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Fundamentals of synchronization in chaotic systems, concepts,
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The field of chaotic synchronization has grown considerably since its advent in 1990. Several
subdisciplines and “cottage industries” have emerged that have takdyomm fidelives of their

own. Our purpose in this paper is to collect results from these various areas in a review article
format with a tutorial emphasis. Fundamentals of chaotic synchronization are reviewed first with
emphases on the geometry of synchronization and stability criteria. Several widely used coupling
configurations are examined and, when available, experimental demonstrations of their success
(generally with chaotic circuit systemare described. Particular focus is given to the recent notion

of synchronous substitution—a method to synchronize chaotic systems using a larger class of scalar
chaotic coupling signals than previously thought possible. Connections between this technique and
well-known control theory results are also outlined. Extensions of the technique are presented that
allow so-called hyperchaotic systerfsystems with more than one positive Lyapunov expontnt

be synchronized. Several proposals for “secure” communication schemes have been advanced;
major ones are reviewed and their strengths and weaknesses are touched upon. Arrays of coupled
chaotic systems have received a great deal of attention lately and have spawned a host of interesting
and, in some cases, counterintuitive phenomena including bursting above synchronization
thresholds, destabilizing transitions as coupling incredsesrt-wavelength bifurcatiohs and

riddled basins. In addition, a general mathematical framework for analyzing the stability of arrays
with arbitrary coupling configurations is outlined. Finally, the topic of generalized synchronization

is discussed, along with data analysis techniques that can be used to decide whether two systems
satisfy the mathematical requirements of generalized synchronizatioi99@ American Institute

of Physics[S1054-150007)02904-3

Since the early 1990s researchers have realized that cha- exponent threshold is not necessarily the most practical,
otic systems can be synchronized. The recognized poten- and basins of attraction for synchronous attractors are
tial for communications systems has driven this phenom- not necessarily simple, leading to fundamental problems
enon to become a distinct subfield of nonlinear dynamics, in predicting the final state of the whole dynamical sys-
with the need to understand the phenomenon in its most tem. Finally, detecting synchronization and related phe-
fundamental form viewed as being essential. All forms of nomena from a time series is not a trivial problem and
identical synchronization, where two or more dynamical ~ requires the invention of new statistics that gauge the
system execute the same behavior at the same time, are mathematical relations between attractors reconstructed
really manifestations of dynamical behavior restricted to ~ from two times series, such as continuity and differentia-
a flat hyperplane in the phase space. This is true whether bility.
the behavior is chaotic, periodic, fixed point, etc. This
Ieads.to Mo funda-me.ntal considerations in studying syn- | INTRODUCTION: CHAOTIC SYSTEMS CAN
chronization: (1) finding the hyperplane and (2) deter-  gyNCHRONIZE

mining its stability. Number (2) is accomplished by deter-

mining whether perturbations transverse to the Chaos has long-term unpredictable behavior. This is usu-
hyperplane damp out or are amplified. If they damp out,  ally couched mathematically as a sensitivity to initial
the motion is restricted to the hyperplane and the syn-  conditions—where the system’s dynamics takes it is hard to
chronized state is stable. Because the fundamental geo- predict from the starting point. Although a chaotic system
metric requirement of an invariant hyperplane is so  can have a patter(an attractor in state space, determining
simple, many different types of synchronization schemes where on the attractor the system is at a distant, future time
are possible in both unidirectional and bidirectional cou-  given its position in the past is a problem that becomes ex-
pling scenarios. Many bidirectional cases display behav- ponentially harder as time passes. One way to demonstrate
ior that is counterintuitive: increasing coupling strength  this is to run two, identical chaotic systems side by side,
can destroy the synchronous state, the simple Lyapunov starting both at close, but not exactly equal initial conditions.
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The systems soon diverge from each other, but both retain

the same attractor pattern. Where each is on its own attractor X
has no relation to where the other system is. 1
An interesting question to ask is, can we force the two y By
; > 1 2
chaotic systems to follow the same path on the attractor”
Perhaps we could “lock” one to the other and thereby cause

their synchronization? The answer is, yes. Z » 7
Why would we want to do this? The noise-like behavior
of chaotic systems suggested early on that such behavior
might be useful in some type of private communications.riG. 1. Original drive—response scheme for complete replacement synchro-
One glance at the Fourier spectrum from a chaotic systemization.
will suggest the same. There are typically no dominant
peaks, no special frequencies. The spectrum is broadband.
To use a chaotic signal in communications we are im-; GEOMETRY: SYNCHRONIZATION HYPERPLANES
mediately led to the requirement that somehow the receiver
must have a duplicate of the transmitter's chaotic signal or’™ Simple example
better yet, synchronize with the transmitter. In fact, synchro-  Let us look at a simple example. Suppose we start with
nization is a requirement of many types of communicationtwo Lorenz chaotic systems. Then we transmit a signal from
systems, not only chaotic ones. Unfortunately, if we look atthe first to the second. Let this signal be theomponent of
how other signals are synchronized we will get very little the first system. In the second system everywhere we see an
insight as to how to do it with chaos. New methods arex component we replace it with the signal from the first
therefore required. system. We call this constructimomplete replacementhis
There have been suggestions to use chaos in robotics 8iVes us a new five dimensional compound system:
biological implants. If we have several parts that we would
like to act together, although chaotically, we are again led to % = —o(y;—Xy)
the synchronization of chaos. For simplicity we would like to dt ’
be able to achieve such synchronization using a minimal

Drive Response

i i dy; dy
number of signals between the synchronous parts, one signal 4= — X123 F X1~ Y1, rri —X1Zp+rX1—Yo, (1)
passed among them would be best. t t
In spatiotemporal systems we are often faced with the
study of the transition from spatially uniform motion to spa- dz; dz,

e _b 1 . = _b 1
tially varying motion, perhaps even spatially chaotic. For dt Wi PA g TXY2m 0%

example, the Belousov—Zhabotinskii chemical reaction can ]
be chaotic, but spatially uniform in a well-stired Where we have used subscripts to label each system. Note

experiment This means that all spatial sites are synchro-that we have replaced, by x, in the second set of equations
nized with each other—they are all doing the same thing agnd €liminated the, equation, since it is superfluous. We
the same time, even if it is chaotic motion. But in other €7 think of thex; variable as driving the second system.

circumstances the uniformity can become unstable and sp igure 1 shows this setup schematically. We use this view to
tial variations can surface. Such uniform to nonuniform bi-

abel the first system thdrive and the second system the
) . : responself we start Eq.(1) from arbitrary initial conditions
furcations are common in spatiotemporal systems. How do .
. - we will soon see thay, converges ty, andz, converges to
such transitions occur? What are the characteristics of these . :
) ! . . . Z; as the systems evolve. After long times the motion causes
bifurcations? We are asking physical and dynamical ques;

i di hronized. chaotic stat the two equalitiey/,=y,; andz,=z,. They andz compo-
lons regarding synchronized, chaotic states. nents of both systems stay equal to each other as the system

Ty Svolves. We now have a set of synchronized, chaotic sys-
was done by Yamada and Fujisakaln that work, SOme 4o \we refer to this situation agentical synchronization

sense of how the dynamics might change was brought out by ce poth y,z) subsystems are identical, which manifests in
a study of the Lyapunov exponents of synchronized, coupleghe equality of the components.

systems. Although Yamada and Fujisaka were the first to  \ye can get an idea of what the geometry of the synchro-
exploit local analysis for the study of synchronized chaospoys attractor looks like in phase space using the above ex-
their papers went relatively unnoticed. Later, a now-famousamp|e_ We plot the variables,, y;, andy,. Sincey,=y,
paper by Afraimovich, Verichev, and Rabinovicexposed we see that the motion remains on the plane defined by this
many of the concepts necessary for analyzing synchronousquality. Similarly, the motion must remain on the plane
chaos, although it was not until many years later that widedefined byz,=z;. Such equalities define a hyperplane in the
spread study of synchronized, chaotic systems took hold. Wfve-dimensional state space. We see a projection of(ihis
build on the early work and our own studie¥’to develop a  three dimensionsin Fig. 2. The constraint of motion to a
geometric view of this behavior. hyperplane and the existence of identical synchronization are
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522 Pecora et al.: Fundamentals of synchronization

Cartesian products. Most of the geometric statements made
here can be couched in their formulation. They also consider
a more general type of chaotic driving in that formulation,
which is similar to some variations we have examinét’?

In this more general case a chaotic signal is used to drive
another, nonidentical system. Tresseal. point out the con-
sequences for that scheme when the driving is stable. This is
also similar to what is now being called “generalized syn-
chronization” (see below. We will comment more on this
below.

llI. DYNAMICS: SYNCHRONIZATION STABILITY

A. Stability and the transverse manifold

1. Stability for one-way coupling or driving

In our complete replacemeftR) example of two syn-
FIG. 2. A projection of the hyperplane on which the motion of the drive— Chronized Lorenz systems, we noted that the differences
response Lorenz systems takes place. |y1—Y2|—0 and|z;—z,|—0 in the limit of t—o, wheret
is time. This occurs because the synchronization manifold is
stable. To see this let us transform to a new set of coordi-
really one and the same, as we show in the next sectiomates:x; stays the same and we lgt =y;—Vy,, Y,=V1
From here on we refer to this hyperplane as sgachroni-  +y,, andz, =z,-z,, z,=z;+z,. What we have done here
zation manifold is to transform to a new set of coordinates in which three
coordinates are on the synchronization manifotd,y, ,z,)
and two are on the transverse maniféyd andz, ).

