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Stability and Hopf bifurcations in an inverted pendulum
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The inverted state of a simple pendulum is a configuration of unstable equilibrium. This
instability may be removed if the pivot is harmonically displaced up and down with appropriate
frequency and amplitude. Numerical simulations are employed to investigate the stable domains
of the system. The associated basins of attraction, extracted by interpolated cell mapping, are
seen to be fractal. Loss of stability at high excitation amplitudes is observed to follow a Hopf

bifurcation.

I. INTRODUCTION

A simple pendulum, consisting of a mass m at a distance
r from a pivot, has two equilibrium configurations: m lo-
cated in the down or the up position. The down position is
obviously stable, while the vertical orientation is clearly
unstable. It is known that this second equilibrium state can
be made stable by subjecting the pivot itself to a harmonic
vertical oscillation of appropriate frequency and ampli-
tude. This rather remarkable result, which seems some-
what counterintuitive, is not commonly discussed in texts
on classical mechanics,! although it has appeared from
time to time in the scientific literature.””” In a variant of
this problem, Miles® recently showed that suitably chosen
direct excitation (that is, a harmonic applied forgue rather
than a periodic displacement of the pivot) could produce
motion with symmetry about the up, rather than down,
orientation of the pendulum. An examination of the phase
plane plot in Ref. 8 reveals that these “inverted oscilla-
tions” have large amplitudes (greater than 7), meaning
that a quasistationary inverted state is not achieved under
this particular form of direct excitation.

In this work, we endeavor to provide a coherent picture
of the properties of the inverted state of a pendulum whose
pivot is subjected to harmonic vertical displacement. We
begin by summarizing the two principal theoretical ap-
proaches to the problem: an approximation of the equation
of motion by the Mathieu equation, and a phenomenolog-
ical model based on an effective potential. Numerical sim-
ulations are then employed to investigate the manner in
which the inverted position destabilizes as the amplitude of
the pivot oscillation is increased beyond a critical value.
We find that the stationary vertical state undergoes a Hopf

“bifurcation leading to a flutter mode. Finally, using inter-
polated cell mapping, basins of attraction are computed for
operating points both inside the domain of stability, and in
the flutter zone.

II. THEORY

The pendulum consists of a mass m fixed at a distance r
from a pivot which is subjected to a vertical oscillation
y=4 cos(wt). As indicated in Fig. 1, let 6 be the angular
coordinate of m measured counterclockwise from the
down position, and ¢ be the complementary displacement
measured clockwise from the up orientation (68+¢=). In
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experimental apparatus,” additional components may be

attached to the pivot axis and co-rotate with the mass m;

hence let the moment of inertia of these components be

denoted I'*. The general equation of motion, including ve-

locity dependent damping, is

1d20 b 49 Aw? in 6=0 1
:1?-+ dt+mr[g— o” cos(wt) ]sin =0, (1)

where b is a damping coefficient and I=I*+m7 is the
total moment of inertia of the system. The undamped nat-
ural frequency @, is given by wi=mgr/I. If time is nor-
malized according to the transformation w¢—f, then we
obtain

d6 (1\db 1 A mr
#+ag) a*| (@) (77 )0

where Q=w,l/b and (A=w/w,. For the alternate coordi-
nate ¢, the equation of motion is

2 ) | ) o

=0. (3)
A, Mathieu equation

sin(6) =0,

sin(@)

Equilibrium about the down position can be evaluated
by determining the stability of solutions of Eq. (2) with
sin(6) = 0. In a similar fashion, the inverted position may
be treated by assuming sin(¢)=¢ in Eq. (3). In either
case, the equations take the canonical form,

dy dyp
JE B+ [8+ecos(n)]9=0, 4)

with ¥=0 or ¢, B=(QQ)"!, 6=+/—-0Q"% and e=
—/+(A/r)(mr'/I). We shall be interested in parameter
domains Q> 5 and () > 5; the B term may then be neglected
and Eq. (4) will take the form of the Mathieu equation.
The sign of § is important, as will be seen, but the sign of
€ has no effect on the stability of the system. Henceforth, e
will be treated as a positive quantity.

The issue of the stability of either orientation of the
pendulum (inverted with ¢~0 and § <0, or noninverted
with =0 and > 0) can now be addressed with reference
to the general literature available on the Mathieu equation;
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Fig. 1. Schematic of a simple pendulum whose point of suspension un-
dergoes vertical oscillations.

the properties of the (€,6) plane shown in Fig. 2 are a
standard result. %1012

Useful approximations for the stability boundaries at
small € are given in Refs. (10) and (11). For the first
stable region in Fig. 2, they are 6~ — (1/2)€? and 6~1/4
—(1/2)e. At €=0.5, this latter expression yields 6=0.
The exact value!® is —0.02756. An improved approxima-
tion which is valid over a larger range of € is that of a
straight line passing through 6=0.25 at €=0, and 6=
—0.028 at €=0.5; hence, 6=1/4—0.556¢. These two lin-
ear functions are plotted in an expanded view of the first
stability zone, shown in Fig. 3.

