational equilibrium” position. The addition
of friction to this case can now be easily accommodated by
having two winding pivots placed symmetrically with
respect to the gravitational equilibrium position. Other gen-
eralizations are possible, all using basically the same visuali-
zation. This represents an important pedagogical message on

the power of analogies and their usefulness, which tran-
scends the specific system analyzed here to exemplify it.
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