We see that, at the very least, we need to havandz,

We can make several generalizations about the synchrgio to zero ag— <. Thus, the zero poin0,0) in the trans-
nization manifold. There is identical synchronization in anyverse manifold must be a fixed point within that manifold.
system, chaotic or not, if the motion is continually confinedThis leads to requiring that the dynamical subsystems
to a hyperplane in phase space. To see this, note that we cdly, /dt anddz, /dt be stable at th€0,0) point. In the limit
change coordinates with a constant linear transformation anef small perturbationgy, andz, ) we end up with typical
keep the same geometry. These transformations just repreariational equations for the response: we approximate the
sent changes of variables in the equations of motion. We cadgifferences in the vector fields by the Jacobian, the matrix of
assume that the hyperplane contains the origin of the coopartial derivatives of the right-hand side of thg-%) re-
dinates since this is just a simple translation that also mainsponse system. The approximation is just a Taylor expansion
tains the geometry. The result of these observations is thaif the vector field functions. If we leF be the (two-
the space orthogonal to the synchronization manifold, whiclimensional function that is the right-hand side of the re-
we will call thetransversespace, has coordinates that will be sponse of Eq(1), we have
zero when the motion is on the synchronization manifold.
Simple rotations between pairs of synchronization manifold (yi

B. Some generalizations and identical synchronization

=F(y1,21) —F(y2.,2,)

coordinates and transverse manifold coordinates will then 2L
suffice to give us sets of paired coordinates that are equal 1 —x
LT o . ; Yi| 1 (Yo
when the motion is on the synchronization manifold, as in ~DF- 7 1=\ « bl \z | (2
L 1 - L

the examples above.
There is another other general property that we will notewherey, andz, are considered small. Solutions of these
since it can eliminate some confusion. The property of havequations will tell us about the stability—whether or z,
ing a synchronization manifold is independent of whether thegrow or shrink ag— .
system is attracted to that manifold when started away from The most general and, it appears the minimal condition
it. The latter property is related to stability, and we take thatfor stability, is to have the Lyapunov exponents associated
up below. The only thing we require now is that the synchro-with Eq. (2) be negative for the transverse subsystem. We
nization manifold is invariant. That is, the dynamics of theeasily see that this is the same as requiring the response
system will keep us on the manifold if we start on the mani-subsysteny, andz, to have negative exponents. That is, we
fold. Whether the invariant manifold is stable is a separatdreat the response as a separate dynamical system driven by
question. X, and we calculate the Lyapunov exponents as usual for that
For a slightly different, but equivalent, approach onesubsystenalone. These exponents will, of course, depend on
should examine the paper by Tressarall’ which ap- x; and for that reason we call theponditional Lyapunov
proaches the formulation of identical synchronization usingexponents

Chaos, Vol. 7, No. 4, 1997
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TABLE I. Conditional Lyapunov exponents for two drive-response systems,

the Rasler (@=0.2, b=0.2, c=9.0) and the Lorenz84* which we see Two Ré.SSlers
cannot be synchronized by the CR technique. 0.2 x-couphng
Drive Response Conditional
System signal system Lyapunov exponents
Rissler x (y,2) (+0.2,—0.879 A
y (x,2) (—0.056,—8.81) max
z (x,y) (+0.0,-11.0)
Lorenz84 X (y,2) (+0.0622,—0.0662
y (x,2) (+0.893,—-0.643
z (%,y) (+0.985,—-0.716
The signs of the conditional Lyapunov exponents are (coupling strength)

usually not obvious from the equations of motion. If we take
the same Lorenz equations and drive with thevariable, FIG. 3. The maximum transverse Lyapunov exponent, as a function of
giving a dynamical system made froxa, y;, z;, X, and coupling strengthy in the Ressler system.
y», we will get a neutrally stable response where one of the
exponents is zero. In other systems, for example, thesiRo

. ) : : . _For any value ofx we can calculate the Lyapunov exponents
system that is a 3-D dynamical system, in the chaotic regime . . SR

= . ! . of the variational equation of Eq4), which is calculated
driving with the x; will generally not give a stabley(z) - s ) : )
. similar to that of Eq.(2) except that it is three dimensional:

response. Of course, these results will also be parameter de-
pendent. We show above a table of the associated exponents | dx;

for various subsystems¢Table ). We see that using the dt
. - -1 -1
present approach we cannot synchronize the Lorenz84 sys- dy, Xy
tem. We shall see that this is not the only approach. Similar at | = 1 a O | {vye], (6)
tables can be made for other systems. z 0 x-c z

We can approach the synchronization of two chaotic sys- dz,

tems from a more general viewpoint in which the above dt

technique of CR is a special case. This is one-vdiffusive  \yhere the matrix in Eq(6) is the Jacobian of the full Risler
coupling, also called negative feedback control. Several apsystem plus the coupling term in tieequation. Recall Eq.
proaches have been shown using this techntqtd.What  (g) gives the dynamics of perturbations transverse to the syn-
we do is add a damping term to the response system thghronization manifold. We can use this to calculate the trans-
consists of a difference between the drive and response vafjsrse Lyapunov exponents, which will tell us if these pertur-

ables: bations will damp out or not and hence whether the
dx dx synchronization state is stable or not. We really only need to
d—t1=|:(x1) d_tzzF(XZ)+aE(X1_X2)’ (3 calculate the largest transverse exponent, since if this is

negative it will guarantee the stability of the synchronized

whereE is a matrix that determines the linear combination ofState. We call this exponet;,,, and it is a function of. In

x components that will be used in the difference ande-  Fig. 3 we see the dependence )‘#aion a. The effect of

termines the strength of the coupling. For example, for twgdding coupling at first is to makk,,, decrease. This is

Rossler systems we might have common and was shown to occur in most coupling situations

for chaotic systems in Ref. 10. Thus, at some intermediate

dxq dx, value of @, we will get the two Rasler systems to synchro-

ar - Witz G T o2tz Falxi—Xg), nize. However, at larger values we see that;,,, becomes

dy, dy, positive and_ th_e synchronous_ state is no longer stable. This

W=X1+aY1, H:Xﬁayz’ 4) desynchronlzatlonNas_noted in Refs. 10_, 21 and 22. At
extremely largex we will slavex, to x;. This is like replac-

dz; dz, ing all occurrences ok, in the response witkx;, i.e. as

ot —Pta(xa—c), gr=b+z(x—0), a—o we asymptotically approach the CR method of syn-

chronization first shown above for the Lorenz systems.
Hence, diffusive, one-way coupling and CR are reltedd

where in this case we have chosen the asymptotic value of(a—x) tells us whether the CR

10 0 method will work. Conversely, the asymptotic valuengf,,
is determined by the stability of the subsystem that remains
E=|0 0 Of. ©) uncoupled from the drive, as we derived from the CR
0 0O method.

Chaos, Vol. 7, No. 4, 1997
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FIG. 4. Attractor for the circuit-Resler system. FIG. 5 Chaotic drive and response circuits for a simple chaotic system
described by Eqq9).

2. Stability for two-way or mutual coupling tional equations in which we scale the coupling strength to

Most of the analysis for one-way coupling will carry cover other coupling schemes is much more general than
through for mutual coupling, but there are some differencesmight be expected. We show how it can become a powerful
First, since the coupling is not one way the Lyapunov expo+tool later in this paper.
nents of one of the subsystems will not be the same as the The interesting thing that has emerged in the last several
exponents for the transverse manifold, as is the case forears of research is that the two methods we have shown so
drive—response coupling. Thus, to be sure we are looking dtr for linking chaotic systems to obtain synchronous behav-
the right exponents we should always transform to coordiior are far from the only approaches. In the next section we
nates in which the transverse manifold has its own equationshow how one can design several versions of synchronized,

of motion. Then we can investigate these for stability: chaotic systems.
Xm dX2
dt - tz)tae—x), Gr=—212) IV. SYNCHRONIZING CHAOTIC SYSTEMS,
VARIATIONS ON THEMES
+ a(X;—X3), .

d dy A. Simple synchronization circuit

Y1 2
W:Xﬁ ayi, W:Xﬁ ays, (7 If one drives only a single circuit subsystem to obtain
q q synchronization, as in Fig. 1, then the response system may
—l=b+zl(x1—c), —2=b+zz(x2—c). be completely linear. Llne'ar CII’CU!tS have been well stu@ed
dt dt and are easy to match. Figure 5 is a schematic for a simple

chaotic driving circuit driving a single linear subsystém.
For coupled Resler systems like Eq7) we can perform the This circuit is similar to the circuit that we first used to
same transformation as before. bgt=x;—X,, X;=X;+X, demonstrate synchronizatiband is based on circuits devel-
and with similar definitions foy andz. Then examine the ©oped by NewcomB? The circuit may be modeled by the
equations fox, , y, , andz, in the limit where these vari- €quations
ables are very small. This leads to a variational equation as

before, but one that now includes the coupling a little differ- d_tl = —1.35; + 3.54,+ 7.89(X5) + 0.77 ],
ently: 9)
dx
dx, d—f:/a[leJr 1.35,].
dt —2a -1 -1\ /y . - i
dy, L The functiong(x,) is a square hysteresis loop that switches
at | T 1 a 0 Yil. ®) from — 3.0 to 3.0 atx,= — 2.0 and switches back a;=2.0.
dt . :
z 0 x—c Z The time factors arer=10° and 8=10°. Equation(9) has
dz,

— two x; terms because the secowrgl term is an adjustable
dt damping factor. This factor is used to compensate for the fact
Note that the coupling now has a factor of 2. However, thisthat the actual hysteresis function is not a square loop as in
is the only difference. Solving Ed6) for Lyapunov expo- the g function.

nents for variousy values will also give us solutions to Eq. The circuit acts as an unstable oscillator coupled to a
(8) for coupling values that are doubled. This use of varia-hysteretic switching circuit. The amplitudes>af andx, will

Chaos, Vol. 7, No. 4, 1997
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increase untik, becomes large enough to cause the hyster-
etic circuit to switch. After the switching, the increasing os- 1 %
cillation of x; andx, begins again from a new center. » :3 Ri [
The response circuit in Fig. 5 consists of tke sub- Rz;l>x”
system along with the hysteretic circuit. TRe signal from F‘Z.I:I>_ X ¢
the drive circuit is used as a driving signal. The signdls o o e
andx; are seen to synchronize wiy andxs. In the syn- RS ARNGE| . | A NG
chronization, some glitches are seen because the hysteret| [ 4> o Y Roge y
circuits in the drive and response do not match exactly. Sud- FT s RIQ 5
den switching elements, such as those used in this circuit, ar| e N A ENNE Fe } Rl 2 "
not easy to match. The matching of all elements is an impor-| ~ #° > >, *1 z
tant consideration in designing synchronizing circuits, al- :

though matching of nonlinear elements often presents the Drive Response

most difficult problem.
FIG. 6. Piecewise linear Rsler circuits arranged for cascaded synchroni-

B C ded dri hronizati zation. RE100K), R2=200K), R3=R13=2MQ, R4=75kQ,
. Cascaded drive-response synchronization R5-10k0, R6-10k), R7-100K), R8-10k), R9-68 kO,

®10=150 K2, R11=100 K}, R12=100 K}, C1=C2=C3=0.001xF, and

Once one views the creation of synchronous, chaoti o
the diode is a type MV2101.

systems as simply “linking” various systems together, a
“building block” approach can be taken to producing other
types of synchronous systems. We can quickly build on our 7

original CR scheme and produce an interesting variation that —=—a[—g(x)—2Zz],

we call acascadedlrive-response systefsee Fig. 8 Now, dt (10)
provided each response subsystem is stébés negative 0, x<3,
conditional Lyapunov exponenisboth responses will syn- g(x)= ux, x>3,

chronize with the drive and with each other. ) ) . . .