In terms of the more physical parameters (¢€,{}), the first
stable region in the inverted case (6=—0"2) thus lies
between the two curves:

€=\/2/Q’ (5)
€=0.450+1.799/Q°. (6)

) e

Fig. 2. Stability diagram for the Mathieu equation. The vertical coordi-
nate is the reciprocal normalized drive frequency: 8= (wy/w)? the hori-
zontal coordinate is the normalized drive amplitude: e=(A4/r) (mA/I).
The regions of stability are shaded.
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Fig. 3. Expanded view of the first stability zone and the two linear ap-
proximations to the upper boundary.

These equations'? are plotted in Fig. 4 as solid lines. As
an example, suppose the pivot is oscillating at a frequency
which is 11 times the natural frequency w; The two
squares in the figure indicate that the inverted position will
be stable provided the amplitude of these oscillations lies
between €=0.129 and 0.465. For the noninverted case (8
= +72), the stable region lies between e=0 and

€=0.450—1.799/Q72,

in other words, between the vertical axis and the dotted
curve in Fig. 4. The shaded region in the figure thus rep-
resents that portion of (€,Q2) space for which both up and
down states should be stable.

B. Effective potential

In their classic text on mechanics,'* Landau and Lifshitz
briefly indicate an approach to the problem of the inverted

40 r — r
| / // ////
/ e
B ,//, ‘// e
30 | P I
e 7 rotating

only

20 |

Frequency ( Q)

10

Excitation Amplitude (€ )

Fig. 4. Stability diagram for the pendulum. Up and down arrows signify
regions of stability for the inverted and normal configurations, respec-
tively. Dots denote points that lie along the upper boundary of the flutter
zone and were determined from numerical simulations.
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pendulum. Following their method, and assuming that
Q31 in Eq. (2), the phase is separated into “slow” (O)
and “fast” (§) components: 0=60+4§. From Eq. (2), we
obtain

. 1 .1

— — _ ; _ 7
§+QQ§+QZ§cos6 € cos t sin ©=0, (7)
54— 5} L 2] 0=0 (8)
G+Q_Q +qz sin —e€(£ cos t)cos O=0,

where £ is assumed small, overdots indicate time deriva-
tives, and the brackets { ) denote the dc part of the argu-
ment. The solution £(¢) to the linear Eq. (7) is found
immediately to be

€sin ©

é—(t)z(ﬁ"‘ cos ©6—1)%+p?

+Bsin t], (9)

with §*=|§|. Inserting this into Eq. (8), we obtain for the
slowly varying component of 6:

[(6* cos ©—1)cos ¢

5% cos O—1
(8* cos ©—1)2+6°
=0. (10)

Clearly there is an effective dc potential for the slow mo-
tion, given by

. é
O+ O+ 6* sin G—Z( )sin(Ze)

1—6*cos ©
E4(0)=056% )[1

EZ
I—cosO+g5 ((1-6* c0s 0)+ B

—cos(20)]1, (11)

which is for large driving frequencies and relatively low
losses very well approximated by,

1—cos 04+ (M) (1 —cos 20
—cos +2 (7) (1—cos )].

(12)
This effective potential is plotted in Fig. 5 for a number of
€ values. When € is large enough, a potential well develops

at ©=m, resulting in a stable inverted state. From Eq.
(12), the condition for this to occur is seen to be

1
Eeﬁ(e):‘dz

PE ¢ " (Qe)?
367 >0 = 2 > 1. (13)
O=n

This relationship between € and Q is identical to the
expression given on p. 95 of Landau and Lifshitz,'* and to
the previously quoted result [Eq. (5)] for the lower stabil-
ity boundary of the Mathieu equation. The effective poten-
tial method also concludes, as noted by Landau and Lif-
shitz, that the noninverted state ©=0 is always stable.
However, it is important to note that, in contrast to the
earlier analysis, the effective potential method does not
yield upper stability boundaries in the (€,Q) plane and so
leaves unanswered the question of possible destabilization
at larger excitation amplitudes. In the earlier treatment of
the Mathieu equation, it was seen that the noninverted
state (8 >0) will indeed become unstable if, for any chosen
frequency (, € is increased sufficiently.

