
Chaos 7, 520 (1997); https://doi.org/10.1063/1.166278 7, 520

© 1997 American Institute of Physics.

Fundamentals of synchronization in chaotic
systems, concepts, and applications
Cite as: Chaos 7, 520 (1997); https://doi.org/10.1063/1.166278
Submitted: 29 April 1997 • Accepted: 29 September 1997 • Published Online: 04 June 1998

Louis M. Pecora, Thomas L. Carroll, Gregg A. Johnson, et al.

ARTICLES YOU MAY BE INTERESTED IN

Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from
data
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 121102 (2017); https://
doi.org/10.1063/1.5010300

Simple chaotic systems and circuits
American Journal of Physics 68, 758 (2000); https://doi.org/10.1119/1.19538

Attractor reconstruction by machine learning
Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 061104 (2018); https://
doi.org/10.1063/1.5039508

https://images.scitation.org/redirect.spark?MID=176720&plid=1953377&setID=405123&channelID=0&CID=715911&banID=520851868&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=6ff7d33db84fbba60b51edaf043c854e7bcdf949&location=
https://doi.org/10.1063/1.166278
https://doi.org/10.1063/1.166278
https://aip.scitation.org/author/Pecora%2C+Louis+M
https://aip.scitation.org/author/Carroll%2C+Thomas+L
https://aip.scitation.org/author/Johnson%2C+Gregg+A
https://doi.org/10.1063/1.166278
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.166278
https://aip.scitation.org/doi/10.1063/1.5010300
https://aip.scitation.org/doi/10.1063/1.5010300
https://doi.org/10.1063/1.5010300
https://doi.org/10.1063/1.5010300
https://aip.scitation.org/doi/10.1119/1.19538
https://doi.org/10.1119/1.19538
https://aip.scitation.org/doi/10.1063/1.5039508
https://doi.org/10.1063/1.5039508
https://doi.org/10.1063/1.5039508


Fundamentals of synchronization in chaotic systems, concepts,
and applications

Louis M. Pecora, Thomas L. Carroll, Gregg A. Johnson, and Douglas J. Mar
Code 6343, U.S. Naval Research Laboratory, Washington, District of Columbia 20375

James F. Heagy
Institutes for Defense Analysis, Science and Technology Division, Alexandria, Virginia 22311-1772

~Received 29 April 1997; accepted for publication 29 September 1997!

The field of chaotic synchronization has grown considerably since its advent in 1990. Several
subdisciplines and ‘‘cottage industries’’ have emerged that have taken onbona fidelives of their
own. Our purpose in this paper is to collect results from these various areas in a review article
format with a tutorial emphasis. Fundamentals of chaotic synchronization are reviewed first with
emphases on the geometry of synchronization and stability criteria. Several widely used coupling
configurations are examined and, when available, experimental demonstrations of their success
~generally with chaotic circuit systems! are described. Particular focus is given to the recent notion
of synchronous substitution—a method to synchronize chaotic systems using a larger class of scalar
chaotic coupling signals than previously thought possible. Connections between this technique and
well-known control theory results are also outlined. Extensions of the technique are presented that
allow so-called hyperchaotic systems~systems with more than one positive Lyapunov exponent! to
be synchronized. Several proposals for ‘‘secure’’ communication schemes have been advanced;
major ones are reviewed and their strengths and weaknesses are touched upon. Arrays of coupled
chaotic systems have received a great deal of attention lately and have spawned a host of interesting
and, in some cases, counterintuitive phenomena including bursting above synchronization
thresholds, destabilizing transitions as coupling increases~short-wavelength bifurcations!, and
riddled basins. In addition, a general mathematical framework for analyzing the stability of arrays
with arbitrary coupling configurations is outlined. Finally, the topic of generalized synchronization
is discussed, along with data analysis techniques that can be used to decide whether two systems
satisfy the mathematical requirements of generalized synchronization. ©1997 American Institute
of Physics.@S1054-1500~97!02904-2#

Since the early 1990s researchers have realized that cha-
otic systems can be synchronized. The recognized poten-
tial for communications systems has driven this phenom-
enon to become a distinct subfield of nonlinear dynamics,
with the need to understand the phenomenon in its most
fundamental form viewed as being essential. All forms of
identical synchronization, where two or more dynamical
system execute the same behavior at the same time, are
really manifestations of dynamical behavior restricted to
a flat hyperplane in the phase space. This is true whether
the behavior is chaotic, periodic, fixed point, etc. This
leads to two fundamental considerations in studying syn-
chronization: „1… finding the hyperplane and „2… deter-
mining its stability. Number „2… is accomplished by deter-
mining whether perturbations transverse to the
hyperplane damp out or are amplified. If they damp out,
the motion is restricted to the hyperplane and the syn-
chronized state is stable. Because the fundamental geo-
metric requirement of an invariant hyperplane is so
simple, many different types of synchronization schemes
are possible in both unidirectional and bidirectional cou-
pling scenarios. Many bidirectional cases display behav-
ior that is counterintuitive: increasing coupling strength
can destroy the synchronous state, the simple Lyapunov

exponent threshold is not necessarily the most practical,
and basins of attraction for synchronous attractors are
not necessarily simple, leading to fundamental problems
in predicting the final state of the whole dynamical sys-
tem. Finally, detecting synchronization and related phe-
nomena from a time series is not a trivial problem and
requires the invention of new statistics that gauge the
mathematical relations between attractors reconstructed
from two times series, such as continuity and differentia-
bility.