A potentially useful outcome is that we have reproducedvhere the time factor is 10 s™, yis 0.05,8is 0.5,\ is
the drive signalx, by the synchronizeds. Of course, we 1:0,A 18 0.133,I'=0.05, andu is 15. In the response system
havex, = x5 only if all systems have the same parameters. Ith€ Y signal drives the X,z) subsystem, after which the
we vary a parameter in the drive, the differenge-x, will ~ Subsystem is driven by andy to producey’. The extra
become nonzero. However, if we vary the responses’ paranfactor of 0.0 in the second of Eq10) becomes 0.02" in
eters in the same way as the drive, we will keep the nulithe response circuit in order to stabilize the op amp integra-

difference. Thus, by varying the response to null the differ-or-
ence, we can follow the internal parameter changes in the
drive. If we envision the drive as a transmitter and the re-C. Cuomo—Oppenheim communications scheme

_sp_or;se als a recen;er, valhive aV\;]ay to ﬁomr;;]gmc(ja”te chl?nges A different form of cascading synchronization was ap-
In Intérnal parameters. Vve have shown how this Wit WOrK INyjieq 19 3 simple communications scheme early on by

specific systemge.g., Lorenz and implemented parameter Cuomo and Oppenheifd:22 They built a circuit version of

vgria.tiog and following in a real set of synchronized, chaotic,[he Lorenz equations using analog multiplier chips. Their

cwcwtg. o etup is shown schematically in Fig. 7. They transmitted the
With cascaded circuits, we are able to reproduce all of gjona) from their drive circuit and added a small speech

the drive signals. It is important in a cascaded response C'rs'ignal. The speech signal was hidden under the broadband

cuit to reproduce all nonlinearities with sufficient accuracy,| j.an signal in a process known as signal masking. At their
usua_lly within a few pe_rcent, to _obs_erve synchromzatm_n.receiver’ the differenca—x’ was taken and found to be
Nonlinear elements available for circuits depend on material

and device properties, which vary considerably between dif-
ferent devices. To avoid these difficulties we have designed

circuits around piecewise linear functions, generated by di- Infgirggllon . — I
odes and op amps. These nonlinear elemgntginally used 1
in analog computefd) are easy to reproduce. Figure 6 shows
schematics for drive and response circuits similar to the X 1 X
Rossler system but using piecewise linear nonlinearifies.
The drive circuit may be described by y Ly J

dx

qi —a(I'x+By+A2),

d Drive System Response System

y
——=—a(x—yy+0.0%),
dt ( vy ) FIG. 7. Schematic for the Cuomo—Oppenheim scheme.

Chaos, Vol. 7, No. 4, 1997



526 Pecora et al.: Fundamentals of synchronization

in the differencex; —x5. We can use this deviation to adap-
X1 X3 tively correct the phase of the response forcing to bring it

into agreement with the drive.
Yi Y2 A good way to do this is to use a Poincarection con-

sisting of x; and xz, which is “strobed” by the response

Z, Z, Z3 forcing cycle. If the drive and response are in sync, the sec-
. - tion will center around a fixed point. If the phase is shifted
Drive . . . . . .
Response with respect to the drive, the points will cluster in the first or

, » , third quadrants depending on whether the response phase
FIGI. 8. Cascading scheme for obtaining synchronous chaos using (:omplefsgS or leads the drive phase respectively The shift in Poin-
replacemen carepoints will be roughly linear and, hence, we know the
magnitude and the sign of the phase correction. This has

. . been done in a real circuit. See Ref. 7 for details.
approximately equal to the masked speech siggalong as

the speech signal was smallOther groups later demon-
strated other simple communications scheffe¥: It has  E. partial replacement

been shown that the simple chaotic communication schemes In the dri i0 thus f h laced
are not “secure” in a technical send&3* Other encoding n e drive-response scenario thus far we have replace

schemes using chaos may be harder to break, although oR8® of the dynamical variables in the response completely
with its counterpart from the drivéCR drive responge We

must consider that this description usually works by finding 5o do this i ial h by Ref. 40. |
patterns, and chaotic systems, because they are determinis 7an aiso do this in a partial manner as shown by Ret. 40. In

are often pattern generators. Later we show how one migﬁpb? paf“rf" hsut()js_ututlon approach vlve. replacg al responseT\;]an-
avoid patterns in chaotic systems, able with the drive counterpart only in certain locations. The

choice of locations will depend on which will cause stable
synchronization and which are accessible in the actual physi-
D. Nonautonomous synchronization cal device we are interested in building.

L . An example of replacement is the following system
Nonautonomous synchronization has been accomplisheghsaq on the Lorenz system:

in several nonautonomous systems and circdits, but the _ _

more difficult problem of synchronizing two nonautonomousX1=o(Y1—X1), Y1=IX1—Yy1=X1Z1, Z3=X1y;1— bz,
systems with separate, but identical, forcing functions has (12)
not been treated, except for the work by Carroll and PeEora.)'(zz o(y1— Xo), Yo=IXo—VYo—XoZs, Zr=XpYo—bz,.

In this system we start out with a cascaded version of a ) . ,
te the underlined driving termg, in the second system.

three-variable, nonautonomous system so as to reproduce t . : . .
The procedure here is to replace oglyin this equation and

incoming driving signal when the systems are in synchroni- "~ h h ) This lead .
zation(see Fig. 9. Similar to the cascaded, parameter varia-?Ot ITJt € gt erf retshponfeb'(la.?uatlﬁ.ni.. IS lea E tto ihva”a'
tion scheme when the phases of the limit-cycle forcing func!ona! Jacobian for the stability, which IS now 3, but wi

tions are not the same, we will see a deviation from the nulfi ze_ro wherg/, is in thex_z equation. In general, the stab|l_|ty
Is different than CR drive response. There may be times

when this is beneficial. The actual stabilityariationa)

, equation is
: [
] Adjust ¢ | ¢ o 0 0
/\/ /\/ d XL XL = XL
( | \ gr | Yr | =DR YL =] T2 -1 X [-{Yy.],
N l ZL Z Y2 Xz —b 2L
Xy |— (12
where following Ref. 40 we have marked the Jacobian com-
Y1 > Yo ponent that is now zero with an underline.
2y —» 7 %3
F. Occasional driving
] T i O ional drivi
' - Another approach is to send a drive signal only occa-
Drive Response sionally to the response and at those times we update the

response variables. In between the updates we let both drive
FIG. 9. Nonautonomous synchronization schematic. The local periodi@nd response evolve independently. This approach was first
drive is indicated as going into the “bottom” of the drive or response, but it suggested by Amritkaget a|_41 They discovered that this ap-
can show up in any or all blocks. The incoming sigrals compared to the e . .
outgoingxz using a strobe. When the periodic drives are out of pliasg proach affected the stability O_f the SynChromze_d state, I_n
&+ ¢') we will see a pattern in the strolxg-x, diagram that will allow us ~ SOMe cases causing synchronization where continuous driv-
to adjusté’ to matche. ing would not.
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Later this idea was applied with a view toward commu- N T N T T T T
nications by Stojanovsket al*>*® For private communica- 0 0005 001 002 002 003 003 004 0.04
tions, in principle, occasional driving should be more diffi- £ (S)
cult to decrypt or break since there is less information
transmitted per unit time. FIG. 11. The originaly signal and its filtered, transmitted version

dx, dx,
- [uynz), g =f(Xe,u.22),
G. Synchronous substitution q q
1 Y2
We are often in a position of wanting several or all drive i =9(X1.¥1.21), 7 = 9(X2.Y2.22),

variables at the response when we can only send one signal. (13
For example, we might want to generate a function of several %=h(x v1,21) %:h(x U,2,)

drive variables at the response, but we only have one signal  dt LILER T dt 2

coming from the drive. We show that we can sometimes  w,=y(y,), u=y,— iy, +wy,

substitute a response variable for its drive counterpart to

serve our purpose. This will work when the response is syn\-Nhere subscripts label drive and response gnid a filter

chronized to the drivéthen the two variables are eqyahd that passes all signals except particular, unwanted spectral

o . ks that i .g. filter At th
the synchronization is stablghe two variables stay equal peaxs that it attenuatds.g., a comb y ter . t the response
. . L side we have a cascaded a system in which we use the local
We refer to this practice asynchronous substitutiorf-or

. . (responsgy, variable to regenerate the spectral peaks by
example, this 'approacr.] allows us .to seqd a signal to th‘§ubtracting the filtereg, from y, itself and adding in the
response that is a function of the drive variables and use thl%maining signal that was sent from the drive. If all the
inverse of that function at the response to generate variableg stems are in syna,will equaly, in the drive. The test will

to use in driving the response. This will generally change thg,e the following: is this system stable? In Refs. 44 and 45,

stability of the response. Carroll showed that there do exist filters and chaotic systems
The first application of this approach was given in Refs.tqr which this setup is stable. Figure 11 showsand the
44 and 45. Other variations have also been offered, includingroadcastv signal. Hence, we can modify the drive signal
use of an active/passive decompositfén. and use synchronous substitution on the response end to
In the original casé**strong spectral peaks in the drive yndo the modification, all in a stable fashion. This allows us
were removed by a filter system at the drive and then thenore flexibility in what types of signals we can transmit to
filtered signal was sent to the response. At the response tfe response.
similar filtering system was used to generate spectral peaks |n Ref. 47 we showed that one could use nonlinear func-
from the response signals similar to those removed at thgions to produce a drive signal. This approach also changes
drive. These were added to the drive signal and the sum wahe stability of the response since we have a different func-
used to drive the response as though it were the originaional relation to the drive system. An example of this is a
drive variable. Schematically, this is shown in Fig. 10. In Rossler-like circuit system using partial replacement in Ref.
equation form we have 47:
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Xm dXZ
W:—a(rxl—i—ﬂyl—kzl), Wz—a(rxﬁ'ﬂ)/z"‘zz):
%—_ ( —X;—ay;) %—— (yyo—X,—ay)
dt =—a(vyy: 1 Y1), dt =—alyyz 2 Y)s
dz dz,
Wz—a[zl—g(xl)], W:_Q[ZZ_Q(XZ):L (14)
B 0, if x<3 g(xp)=same form as drivey,
IX)= 15x,-3), if x=3 Y= -—wW(x,+4.2),
W Y1
X1 +4.2°

What we have done above is to take the usual situation odecond term comes from the dependencevomote that, if
partial replacement of, with y; and instead transform the we use complete replacementxgfwith x,, theD,F part of
drive variables using the functiom and send that signal to the first term in Eq(16) would be zero.
the response. Then we invent at the response to give us a There are other variations on the theme of synchronous
good approximation ty,~Yy and drive the response using substitution. We introduce another here since it leads to a
partial replacement witly. This, of course, changes the sta- special case that is used in control theory and that we have
bility. The Jacobian for the response becomes recently exploited. One way to guarantee synchronization
would be to transmit all drive variables and couple them to
the response using negative feedback, viz.