While the effective potential method clearly provides
only a partial picture of the stability properties of this pen-
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Fig. 5. Effective potential as a function © for Q=11. The values of € are
0.05, 0.13, 0.20, and 0.30, beginning with the lowest curve.

dulum, it does in fact yield some results not available from
the Mathieu equation (which contains no dissipation
term). For example, from Eq. (11) it is apparent that finite
damping enhances the stability of the inverted state, but
that this influence is small since the correction is of second
order in (2Q) ~1. The width of the potential well at O =7
may be found by setting JE /90 =0. The rims of the well
are located at the two angles which satisfy cos ©=—2/
(eQ)?2. If the drive frequency is fixed at some value and the
excitation amplitude is increased, then the well will become
wider. This in turn implies that larger initial displacements
from the vertical would still lead to the stationary inverted
state. Such an effect is indeed observed in the simulation
results which are discussed next. For large € and (Q, the
well has a limiting maximum range extending from O =7/
2 to 37/2 (90 deg on either side of the vertical).

Finally, we note that the equation of motion arising from
the effective potential approach is valid for all phase angles
of the pendulum, whereas the Mathieu equation treatment
is restricted to small amplitude behavior around some cho-
sen angle. Hence, a study of the rotating state of the pen-
dulum under the influence of a fast parametric force can
only be carried out with the approximations of the effective
potential.

III. SIMULATION RESULTS

A fourth-order Runge Kutta routine was employed to
compute numerical solutions of Eq. (2). All calculations
were carried out in double precision arithmetic. The inte-
gration time step generally was chosen to be 0.01 of the
drive period, although in certain circumstances it was set
at 0.001 of a period. Simulations quickly revealed that a
stable inverted state could be easily achieved. If the pen-
dulum was released from rest at a small enough initial
angle relative to the vertical, the subsequent motion typi-
cally damped toward the final state 6=1. In fact, for given
Q, , and € it was possible to determine a maximum re-
lease angle beyond which the stationary inverted state was
not achieved. In effect, this procedure probes the width of
the potential well, as discussed in the previous section. It

Blackburn, Smith, and Grénbech-Jensen 905
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Fig. 6. Plot of maximum release angle (measured from the top) for which
a stationary or bounded inverted state results, as a function of the ampli-
tude of the pivot excitation. Data are presented for two drive frequencies,
both sets with @=20.

was also found that for a given (, there was a maximum €
above which only rotational motion occurred. For values
of € just below this maximum, the pendulum did not come
to rest in the up position, no matter how small the release
angle, but instead the motion remained bounded in the
vicinity of 6=

Simulation data are presented in Fig. 6 for two different
values of excitation frequency. The relatively large allow-
able initial displacement from the vertical, which was al-
ways in excess of 45 deg, indicates the robustness of the
inverted state. For {}=11, stability commences at €=0.12,
in good agreement with the theoretical prediction from the
Mathieu equation of e=v2/Q. It is also readily apparent
from Fig. 6 that for larger €, although the end points of
the stability range each shift to smaller values of ¢, the
magnitude of the range increases. This is consistent with
the predictions of Fig. 4. Figure 7 illustrates the near in-

0.04 7 T T

0.03

0.02

E eff

0.01

0.00

Fig. 7. Effect of damping parameter Q on the maximum release angle at
which an inverted state is still reached for Q=11.
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60 r T r ‘ T T T T

TURNING ANGLE

L

45 50

0 5 10 15 20 25 30 35 40
TIME (drive cycles)

Fig. 8. Damped approach of phase plane orbit toward a state in which the
pendulum flutters regularly from side to side with an amplitude of about
40 deg. Note that two very different starting points lead to the same final
motion. Parameters were Q=35, Q=11, €¢=0.50.

dependence of the stability zone with respect to the damp-
ing parameter Q.

As noted earlier, for values of € slightly below the upper
end point of the range for bounded motion, a new type of
behavior was observed. After release from rest at some
initial angle 6,, the phase plane (8, d6/dt) orbit would
take on a double-lobed form that would exhibit damped
pulsations leading to a final limit cycle. A typical plot of
successive maximum angular displacements (which occur
at d6/dt=0) of such an orbit is shown in Fig. 8, where it
can be seen that the pendulum ultimately settled into a
limit cycle that extended approximately 40 deg on either
side of the inverted position. The figure also demonstrates
that this final condition is independent of the release angle,
and so is a function only of the parameters {2 and e.

Several limit cycles are shown in Fig. 9. Each orbit was
completed in exactly two periods of the vertical excitation
(hence, there is phase locking at half the external drive
frequency). This type of motion could be described as a
Autter mode since the pendulum is oscillating about the
vertical at half the drive frequency. From the data in this

0.53 0.50

VELOCITY
[=]

120 140 160 180 200 220 240
ANGLE ( 6 )
Fig. 9. Limit cycles for 0=35, Q=11 at four different drive amplitudes .
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Fig. 10. Limit cycle size as a function of (e—¢,)/2

figure, it can be seen that the flutter amplitude becomes
zero at a critical normalized drive €, of 0.468. Note that
this €, is just the value of € at the upper Mathieu stability
boundary as defined by the expression €=0.450+ 1.799/Q*
{=0.465). Figure 10 displays the dependence of the flutter
amplitude on the square root of (e—¢,). The lineari? of
this relationship is a typical of a Hopf bifurcation.'>!