I. INTRODUCTION: CHAOTIC SYSTEMS CAN
SYNCHRONIZE

Chaos has long-term unpredictable behavior. This is usu-
ally couched mathematically as a sensitivity to initial
conditions—where the system’s dynamics takes it is hard to
predict from the starting point. Although a chaotic system
can have a pattern~an attractor! in state space, determining
where on the attractor the system is at a distant, future time
given its position in the past is a problem that becomes ex-
ponentially harder as time passes. One way to demonstrate
this is to run two, identical chaotic systems side by side,
starting both at close, but not exactly equal initial conditions.
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The systems soon diverge from each other, but both retain
the same attractor pattern. Where each is on its own attractor
has no relation to where the other system is.

An interesting question to ask is, can we force the two
chaotic systems to follow the same path on the attractor?
Perhaps we could ‘‘lock’’ one to the other and thereby cause
their synchronization? The answer is, yes.

Why would we want to do this? The noise-like behavior
of chaotic systems suggested early on that such behavior
might be useful in some type of private communications.
One glance at the Fourier spectrum from a chaotic system
will suggest the same. There are typically no dominant
peaks, no special frequencies. The spectrum is broadband.

To use a chaotic signal in communications we are im-
mediately led to the requirement that somehow the receiver
must have a duplicate of the transmitter’s chaotic signal or,
better yet, synchronize with the transmitter. In fact, synchro-
nization is a requirement of many types of communication
systems, not only chaotic ones. Unfortunately, if we look at
how other signals are synchronized we will get very little
insight as to how to do it with chaos. New methods are
therefore required.

There have been suggestions to use chaos in robotics or
biological implants. If we have several parts that we would
like to act together, although chaotically, we are again led to
the synchronization of chaos. For simplicity we would like to
be able to achieve such synchronization using a minimal
number of signals between the synchronous parts, one signal
passed among them would be best.

In spatiotemporal systems we are often faced with the
study of the transition from spatially uniform motion to spa-
tially varying motion, perhaps even spatially chaotic. For
example, the Belousov–Zhabotinskii chemical reaction can
be chaotic, but spatially uniform in a well-stirred
experiment.1 This means that all spatial sites are synchro-
nized with each other—they are all doing the same thing at
the same time, even if it is chaotic motion. But in other
circumstances the uniformity can become unstable and spa-
tial variations can surface. Such uniform to nonuniform bi-
furcations are common in spatiotemporal systems. How do
such transitions occur? What are the characteristics of these
bifurcations? We are asking physical and dynamical ques-
tions regarding synchronized, chaotic states.

Early work on synchronous, coupled chaotic systems
was done by Yamada and Fujisaka.2,3 In that work, some
sense of how the dynamics might change was brought out by
a study of the Lyapunov exponents of synchronized, coupled
systems. Although Yamada and Fujisaka were the first to
exploit local analysis for the study of synchronized chaos,
their papers went relatively unnoticed. Later, a now-famous
paper by Afraimovich, Verichev, and Rabinovich4 exposed
many of the concepts necessary for analyzing synchronous
chaos, although it was not until many years later that wide-
spread study of synchronized, chaotic systems took hold. We
build on the early work and our own studies5–10 to develop a
geometric view of this behavior.

II. GEOMETRY: SYNCHRONIZATION HYPERPLANES

A. Simple example

Let us look at a simple example. Suppose we start with
two Lorenz chaotic systems. Then we transmit a signal from
the first to the second. Let this signal be thex component of
the first system. In the second system everywhere we see an
x component we replace it with the signal from the first
system. We call this constructioncomplete replacement. This
gives us a new five dimensional compound system:

dx1

dt
52s~y12x1!,

dy1

dt
52x1z11rx12y1 ,

dy2

dt
52x1z21rx12y2 , ~1!

dz1

dt
5x1y12bz1 ,

dz2

dt
5x1y22bz2 ,

where we have used subscripts to label each system. Note
that we have replacedx2 by x1 in the second set of equations
and eliminated theẋ1 equation, since it is superfluous. We
can think of thex1 variable as driving the second system.
Figure 1 shows this setup schematically. We use this view to
label the first system thedrive and the second system the
response. If we start Eq.~1! from arbitrary initial conditions
we will soon see thaty2 converges toy1 andz2 converges to
z1 as the systems evolve. After long times the motion causes
the two equalitiesy25y1 andz25z1 . The y andz compo-
nents of both systems stay equal to each other as the system
evolves. We now have a set of synchronized, chaotic sys-
tems. We refer to this situation asidentical synchronization
since both (y,z) subsystems are identical, which manifests in
the equality of the components.