r B 1
—a| -1+
a| —lraw Z)/ (i ' 19 dx@/dt=F(x®)+c(xP—x?), 17
-9

o _ . ~ where, unlike before, we now use superscripts in parentheses
With direct partial replacemertte., sending/; and using it to refer to the drive(1) and the respons) variables and
in place ofy above the Jacobian would not have theaw X(l):(x(ll) ,Xgl) ,‘__,Xgl)), etc. With the right choice of coup-
term in the first column. The circuit we built using this tech- |ing strengthc, we could always synchronize the response.
nique was stable. _ But again we are limited in sending only one signal to the

We can write a general formulation of the synchronousresponse. We do the following, which makes use of synchro-

substitution technique as used ab8(éNe start with an  nous substitution.
n-dimensional dynamical systemdr/dt=F(r), where r Let S:R"—R" be a differentiable, invertible transforma-
=(x.y,z,...). We use @eneral functionl from R"—R. We  tion. We constructv=S(x")) at the drive and transmit the
send the scalar signaV=T(xX1,y;,2;...). At theresponse first componentv, to the response. At the response we gen-
we invertT to give an approximation to the drive variable erate the vectou=S(x®). Near the synchronous state
X1, namelyx=Ty(W,y3,2,...), whereT, is the inverse of ~w. Thus we have approximations at the response to the

T in the first argument. By the implicit function theorém  componentsv; that we do not have access to. We therefore
will exist if 4T/dx+0. Synchronous substitution comesTip  attempt to use Eq17) by forming the following:

where we normally would neeg, ,z,,..., toinvert T. Since
we do not have access to those variables, we use their syn-
chronous counterparts,,z,,..., in theresponse. dx@
Using this formulation in the case of partial replacement TR F(x®@)+c[S Y(W)—x?], (18
or complete replacement af or some other functional de-

pendence omw in the response we now have a new Jacobian : _ 1) ()
in our variational equation: where in order to approximate(x'~'—x'“’) we have used

synchronous substitution to form(w,,u,,us,...,u,;) and
applied the inverse transformati@ *.
All the rearrangements using synchronous substitution
ﬂ:[D F+D,F D,T,]-or (16) and transformations may seem like a lot of pointless algebra,
dt ' wemr ' but the use of such approaches allows one to transmit one
signal and synchronize a response that might not be synchro-
where we have assumed that the response vectorHidlas  nizable otherwise as well as to guide in the design of syn-
an extra argumenty, to account for the synchronous substi- chronous systems. Moreover, a particular form of ®e
tution. In Eq.(16) the first term is the usual Jacobian and thetransformation leads us to a commonly used control-theory
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duced to finding an appropriate BK combination resulting in
negative Lyapunov exponents at the receiver. The piecewise-
linear Rossler systemsee abovelend themselves well to
this task as the stability is governed by two constant Jacobian
matrices, and the Lyapunov exponents are readily deter-
Ix-x'l ] mined. To seek out the proper combination8&f andK's,
(Volts) we employ an optimization routine in the six-dimensional
0.1 space spanned by the coupling parameters. From a six-
dimensional grid of starting points in BK space, we seek out
local minima of the largest real part of the eigenvalue of the
response Jacobigd—BKT].
By limiting the size of the coupling parameters and col-
2 lecting all of the deeply negative minima, we find that we
. . . . . can choose from a number of BK sets that ensure fast and
0.5 Ltoime (mé')s 20 25 robust synchronization. For example, the minimization rou-
tine reveals, among others, the following pair of minima well
FIG. 12. The BK method is demonstrated on the piecewise-linéasleo ~ Separated in BK space:B;={—-2.04,0.08,0.0p6 K1
circuit. The difference in theX varigbles of receiver and transmitter is ‘:{—1_79,—2_17,— 1_84}, and 32:{0_460,2.41’0_136 K2
(S:S(‘)’m tlorﬁ;”}’ﬁ;ggléct’ gbgﬁta%%rgge";f“fggrtr‘i’;:wde of the period-1 orbit_y_ 9 37 1 60,2.38 The real parts of the eigenvalues for
these sets are-1.4 and— 1.3, respectively. In Fig. 12, we
show the fast synchronization usiBgK ;" as averaged over
method. The synchronous substitution formalism allows usl00 runs, switching on the coupling &t 0. The time of the
to understand the origin of the control-theory approach. Weperiod-1 orbit in the circuit is about 1 ms, in which time the
show this in the next section. synchronization error is drastically reduced by about two or-
ders of magnitude.
Similarly, we can apply the method to the volume pre-
H. Control theory approaches, a special case of serving hyperchaotic map system of sectioriThe only dif-
synchronous substitution ference is that we now wish to minimize the largest norm of
S . .. the eigenvalues of the response Jacobian. With our optimi-
uppose in our above use of synchronous substitution . . ;
the transformationS is a linear transformation. Then zatlol‘routme, we are able to locate eigenvalues on the order
S }({W)— S~ Y(u)=S"L(W—u), and sincev— u has only its of 10™%, corresponding to Lyapunov exponents aroungl.
first component as nonzero, we can write- u=[KT(x
—x3),0,0,...,0, whereKT is the first row ofS. Then the
coupling term ¢S }(W—u) becomes BKT(x(H)—x?3)y,
whereB is the first column o5~ ! and we have absorbed the
coupling constant into B. This form of the couplindcalled
BK coupling from here opis common in control theor§? Most of the drive—response synchronous, chaotic sys-
We can see where it comes from. It is an attempt to use gems studied so far have had only one positive Lyapunov
linear coordinate transformatioi®) to stabilize the synchro- exponent. More recent work has shown that systems with
nous state. Because we can only transmit one Slgﬂm more than one positive Lyapunov exponérﬂ”ed hypercha_
coordinatg we are left with a simpler form of the coupling otic systems can be synchronized using one drive signal.
th_at tesults from using response vqriatﬂs@chronous sub-  Here we display several other approaches.
stitution) in place of th_e missing drive variables. A simple way to construct a hyperchaotic system is to
Recently, experts in control theory have begun to applyse two, regular chaotic systems. They need not be coupled;
B.K.and othet control-theory cqncepts to the task of synch.roj-ust the amalgam of both is hyperchaotic. Tsimiring and
nizing chaotic systems. We will not go into all the details Suschik* recently made such a system and considered how

here, but good overviews and e?(planations on the stability OE)ne might synchronize a duplicate response. Their approach
such approaches can be found in Refs. 49-52. In the fo"OWﬁas elements similar to the use of synchronous substitution

Ing sections we show se\{erat explicit examples of using th(\a/ve mentioned above. They transmit a signal, which is the
BK approach in synchronization.

sum of the two drive systems. This sum is coupled to a sum

of the same variables from the response. When the systems

are in sync the coupling vanishes and the motion takes place

on an invariant hyperplane and hence is identical synchroni-
Our own investigation of the BK method began with zation.

applying it to the piecewise-linear Rossler circuits. As is usu-  An example of this situation using one-dimensional sys-

ally pointed out(e.g., see Pengt al>®, the problem is re- tems is the following*

[ N -
i HrA A

(PO Y R~
0 T

J. Hyperchaos synchronization

I. Optimization of BK coupling
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Xp(n+1)=F[x1(n)], Xa(n+1)=F,[X5(N)], 1

w=fy[X1(n) ]+ fa[Xo(n) ] = F1[y1(n) ]—F5[y,(n)] 6.0 1

=transmitted signal,
J (19 .

yi(n+1)="1{y;(n) ]+ e{f1[x1(n) ]+ Fo[xx(N)]
—fily () ]—f5ly.(n)]},

Yao(n+1)=TF5[yo(n) ]+ el f1[x1(n) [+ fo[Xx5(N)]
—filya(n)]=f5ly2(n) ]},

Linear stability analysis, as we introduced above, shows that 7
the synchronization manifold is stabfeTsimring and Sus- 50 50
chik investigated several one-dimensional mégst, shift, ' y (Volts) '
logistic) and found that there were large ranges of couplingF o ) o

i . IG. 13. A projection of the dynamics of the hyperchaotic circuit based on
€, where the synchronization manifold was stable. For cery.. s 5 rsler equalions.
tain cases they even got analytic formulas for the Lyapunov
multipliers. However, they did find that noise in the com-
munications channel, represented by noise added to t
transmitted signalv, did degrade the synchronization se
verely, causing bursting. The same features showed up
their study of a set of drive-response ODHmsed on a
model of an electronic synchronizing circuifThe reasons
for the loss of synchronization and bursting are the same

w (Volts)

2.0+

h§ccomplished in a circuit. They built circuits that consisted
" .of either mutually coupled or unidirectionally coupled 4-D
‘Bscillators. They show that for either coupling both positive
conditional Lypunov exponents of the “uncoupled” sub-
aSystems become negative as the coupling is increased. They

) tudv of th led lators bel Th I o on to further show that they must be above a critical value
In our study of the coupled osciliators below. There are locat,e coupling which is found by observing the absence of a

instabilities that cause the systems to diverge momentarilyblowout bifurcatior®>=5” Such a demonstration in a circuit is

even above Lyapunov synchronization thresholds. Any S“ghfmportant, since this proves at once that hyperchaos synchro-

noise tends .to ke(_ap th_e_ systems apart anq ready to d'vergﬁzation has some robustness in the presence of noise and
when the trajectories visit the unstable portions of the attrac-

i Whether thi be “fixed” i tical devi h tparameter mismatch.
ors. VWhether this can be Hixed in practical devices so tha We constructed a four-dimensional piecewise-linear cir-
multiplexing can be used is not clear. Our study below of

9 cuit based on the hyperchaotic $&ter equation¥>>® The
synchron_lzatlon thresholds for cpupled systems suggests th odified equations are as follows:
for certain systems and coupling schemes we can avoi
bursting, but more study of this phenomenon for dx
hyperchaotic/multiplexed systems has to be done. Perhaps a dt
BK approach may be better at eliminating bursts since it can
be optimized. This remains to be seen. QZXJFO 117%+0.402
The issue of synchronizing hyperchaotic systems was  dt ' ' '
addressed by Penet al>® They started with two identical
hyperchaotic systemg=F(x) andy=F(y). Their approach 9z _ g(x)—1.967,
was to use the BK method to synchronize the systems. As dt
before, the transmitted signal was=K 'x and we add a W
coupling term to they equations of motiony=F(y) +B(w —=h(w)—0.14&+0.18w,
T dt
— v), wherev=K'y. Penget al. show that for many cases
one can choos& andB so that they system synchronizes where