The simulation results for 1 =11 may be summarized as
follows. For 0.12 < € < €, a stationary inverted state would
be achieved. For €,<€<0.53, the pendulum fluttered
about the vertical with an amplitude which increased as €
approached the maximum value of 0.53, at which point the
inverted state became completely unstable and the pendu-
lum rotated (recall from Fig. 4 that the vertically down
position had already become unstable at a somewhat
smaller value of € and was thus unavailable to the system).

Generally, therefore, the inverted state of the pendulum
fully destabilizes by first passing through a Hopf bifurca-
tion which results in increasing flutter amplitudes. The
zone in which this transition takes place lies just above the
upper stability boundary as determined from the Mathieu
equation (see Fig. 4).

Velocity

- 6.0

Angle

Fig. 11. Basin of attraction for the inverted state determined by interpo-
lated cell mapping for @=5, €=0.150 and Q=11.
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Velocity

Angle

Fig. 12. Basin of attraction well within the stability region of the inverted
state: 0=>5, €=0.300, 1=11.

IV. BASINS OF ATTRACTION

Depending on the parameters (€,{2) and initial condi-
tions (60,d6/dt),, the pendulum will, after an interval in
which transients decay, settle into one out of a number of
possible dynamic states. These include the inverted and
noninverted configurations, as well as various spinning
modes. The set of initial conditions leading to a given equi-
librium state (attractor) is its basin of attraction. The most
direct way of determining a basin of attraction is to sys-
tematically select (8,d0/dt), from a large array of values,
and then by integrating the equation of motion discover
whether each initial condition leads to the particular at-
tractor. Detailed basin maps can require up to 1000< 1000
arrays of starting values, posing severe computational de-
mands. An efficient algorithm known as interpolated cell
mapping!”!® can generate high resolution basins 30 to 50
times faster. ICM was employed to calculate the basins
discussed below.

Figure 11 illustrates the basin of attraction for the in-
verted state of the pendulum operating just above the lower
stability boundary. As is typically the case, there is a dense
basin core surrounded by fractal layers. The residue in the
(6,d6/dt) plane (white areas) represents a mixture of ba-
sins for other states: noninverted and spinning. As € is
increased to a value (0.300) well within the stability region
shown in Fig. 4, the basin expands (Fig. 12). The basin in
Fig. 13 occurs just below the upper Mathieu stability

Velocity

-6.0 kb

Angle

Fig. 13. Basin of attraction of the inverted state just below the upper
stability boundary. =5, €=0.460, Q=11.
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Velocity

-6.0
0 T 2R

Angle

Fig. 14. Basin of attraction of the flutter mode for the inverted state just
after the Hopf bifurcation. 0=5, €=0.470, 0=11.

boundary, while that in Fig. 14 is for the flutter mode lying
just above it (i.e., immediately following the Hopf bifurca-
tion). Figs. 13 and 14 show that, at a Hopf bifurcation, the
basin of the stable inverted state is spontaneously con-
verted into an identical basin for the flutter mode. Finally,
Fig. 15 illustrates the evolution of the basin for the flutter
mode as complete instability is approached. At slightly
larger € this basin disappears, since then only spinning
states exist.

V. CONCLUSIONS

The simple pendulum is a very old device, yet it is a
paradigm of contemporary nonlinear dynamics.'” When
excited by a harmonic torque, it is a mechanical analog of
a superconducting Josephson junction.” Most significant,
perhaps, is the appearance of chaos under a wide range of
drive conditions.”® The particular system considered
here—a pendulum with a vertically oscillating point of
suspension—also exhibits a number of interesting proper-
ties, especially the stability of the inverted state. This pro-

6.0
>
=
3,
o
p—
B}
>

-6.0

0 4 2r
Angle

Fig. 15. Basin of attraction for the flutter mode with @=35, €=0.520,
O=11.
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cess of “dynamic stabilization,” as noted by Michaelis’ and
Friedman et al.,® plays an important role in other, quite

* different physical phenomena such as quadrupole mass fil-

ters and various types of plasma confinement. An analysis
of the dynamics brings into play numerical simulations,
stability theory of the Mathieu equation, approximation
methods, the interpolated cell mapping algorithm for de-
termining basins of attraction, and Hopf bifurcations. Al-
though not the subject of this paper, chaotic motion can
occur at lower excitation frequencies.
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