=—0.05x—0.502%/—0.62,

with the x system. This and the work by Tsimring and Sus- _ . -
chik solve a long-standing question about the relation be- 9(x)=10x~0.6), x>0.6,
tween the number of drive signals that need to be sent to =0, x<0.6,

synchronize a response and the number of positive Lypunov

exponents, namely that there is no relation, in principle. h(w)=-0412w-38, w>33,

Many systems with a large number of positive exponents can =0, w<3.8.

still be synchronized with one drive signal. Practical limita-

tions will surely exist, however. The latter still need to be One view of the hyperchaotic circuit is shown in the plot of

explored. w vsYy in Fig. 13. Again, as with the 3-D Rossler circuit, the
Finally, we mention that synchronization of hypercha-4-D circuit is synchronized rapidly and robustly with the BK

otic systems has been achieved in experiments. Tamaseviethod. In this circuit, we are aided by the fact that the

cius et al?® have shown that such synchronization can bedynamics are most often driven by one particular matrix out
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2 Somewhat later, Parlitz also used these ideas to explore the
g coupling determination of an observed system’s paraméfers.
—>I< cotg)flfmg on cotgi:lfing
10.04 |
L. Volume-preserving maps and communications
5.0- issues
Most of the chaotic systems we describe here are based
0.0 y on flows. It is also useful to work with chaotic circuits based
on maps. Using map circuits allows us to simulate volume-
-5.01 preserving systems. Since there is no attractor for a volume-
preserving map, the map motion may cover a large fraction
Gue *— P/ of the phase space, generating very broadband signals.
voltage It seems counterintuitive that a nondissipative system
0 500 1000 1500 2000 2500 3000 may be made to synchronize, but in a multidimensional
t (samples) volume-preserving map, there must be at least one contract-

ing direction so that volumes in phase space are conserved.
FIG. 14. The BK method as applied to the hyperchaotic circuit. The cou-WWe may use this one direction to generate a stable sub-
5\'}2? i?osé’)"gcgev‘\jlhoer;";’::” tafl: ?/ié):rtl;re: gafg&’o';igeegzgiﬁzvig?gg system. We have used this technique to build a set of syn-
sam{ﬂe.’ ” g g ' P chronous circuits based on the standard fap.
In hyperchaotic systems, there are more than one posi-
tive Lyapunov exponent and for a map this may mean that
of the four possible Jacobians. We have found that minimithe number of expanding directions exceeds the number of
zation of the real eigenvalues in the most-visited matrix iscontracting directions, so that there are no simple stable sub-
typically sufficient to provide overall stability. Undoubtedly systems for a one-drive setup. We may, however, use the
there are cases in which this fails, but we have had a highrinciple of synchronous substitutididescribed in Sec. VI
level of success using this technique. A more detailed sumbelow) or its specialization to the BK to generate various
mary of this work will be presented elsewhere, so we brieflysynchronous subsystems. We have built a circuit to simulate
demonstrate the robustness of the synchronization in Fig. 14he following map®’
The coupling parameters in this circuit are given By
={0.36,2.04- 1.96,0.0 andK ={—1.97,2.28,0,1.43 Xn41=—(3) Xnt 2,
1
K. Synchronization as a control theory observer yn“_ (3) Yt 20 mod2, (20
problem Zn+1=Xn T Yn
A control theory approach to observing a system is avhere “mod2)” means take the result modulus 2. This
similar problem to synchronizing two dynamical systems.Map is quite similar to the cat m&or the Bernoull shiftin
Often the underlying goal is the synchronization of the ob-Many dimensions. The Lyapunov exponents for this map
server dynamical system with the observed system so thi&eétermined from the eigenvalues of the Jacopae 0.683,
observed system’s dynamical variables can be determingtt300, and—0.986. _ )
fully from knowing only a few of the observed system's ~ We may create a stable su_bsys;em of this map using the
variables or a few functions of those variables. Often weMmethod of synchronous SUbSt't“_t'é’”WG produce a new
have only a scalar variabler time seriesfrom the observed Varablew,=z,+ yx, from the drive system variables, and
system and we want to recreate all the observed system'&construct a driving signal, at the response system:
variables. _ Wn=2Znt YXns  Zn=Wn— X,
So, Ott, and Dayawansa follow such approaches in Ref. (22)
59. They showed that a local control theory approach based + _ _ a4,/ S N~
essentially on the Ott—Grebogi—Yorke techni§lieThe i1~ = (X2 Yni1= (3 Ytz
technique does require knowledge of the local structure ofvhere the modulus function is assumed. In the circuit, we
stable and unstable manifolds. In an approach that is closersedy= —4/3, although there is a range of values that will
to the ideas of drive-response synchronization presentedork. We were able to synchronize the circuits adequately in
above Brownet al®1~%*showed that one can observe a cha-spite of the difficulty of matching the modulus functions.
otic system by synchronizing a model to a time series or  The transmitted signal from this circuit has essentially a
scalar signal from the original system. They showed furtheflat power spectrum and approximately a delta-function au-
that one could often determine a set of maps approximatingpcorrelation, making the signal a good alternative to a con-
the dynamics of the observed system with such an approackientional pseudonoise signal. Our circuit is in essence a self-
Such maps could reliably calculate dynamical quantities sucBynchronizing pseudonoise generator. We present more
as Lyapunov exponents. Brovet al. went much further and information on this system, its properties and communica-
showed that such methods could be robust to additive noiséions issues in Refs. 67 and 69.
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M. Using functions of drive variables and information zation when the parameters of the two coupled systems do
not match. Such a situation will certainly occur in real,

synchronizing vector fields was taken by Kocaf®(* This physical systems and is an important question. Their study

is an approach similar to synchronous substitution that use%hOWed that for gertam systems, including the 2-D forced

an invertible function of the drive dynamical variables angSystem they _StUd'ed' one could show that there was amore
the information signal to drive the response, rather than jusgenergl relation between the two coupled systems. Th'? rela-
using one of the variables itself as in the CR approach. TheHonShIp was expressed as a one-to-one, smooth mapping be-

on the response the function is inverted using the fact that thveen the phasg space points in each .subsyst_em. To put this
system is close to synchronization. more mathematically, if the full system is described by a 4-D

Schematically, this looks as follows. On the drive end ector 1,Y1.X2,Y2), then there exists smooth, invertible

there is a dynamical systers=F(x,s), wheres is the trans- function ¢ from _(Xl’yl) 10 (X2,¥2). :

mitted signal and is a function ofand the information(t), . T_hus, knowing the state of one system enables one, in
s=h(x,i). On the receiver end there is an identical dynami-p”nc'ple’ _to 'f”OW_ the_. Stf_ite. of thE." oth_er system, ar_1d vice
cal system set up to extract the informatign: F(y,s) and versa. This situation is sm_wllar to |dent|cgl s_ynchronlz_atlon

iR=h~1(y,s). When the systems are in syift=i. We have and has been callegeneralized synchronizatiofExcept in

shown this is useful by using XOR as olrfunction in the special cases, like that of Afraimoviet al., rarely will one
volume-preserving systef be able to produce formulae exhibiting the mappihdrov-

ing generalized synchronization from time series would be a
S _ useful capability and sometimes can be done. We show how
N. Synchronization in other physical systems below. The interested reader should examine Refs. 76—78 for

Until now we have concentrated on circuits as the physinore details.
cal systems that we want to synchronize. Other work has Recently, several attempts have been made to generalize
shown that one can also synchronize other physical systeni@€ concept of general synchronization itself. These begin
such as lasers and ferrimagnetic materials undergoing ch¥(ith the papers by Rurkowt al”*"®and onto a paper by
otic dynamics. Kocarev and Parlit?’ The central idea in these papers is that

In Ref. 72 Roy and Thornburg showed that lasers thator the drive-response setup, if the response is stéadile
were behaving chaotically could be synchronized. Two solid-YPUnov exponents are negatjyehen there exists a mani-
state lasers can couple through overlapping electromagnetfeld in the joint drive-response phase space such that there is
lasing fields. The coupling is similar to mutual coupling @ function from the driveX) to the responseY(), ¢:X—Y.
shown in Sec. Il A 3, except that the coupling is negative.In Plain language, this means we can predict the response
This causes the lasers to actually be in oppositely signegtate from that of the drivéthere is one point on the re-
states. That is, if we plot the electric field for one against theSPonse for each point on the drive’s attragtamd the points
other we get a line at 45° rather than the usual 45°. This is Of the mapping¢ lie on a smooth surfacesuch is the defi-
stil a form of synchronization. Actually since Roy and Nition of a manifold. o
Thornburg only examined intensities the synchronization ~ This is an intriguing idea and it is an attempt to answer
was still of the normal, 45° type. Colet and Roy continued tothe question we posed in the beginning of this paper, namely,
pursue this phenomenon to the point of devising a commudoes stability determine geometry? These papers would an-
nications scheme using synchronized lag&/his work was ~ SWer yes, in the drive-response case the geometry is a mani-

recently implemented by Alsingt al’* Such laser synchro- fold that is “above” the drive subspace in the whole phase
nization opens the way for potential uses in fiberoptics. ~ SPace. The idea seems to have some verification in the stud-

Petermaret al”® showed a novel way to synchronize the €S we have done so far on identical synchronization and in

chaotic, spin-wave motion in rf pumped yttrium iron garnet.the more particular case of Afraimovich—Verichev—
In these systems there are fast and slow dynamics. The faB@binovich generalized synchronization. Howeyer, there are
dynamics amounts to sinusoidal oscillations at GHz frequencounterexamples that show that the conclusion cannot be
cies of the spin-wave amplitudes. The slow dynamics govirue.

erns the amplitude envelopes of the fast dynamics. The slow First, we can show that there are stable drive-response
dynamics can be chaotic. Petermenal. ran their experi- Systems in which the attractor for the whole system is not a
ments in the chaotic regimes and recorded the slow dynamfmooth manifold. Consider the following system:

cal signal. They then “played the signals back” at a later _ _

time to drive the system and cause it to synchronize with the X=F(X) z=—7%z+X,, (22
recorded signals. This shows that materials with such high-

frequency dynamics are amenable to synchronizatiotivherex is a chaotic system ang>0. Thez system can be
schemes. viewed as a filteLTI or low-pass typ¢ and is obviously a

stable response to the driwe It is now known that certain
filters of this type lead to an attractor in which there is a map
(often called a graph¢ of the drive to the response, but the
In their original paper on synchronization Afraimovich mapping is not smooth. It is continuous and so the relation
et al. investigated the possibility of some type of synchroni-between the drive and response is similar to that of the real

An interesting approach involving the generation of new

O. Generalized synchronization
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Stability for the kth mode
(naive view of maximum
Lypunov exponent)
+
k O
A
max
0 Csync C

coupling strength

FIG. 15. A naive view of the stability of a transverse mode in an array of
synchronous chaotic systems as a function of coupting

FIG. 16. The circuit Resler attractor.

line and the Weierstrass function above it. This explains why

certain filters acting on a time series can increase the dimeresponse relation than may exist. However, the stable drive—

sion of the reconstructed attractd? response scenario is obviously a rich one with many possible
We showed that certain statistics could detect thigdynamics and geometries. It deserves more study.

relationshig®? and we introduce those below. Several other

papers have proven the nondifferentiability property rigor-

ously and have investigated several types of stable filters of. COUPLED SYSTEMS: STABILITY AND

chaotic system&-8We note that the filter is just a special BIFURCATIONS

case of a stable response. The criteria for smopthness .ir.1 any stability for coupled, chaotic systems

drive-response scenario is that the least negative conditional

Lypunov exponents of the response must be less than the Letus examine the situation in which we have coupled,

most negative Lypunov exponents of the diiv8°One can  chaotic systems, in particulaN diffusively coupled,

get a smooth manifold if the responseisiformly contract- ~M-dimensional chaotic systems:

ing, that is, the stability exponents arecally always dx® _ _ . ‘

negative®”°*Note that if the drive is a noninvertible dynami- T F(x1)+ cE(x1 D+ x(1=1 — 2x(1)y, (23

cal system, then things are “worse.” The drive-response re-

lation may not even be continuous and may be many valuedyherei=1,2,...N and the coupling is circularN+1=1).

in the latter case there is not even a functipfrom the drive  The matrixE picks out the combination of nearest neighbor

to the response. coordinates that we want to use in our coupling ardkter-
There is an even simpler counterexample that no oneénines the coupling strength. As before, we want to examine

seems to mention that shows that stability does not guarantdke stability of the transverse manifold when all the “nodes”

that ¢ exists and this is the case of period-2 behaviorany ~ of the system are in synchrony. This means tdat=x(?

multiple period behavior If the drive is a limit cycle and the =---=x), which defines arm-dimensional hyperplane,

response is a period doubled systéar higher multiple- the synchronization manifold. We show in Ref. 10 that the

period syster)) then for each point on the drive attractor way to analyze the transverse direction stability is to trans-

there are twdor more points on the response attractor. Oneform to a basis in Fourier spatial modes. We writg

cannot have a function under such conditions and there is ne(l/N)Eix(i)e*Z’”k’N. WhenN is even(which we assume

way to predict the state of the response from that of thdor conveniencg we haveN/2+1 modes that we label with

drive. Note that there is a function from response to the driv&k=0,1,...N/2. For k=0 we have the synchronous mode

in this case. Actually, any drive-response system that has theguation, since this is just the average of identical systems:

overall attractor on an invariant manifold that is not diffeo- A —F(A 24

morphic to a hyperplane will have the same, multivalued 0=F(A), (24

relationship and there will be no functiaf which governs the motion on the synchronization manifold.
Hence, the hope that a stable response results in a nicepr the other modes we have equations that govern the mo-

smooth, predictable relation between the drive and respong®n in the transverse directions. We are interested in the

cannot always be realized and the answer to our question stability of these modegnear their zero valyewhen their

whether stability determines geometry is “no,” at least in amplitudes are small. This requires us to construct the varia-

the sense that it does not determine one type of geometryional equation with the full Jacobian analogous to &. In

Many are possible. The term general synchronization in thishe originalx{) coordinates the Jacobigmritten in block

case may be misleading in that it implies a simpler drive-form) is
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DF—-2cE cE 0 cE
cE DF—-2cE cE 0
0 cE DF—2cE cE , (25)
cE 0 cE DF-2cE

where each block i< m and is associated with a particular nod@. In the mode coordinates the Jacobian is block diagonal,
which simplifies finding the stability conditions,

DF 0 0 c

0 DF—4cEsirf[#/N] 0 0

: : : , (26)
0 0 DF—A4cE sirf[wk/IN]

where each value df+#0 or k# N/2 occurs twice, once for stability plot (as in Fig. 3 we can obtain the plot for any
the “sine” and once for the “cosine” modes. We want the other mode by rescaling the coupling. In particular, we need
transverse modes represented by sine and cosine spatial disily calculate the maximum Lypunov exponent for mode 1
turbances to die out, leaving only the=0 mode on the ()\rlnax) and then the exponents for all other modesl are
synchronization manifold. At first sight what we want for generated by “squeezing” the.,, plot to smaller coupling
stability is for all the blocks withk#0 to have negative values.

Lypunov exponents. We will see that things are not so  This scaling relation, first shown in Ref. 10, shows that
simple, but let us proceed with this naive view. as the mode’s Lypunov exponents decrease with increasing
Figure 15 shows the naive view of how the maximumvalues the longest-wavelength moke will be the last to
Lypunov exponent for a particular mode block of a trans-become stable. Hence, we first get the expected result that
verse mode might depend on coupliocg There are four the longest wavelengtfwith the largest coherence lengib

features in the naive view that we will focus on. the least stable for small coupling.

(1) As the coupling increases from 0 we go from the
Lyapunov exponents of the free oscillator to decreasing
exponents until for some threshold couplieg,,. the  B. Coupling thresholds for synchronized chaos and
mode becomes stable. bursting
(2) Above this threshold we have stable synchronous chaos. To test our four features we examine the following sys-

(3) We suspect that as we increase the coupling the expQgm of four Rossler-like oscillators diffusively coupled in a

nents will continue to decrease. , _ circle, which has a counterpart in a set of four circuits we
(4) We can now couple together as many chaotic oscillatorsg, i+ for experimental test¥

as we like using a coupling>cg,c and always have a
stable synchronous state. dx/dt=—a(I'x+ By +A2z),

We already know from Fig. 3 that this view cannot be cor-

rect[increasingc may desynchronize the array—featuigg],

but we will now investigate these issues in detail. Below we  dz/dt=a[g(x)—2z],

will use a particular coupled, chaotic system to show that

there are counterexamples to all four of these “features.” Whereg is a piece-wise linear function that “turns on” when
We first note a scaling relation for Lypunov exponentsX crosses a threshold and causes the spiraling out behavior to

of modes with differenk’s. Given any Jacobian block for a “fold” back toward the origin,

mode k; we can always write it in terms of the block for

dy/dt= a(x+ yy), (29

another mode,, viz., g(x)= 0, x=3, (29)
ux x>3.
_ Sir?[ ky /N el e o
DF—-4C Slr]z[ﬁkllN]:DF_4CE(m) For the valuesa=10"s , I'=0.05, ﬁ—O.S, A=1.0, b2

=0.133, andu=15.0 we have a chaotic attractor very simi-
X sir? 7k, IN], 27 lar to the Rossler attractdsee I.:igs.. 4 and 16
We couple four of these circuits through thiecompo-
where we see that the effect is to shift the coupling by thenent by adding the following term to each system’squa-
factor sirf(k, IN)/sir?(mk,/N). Hence, given any mode’s tion: c(y;,+Yi_1—2y;), where the indices are all mod 4.
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Infinite number of
Synchronization Thresholds

+
J l | J 'l i ] i I UPOQ's which can cause bursts
KK |yl [0 e[ 1 ° 9 | (AT 1
LI 1NN Ll A
max 0
W‘/W_/ _
LNear —Burst
Syne. time =
. — . 0 c
FIG. 17. The Instantaneous differences x, —x, in the y-coupled circuit- sync C

Raossler system as a function of time. coupling strength

FIG. 18. The schematic plot of “synchronization” threshold showing

This means the coupling matri has just one nonzero ele- thresholds for individual UPOs.

ment,E,,= 1. A calculation of the mode Lypunov exponents

indeed shows that the longest-wavelength mode becomegyding “monodromy” in a perturbation decrease was put
stable last aCsy:=0.063. However, when we examine the forward by Kapitaniak® There would be generalizations of
behavior of the so-called synchronized circuits above thghis mode analysis fa coupled systems, but these have not
threshold we see unexpected behaviors. If we fal@be the  peen worked out. An interesting approach is taken by
instantaneous average of the 4 circukEomponents, thena  grown % who shows that one can use an averaged Jacobian
plot of the difference of circuik, from the averag&l=x;  (that is, averaged over the attragttw estimate the stability
—X versus time should be=0 for synchronized systems. i an optimal fashion. This appears to be less strict than the
Such a plot is shown for the _Rossler—hke circuits in Fig. 17.gauthier requirement, but more strict than the Lyapunov ex-
We see that the difference is not zero and shows large tponents criterion. Research is still ongoing in this dfea.
bursts. These bursts are similar in nature to on-of
intermittency>®**what causes them? C. Desynchronization thresholds at increased

Even though the system is above the Lyapunov exponetoypling
thresholdc,,,. we must realize that this exponent is only an o
ergodic average over the attractor. Hence, if the system has L€t us look at the full stability diagram for modes 1 and
any invariant sets that have stability exponents greater thaf fOr the Rossler-like circuit system when we couple with the
the Lypunov exponents of the modes, even at coupling® coordlnates.d|ffus_,|vely, rather than tlyés. Tha} is, choose
abovecgy,., these invariant sets may still be unstable. WherEij =0 foralli andj=1, 2,3, excepE,;=1. This is shown
any system wanders near them, the tendency will be for ini? Fig- 19. Note how the mode-2 diagram is just a rescaled
dividual systems to diverge by the growth of that mode,M0de-1 diagram by a factor of 1/2 in the coupling range. We
which is unstable on the invariant set. This causes the bursf&n NOW show another, counterintuitive feature that we

in Fig. 17. We have shown that the bursts can be directiyTissed in our naive view. Figure 1Similar to Fig. 3 shows
associated with unstable periodic orbitt/PO) in the that the modes go unstable as imereasethe coupling. The

Rossler-like circuif® These bursts do subside at greater cou-Synchronized motion is Lyapunov stable only over a finite
pling strengths, but even then some deviations can still b&Nge of coupling. Increasing the coupling does not neces-
seen that may be associated with unstable portions of the@rily guarantee synchronization. In fact, if we couple the

attractor that are not invariant sdisg., part of an UPD

The criteria for guaranteed synchronization is still under
investigation’>~%" but the lesson here is that the naive views
[(1) and (2) abovg that there is a sharp threshold for syn- + mode 2
chronization and that above that threshold synchronization is

. . 120

guaranteed, are incorrect. The threshold is actually a rather A
“fuzzy” one. It might be best drawn as afinfinite) number max mode 1
of thresholds®° This is shown in Fig. 18, where a more -
realistic picture of the stability diagram near the mode 1
threshold is plotted. We see that at a minimum we need to
have the coupling babovethe highest threshold for invari- .
ant set§UPOs and unstable fixed pointé\ better synchron- 0 Come Caesyne C
ization criteria, above the invariant sets one, has been sug-
gested by Gauthieet al®” Their suggestion, for two diffu-

: 1 2)\ i i .
sively coupled system&™) and x(?)), IS FO use the c':”te”a FIG. 19. The stability diagram for modes 1 and 2 for theoupled Rssler
d|Ax|/dt<0, whereAx=x™—x(2)_ A similar suggestion re- circuits.

x-coupling

coupling strength
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systems by the variables we will never get synchronization, Size Effect in Coupled Arrays
even whernc=c. The latter case of infinite coupling is just
the CR drive response usirzg We already know that in that + I\ mode 8
regime both the andx drivings do not cause synchroniza-
tion in the Rossler system. We now see why. Coupling 1,83 0
through only one component does not guarantee a synchro- max
nous state and we have found a counterexample for number mode 1
(3) in our naive views, that increasing the coupling will guar-
antee a synchronous state.

Now, let us look more closely at how the synchronous

state goes unstable. In finding tiog,. threshold we noted 0 gdm.wu- c
that mode 1 was the most unstable and was the last to be e _
stabilized as we increaserl Near Cgesync WE see that the coupling strength

situation is reversed: mode 2 goes unstable first and mode 1 o . o )
s the most stable. This s also confitmed inthe experifent {1 20, The 501ty Sagrem o 165oupi Fosr ceuts showt
where the four systems go out of synchronization by havingnumber of synchronized oscillators we can couple.
for example, system=isystem-3 and system=Zystem-4
while system-1 and system-2 diverge. This is exactly a spa-
tial mode-2 growing perturbation. It continues to rather large=16 Rossler-like circuit system. We see that the scaling laws
differences between the systems with mode-1 perturbation®lating the stability diagrams for the modes eventually
remaining at zero, i.e., we retain the systemsystem-3 and squeeze down the highest mode’s stability until just as the
system-2=system-4 equalities. first mode is becoming stable, the highest mode is going
Since for larger systemsa\(>4) the higher mode stabil- unstable. In other wordssy, andCgesyncCross on the axis.
ity plots will be squeezed further toward the ordinate axis,Above N=16 we never have a situation in which all modes
we may generalize and state that if there existg.gncupon  are simultaneously stable. In Ref. 21 we refer to this siga
increasing coupling, then théghestorder mode will always effect
go unstable first. We call this ashort-wavelength
bifurcation?! It means that the smallest spatial wavelength
will be the first to grow abovegesyne This is counter to the
usual cases, where the longest or intermediate wavelengths There is still one more type of strange behavior in
go unstable first. What we have in the short-wavelength bicoupled chaotic systems, and this comes from two phenom-
furcation is an extreme form of the Turing bifurcatiBhfor ~ €na. One is the existence of unstable invariant @03 in
chaotic, coupled systems. a synchronous chaotic attractor and the other is the simulta-
Note that this type of bifurcation can happen in anyneous existence of two attractors, a chaotic synchronized one
coupled system where each oscillator or node has “interna®nd another, unsynchronized one. In our experiment these
dynamics” that are not coupledirectly to other nodes. In criteria held just belovegesyn, Where we had a synchronous
our experiment, using coupling,y andz are internal dy- chaotic attractor containing unstable UPOs and we had a
namical variables. In biological modeling where cells areperiodic attractofsee Fig. 21 In this case, instead of attrac-
coupled through voltages or certain chemical exchanges, bir bursting or bubbling, we see what have come to be called
there are internal chemical dynamics, too, the same situatiofiddled basins When the systems burst apart near an UPO,
can occur. All that is required is that the uncoupled variableghey are pushed off the synchronization manifold. In this
form an unstable subsystem and the coupling can be pushé&@se they have another attractor they can go to, the periodic
abovecyesyne If this were the case for a continuous systemOne. _ _ o _
(which would be modeled by a PDEthen the short- The main feature of this behavior is that the basin of
Wave|ength bifurcation would produce a growing perturba_attl’action for the periodic attractor is intermingled with the
tion that had an infinitesimal wavelength. So far we do notsynchronization basin. In fact, the periodic attractor’s basin
know of any such findings, but they would surely be of in-
terest and worth looking for.

E. Riddled basins of synchronization

D. Size limits on certain chaotic synchronized arrays

When we consider the cases in whiddi*¥4) we come
to the following surprising conclusion that counters naive
feature (4). Whenever there is desynchronization with in-
creasing coupling there is always an upper limit on the num- |,
ber of systems we can add to the array and still find a range
of coupling in which synchronization will take place.

To see this examine Fig. 20, which comes fromNin  FIG. 21. Simultaneous existence of two attractors in the couplesiBo

X X X X
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from the periodic attractor basin and those points will be of
nonzero measure.

Ott et al®” have shown that near the synchronization
manifold the densityp of the other attractor’'s basin points

NUMERICAL ; @ ;

SIMULATION will scale asp~u®. In our numerical model we found
=2.06 and in the experiment we foumd=2.03.

The existence of riddled basins means that the final state

is uncertain, even more uncertain than where there exist
“normal” fractal basin boundarie¥®-113

COUPLED F. Master stability equation for linearly coupled

CIRCUIT systems

EXPERIMENT

Recently we have explored synchronization in other cou-
pling schemes. Surprisingly, large classes of coupled-
systems problems can be solved by calculating once and for
all a stability diagram unique to the oscillators used by using
FIG. 22. Simultaneous existence of two attractors in the couplesl®o  scaling arguments similar to above. In fact, the scaling ap-
proach of diffusively coupled systems is a special case of our
more general solutions. Although we will be publishing de-
tailed results elsewheré?'*>we will outline the approach

. . . . . here and show how th neral m r ility function
riddles the synchronized attractor’s basin. This was first stud—e e and show how the general master stability function so

: ; 102 obtained can be used for any linear coupling scheme.
led theoretically by A'e?“"?“de“ al."and followed by Sev- If we start with the particular coupling scheme in Eq.
eral papers describing the theory of riddled

. ; . . 25) and first decompose the matrix into a diagonal part
basing’®:57:98.103-109 ater direct experimental evidence for (25 b g P

riddled basins was found by Heagy al?* Since then L& (with F along the diagonaland second “factor out” thé

. matrix that is in all the remaining terms, we get an equation
has shown that parameter space can be riddled and othe&s: motion g 9 q

have studied the riddling phenomena in other systéth¥®
In our experiment with four coupled, chaotic systems we  dx
used a setup that allowed us to examine what might be called qdt
a cross section of the riddled basin. We varied initial condi- -
tions of the four oscillators so as to produce a 2-D basin ma%{\/here_':(x) haSF.(X(I) for theith node block and a variational
that was consistent with the short-wavelength instability tha stability) equation of the form
showed up in the bursts taking the overall system to the other d¢
attractor off the synchronization manifold. A#l variables i [1®DF+CcG®E] ¢, (32
were set to the same value for all initial conditions. All four () w(2) N) ] . )
X components were set to the same value that was varie‘ﬁherfx_z(x XX ), Lis anNXN unit matrix, &
from —3.42 to 6.58. A new variablei representing the = (0, )'--;15( ) with eachf_(') a perturbation on théth
mode-2 perturbation was varied from 0.0 to 7.0 for eacH0de’s coordinatex™,) andG is given by
initial condition and they variables were set to values that -2 1 o - 1
matched the mode-2 wave forny;=ys;=u and y,=y, 1 -2 1 . 0
= —u. The variablex andu made up the 2-D initial condi-
tion “grid” that was originally suggested by Of° varying G=| 0O 1 -2 - 0], (33
x changed all the system’s components and kept the sys- : : : : :
tems on the synchronization manifold. Varyingaway from
zero lifted the systems from the synchronization manifold. o e l-2
When one of the initial conditions led to a final state of The decomposition and factoring are rigorous since we do
synchronization, it was colored white. When the final statethe “multiplication” with a direct product of matrices).
was the periodic, nonsynchronized attractor it was colored’he E matrix operates on individual node components to
black. Figure 22 shows the result of this basin coloring forchoose the same combination of dynamical variables from
both the experiment and numerical simulatfériThe basin  each node and th® matrix determines what combination of
of the synchronized state is indeed riddled with points fromnodes will feed into each individual node. To obtain the
the basin of the periodic state. The riddling in these systemblock diagonal variational form of Eq25) we have used
is extreme in that even infinitesimally close to the synchro-Fourier modes to diagonalize the node matix
nization manifold there are points in the basin of the periodic =~ We now make the observation that E§1) is the form
attractor. To put it another way, any open set containing parfor any linear coupling scheme involving identical nodes in
of the synchronization manifold wilhlwayscontain points which we use the same linear combination of each node’s

distance along synchronization plane

F(X)+CcG®E-x, (31
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10 dx®

dt
wherec,+c,=2, andi=1,...N, we will get complex eigen-
values forG: 20[1— cos(2mk/N)]xi20(1—cy)sin(2mk/N), k
=0,1,...[[N/2]], where[[-]] means integer part of. If we
choose a coupling constant of=0.55, G components of
c;=1.4 andc,=0.6 andN=5, we get the dots in Fig. 23.
The number on each dot is the mode number. We see by the
location of the dots that the synchronous state is just barely
stable. Variations in the coupling constants can cause various
modes to go unstable. We are presently working on this more
general approach and testing it with coupled chaotic circuits.
We will report more on this elsewhere.

=—(yW+z0) + o (cyx D+ cpx1- D —2x 1),

Rdssler, x-coupling stability surface
a=b=0.2, c=7.0

VI. DETECTION: TIMES SERIES, SYNCHRONIZATION,
AND DYNAMICAL INTERDEPENDENCE

A. The general problem: Simultaneous time series

8 10 Suppose we had simultaneous time series of all the vari-

FIG. 23. Cont  the stability surface for &<l ator ables of two dynamical systemsystem 1 and system) 2
. . ontour map o e stability surrace T1or a I OSclllator(a - . . . . .
—b=02,c=7.0). The dashed lines demark negatiaable contours and with equal dimension. We could tell if they were in identical

the solid lines demark positiveenstabl contours. The numbered dots show SYNchronization by plotting them in paitsystem 1 variable

the value of the coupling constant times the eigenvalues for an array of fivwersus system 2 variablend seeing if all pairings gave a
asymmetrically, diffusively coupled Reler systems. 45° line. Suppose we suspected that the two systems were
not identical, but in some type of general synchronization
with each other. For example, we suspect there is a one-to-
one, smooth functiorp relating system 1 to system 2. How
could we determine if such & existed from the data?

variables. Therefore, in diagonalizirg we will always re-
duce the variational problem to an-dimensional “mode”

equation like In our recent papef5’8®we considered such questions
de © as this. These questions come up quite often when analyzing
di =[DF+cnE]-£7, (34 time series data, for example for determinism, effects of fil-
. . tering, for synchronization or general synchronization, and
wherey, is an eigenvalue o6. _ o correct embedding dimension. What we are asking can be
Now consider making the following stability diagram. hroken down to several simpler questions: is there a function
Start with the generic variational equation, ¢ from system 1 to system 2 that is continuous? Does the
d¢ _ inverse of ¢ exist (equivalently, is¢ ! continuous? Is ¢
at =[DF+(a+iB)E]-¢, (35  smooth(differentiable? Is ¢ ~* smooth(differentiablg? We

showed that one can develop statistics that directly gauge
and calculate the maximum Lyapunov exponents for all valwhether two datasets are related by continuous and/or
ues ofa andB. The surface of .« values over the complex smooth functions. These statistics have proven to be funda-
(a,p) plane provides information on the stability fall the  mental in that questions about continuity and smoothness
possible linear couplingéG) using the particular local vari-  come up in different guises very often.
ables selected b, and it gives the master stability function For example, what is the relationship of an attractor re-
we mentioned above. Hence, givenGawe diagonalize it constructed from a time series to the reconstruction from the
(getting, in general, complex eigenvalugg) and for each  same time series passed through a filter? Will both attractors
complex numbecy, we merely examine the,., surface at  have the same fractal dimension? It is known that filters can
a+ipB=cy to see if that eigenmode is stable. In this way, change the dimension of an attractbBut it is also known
given E, we reduce the stability problem to a simple eigen-that if the relation between the unfiltered and filtered attrac-
value problem for each linear coupling sche@®e tor is continuously differentiable@?),*'® then the fractal
We produced such a plot for the 8der oscillator. This  dimension will not change. In this case it would be useful to
is shown in Fig. 23. If we now want to couphé such oscil-  have a statistical quantity that could gauge if there existed a
lators using only thex components in an asymmetric, cyclic Cl¢ that related the reconstructions.
way: We can also test determinism in time series using conti-
nuity statistics. Determinism means that points in phase
space close in the present will be close in the future. This just
' (36) states the continuity property of a deterministic flow. Given
pure data, we do not know if there is a flow, so such a

o O O

0
0
0

m
Il
o O -
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statistic would be useful. The inverse continuity and smooth-
ness conditions can tell us if the flow is invertible and dif-
ferentiable, respectively.

There are other uses for such statistics. Below we show
some simple examples of how we can use them to determine
generalized synchronization situations.

B. The statistics: Continuity and differentiability

We give a short introduction on how to develop our
statistics. We refer the reader to more detailed derivations in
the literature.’:"®82Below we assume we are working on
multivariate data in two spaces andY, not necessarily of
the same dimension. Simultaneous reconstruction of two at-
tractors from datasets as mentioned above is an example of
such a situation. In such reconstructions individual points in
X andY are associated simply by virtue of being measured at
the same time. We call this associatibrX—Y. We ask,
given the data, when can we be convinced that continu-
ous? Thatf ~! is continuous? That is differentiable?

We start with the continuity statistic. The definition of
continuity is, the functiorf is continuous at a point, e X if Lorenz
V>036>0 such that||x—x||<d=|f(x)—f(xo)||<e. In
simpler terms, if we restrict ourselves to some local region
aroundf(xg) € Y, then there must exist a local region around
Xo all of whose points are mapped into thgg,) region. We
choose are-sized set around the fiducial poipg, we also
choose ad-sized set around its pre-imagg. We check
whether all the points in thé set mapinto the e set. If not,
we reduces and try again. We continue until we run out of
points or all points from a small-enougdtset fall in thee set.
We count the number of points in tleeset (h,) and thes set
(ns). We do not include the fiducial pointg, or x,, since Lorenz
they are present by construction. Generaily=n;, since k=40

points other than those negg can also get mapped to tlke
set, but this does not affect continuity. FIG. 24. (a) Rossler andb) and(c) Lorenz attractors when the Bsler is

. driving the Lorenz through a diffusive coupling for two different couplin
We now choose a null hypothesis that helps us generapgalueg_ 9 ping ping

a probability that one should fingl. andn points in such an

arrangement. We choose the simplest, namely, that place-

ments of the points on theandy attractors are independent null hypothesis. The points in the set are behaving as

of each other. This null hypothesis is not trivial. It is typical though they are generated by a continuous function orthe

of what one would like to disprove early on in any attractorset. When® -0~0 we cannot reject the null hypothesis and

analysis, namely that the data have a relation to each othethe points are behaving as though they are independent. Note
Given the null hypothesis we approximate the probabil-that if we run out of pointsrfs=0), then we usually take the

ity of a point from theé set falling at random in the set as  logical position that we cannot reject the null hypothesis and

p=n./N, whereN is the total number of points on the at- set®-0=0. ®-0 will depend one, the resolution, and we

tractor. Then the probability thats points will fall in thee  will examine the statistic for a range efs. To get a global

set isp™s. We obtain a likelihood that this will happen by estimate of the continuity of on the attractor we average

taking the ratio of this probability to the probability for the ®-0 over the entire attractor or over a random sampling of

most likely eventpyinmax- The latter is just the maximum of points on it. We present those averages here. For testing the

the binomial distribution fom points given probabilityp inverse map ¢ 1) continuity we just reverse the roles Xf

for each individual event. We see thats is simply the “tail  andY and § ande. This give us a statisti®,0, which gives

end” of the binomial distribution. The maximum generally evidence of the continuity of .

Rossler

will occur for some intermediate number @f points, say The differentiability statistic is generated in the same
m(<ny), falling in the e set. If p"9<ppinmax then the null  vein as the continuity statistic. We start with the mathemati-
hypothesis is not likely and can be rejected. cal definition of a derivative and apply it locally to the two

We define the continuity statistic as®:0=1 reconstructions. The generation of the linear map that ap-
—P"% Ppinmax- When® 0~ 1, we can confidently reject the proximates the derivative and the likelihood estimate associ-
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ated with it are more complex than for continuity. k=10 k=40
The definition of a derivative at a poirg is that a linear
operator A exists such thatVe>036>0 for which 0 07
[X—Xol| < 8=If (X0) + A(X—Xg) — f(X)||<€l|x—Xo|.  This 08 08 -
means that there is a linear map that approximates the func 06 06
tion at nearby points with an errarin the approximation @co Oc0
that is proportional to the distance between those points 04 7
Note thate serves a purpose here different from continuity. 02 02 ~
The algorithm that we generate from this definition is to 00 00 : :
first choose are (error boundl and aé. Then we find all the MLV 0ot é60.1 Ly
points in the locals set{x;} and theiry counterpartgy;}
eY. We approximate the linear operatér as the least 0 — o 4
squares solution of the linear equatiodgx;—Xg) = (Vi '
—Yo). The solution is accomplished by singular value de- 08 7 08 1
composition (SVD).”” We check if ||y;—yo— A(X— Xo)|| 06 - O 0
<e||x—Xg|. If not, we decreasé and try again with fewer, Oc1 cl 0s
but nearer points. We continue this until we have success o 7
we run out of points. 02 02 7 ;_////
We choose the null hypothesis that the two sets of vec- 00 d 00
tors{x;} and{y;} have zero correlation. We shéthat this W Ass‘: 2 e 001 8”0.1 Uty

generates a likelihood that any two such sets will give the
13 H " _ - 2
operatorA “by accident” ase2 s~ s~ wherer? FIG. 25. Continuity and differentiability statistics for a possible functional
is the usual multivariate statistical correlation betwggrs}  relation: Rissler—Lorenz. The statistics were calculated for various num-
and{y-} d= min(r r ) andr. .r. are the ranks of the and ber of points on the attractord6, 32, 64, and 128 K All € values are
. X yn XYy - . scaled to the standard deviation of the attractors.
y spaces that come out of the SVDThis is an asymptotic
formula. The differentiability statisti® -1 is given by one

minus this likelihood. Whei®c1~1 we can reject the pos- tinyity statistic approaches 1.0 even for smalsets. That
sibility that the points are accidentally related by a linearmeans that we can be confident that the relation between the
operator, a derivative. WheBc1~0, we cannot reject the Rgssler and Lorenz is continuous for continuities abeve
null hypothesis. As before, when we shrigkso small that =0.01, which is shown in Figs. 24) and 24c). This is a

no points other tham, remain, we se®¢1=0. Analogous  gmal| set. On the other hand, the differentiability statistic
t0 Oc0, the statistid®®c1 depends or. We typically calcu-  neyer gets very high and falls off to zero rather quickly. This
late @1 for a range of's and average over the attractor or jmpjies that akk=40 we have a functional relation between
over a random sampling of points on it. Similar to the con-ine drive and response that@$, but notC?. It turns out that
tinuity situation we can test the differentiability @ * by  the response is most stablekat 40 and increasing the cou-
reversingX andY and § and e roles. We call this statistic pling beyond that point will not improve the propertiesdaf

0,1 This means that the fractal dimension of the entiresster—
_ o Lorenz attractor is larger than that of the Rter itself.
C. Generalized synchronization Points nearby on the Reler are related to points nearby on

We examine the generalized synchronization situatiorih® Lorenz, but not in a smooth fashion.
when we have a Rssler system driving a Lorenz system

through a diffusive coupling with coupling constdat C. Dynamical interdependence
x=—(y+2), u=-—ou+tov, We see that to show synchronization we need to have
y=x+ay, b= —uw+ru—vk(y— ), access to aII. the variables’ time series. Can we say apythmg
_ _ (37)  about two simultaneously measured scalar time series and
x=b+z(x—c), w=ur—gw, their corresponding reconstructed attractors? The answer is,
Rossler Lorenz, yes, and it provides information that would be useful in
many experimental situations.
wherea=b=0.2,¢=9.0,0=10,r =60, andg=8/3. Figure Our scenario is that we have an experiment in which we

24 shows the Rssler attractor and two Lorenz attractors athave two(or more probes at spatially separate points pro-
k=10 andk=40. It appears impossible to tell what the rela- ducing dynamical signals that we are sampling and storing as
tion is between the Rssler and two Lorenz attractors. How- two, simultaneous time series. We use each to reconstruct an
ever, the statistics indicate an interesting relationship. attractor. If the signals came from independent dynamical
At lower coupling k= 10) there appears to be no func- systems, we would expect generically no relationship be-
tion ¢ mapping the Rssler system into the Lorenz. Both the tween them so that the statisti€:0 and®:1 and their
continuity statistic @:0) and the differentiability statistic inverse versions would be lo(mear zerp. However, if they
(®c1) are low, as shown in Fig. 25. But k=40 the con- came from the same system, by Taken’s theorem each attrac-
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