We can get an idea of what the geometry of the synchro-
nous attractor looks like in phase space using the above ex-
ample. We plot the variablesx1 , y1 , andy2 . Sincey25y1

we see that the motion remains on the plane defined by this
equality. Similarly, the motion must remain on the plane
defined byz25z1 . Such equalities define a hyperplane in the
five-dimensional state space. We see a projection of this~in
three dimensions! in Fig. 2. The constraint of motion to a
hyperplane and the existence of identical synchronization are

FIG. 1. Original drive–response scheme for complete replacement synchro-
nization.
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really one and the same, as we show in the next section.
From here on we refer to this hyperplane as thesynchroni-
zation manifold.

B. Some generalizations and identical synchronization

We can make several generalizations about the synchro-
nization manifold. There is identical synchronization in any
system, chaotic or not, if the motion is continually confined
to a hyperplane in phase space. To see this, note that we can
change coordinates with a constant linear transformation and
keep the same geometry. These transformations just repre-
sent changes of variables in the equations of motion. We can
assume that the hyperplane contains the origin of the coor-
dinates since this is just a simple translation that also main-
tains the geometry. The result of these observations is that
the space orthogonal to the synchronization manifold, which
we will call the transversespace, has coordinates that will be
zero when the motion is on the synchronization manifold.
Simple rotations between pairs of synchronization manifold
coordinates and transverse manifold coordinates will then
suffice to give us sets of paired coordinates that are equal
when the motion is on the synchronization manifold, as in
the examples above.

There is another other general property that we will note,
since it can eliminate some confusion. The property of hav-
ing a synchronization manifold is independent of whether the
system is attracted to that manifold when started away from
it. The latter property is related to stability, and we take that
up below. The only thing we require now is that the synchro-
nization manifold is invariant. That is, the dynamics of the
system will keep us on the manifold if we start on the mani-
fold. Whether the invariant manifold is stable is a separate
question.

For a slightly different, but equivalent, approach one
should examine the paper by Tresseret al.11 which ap-
proaches the formulation of identical synchronization using

Cartesian products. Most of the geometric statements made
here can be couched in their formulation. They also consider
a more general type of chaotic driving in that formulation,
which is similar to some variations we have examined.9,12,13

In this more general case a chaotic signal is used to drive
another, nonidentical system. Tresseret al.point out the con-
sequences for that scheme when the driving is stable. This is
also similar to what is now being called ‘‘generalized syn-
chronization’’ ~see below!. We will comment more on this
below.

III. DYNAMICS: SYNCHRONIZATION STABILITY

A. Stability and the transverse manifold

1. Stability for one-way coupling or driving

In our complete replacement~CR! example of two syn-
chronized Lorenz systems, we noted that the differences
uy12y2u→0 anduz12z2u→0 in the limit of t→`, wheret
is time. This occurs because the synchronization manifold is
stable. To see this let us transform to a new set of coordi-
nates:x1 stays the same and we lety'5y12y2 , yi5y1

1y2 , andz'5z12z2 , zi5z11z2 . What we have done here
is to transform to a new set of coordinates in which three
coordinates are on the synchronization manifold (x1 ,yi ,zi)
and two are on the transverse manifold~y' andz'!.

We see that, at the very least, we need to havey' andz'

go to zero ast→`. Thus, the zero point~0,0! in the trans-
verse manifold must be a fixed point within that manifold.
This leads to requiring that the dynamical subsystems
dy' /dt anddz' /dt be stable at the~0,0! point. In the limit
of small perturbations~y' and z'! we end up with typical
variational equations for the response: we approximate the
differences in the vector fields by the Jacobian, the matrix of
partial derivatives of the right-hand side of the (y-z) re-
sponse system. The approximation is just a Taylor expansion
of the vector field functions. If we letF be the ~two-
dimensional! function that is the right-hand side of the re-
sponse of Eq.~1!, we have

S ẏ'

ż'
D5F~y1 ,z1!2F~y2 ,z2!

'DF–S y'

z'
D5S 21 2x1

x1 2b D •S y'

z'
D , ~2!

where y' and z' are considered small. Solutions of these
equations will tell us about the stability—whethery' or z'

grow or shrink ast→`.
The most general and, it appears the minimal condition

for stability, is to have the Lyapunov exponents associated
with Eq. ~2! be negative for the transverse subsystem. We
easily see that this is the same as requiring the response
subsystemy2 andz2 to have negative exponents. That is, we
treat the response as a separate dynamical system driven by
x1 and we calculate the Lyapunov exponents as usual for that
subsystemalone. These exponents will, of course, depend on
x1 and for that reason we call themconditional Lyapunov
exponents.9

FIG. 2. A projection of the hyperplane on which the motion of the drive–
response Lorenz systems takes place.
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The signs of the conditional Lyapunov exponents are
usually not obvious from the equations of motion. If we take
the same Lorenz equations and drive with thez1 variable,
giving a dynamical system made fromx1 , y1 , z1 , x2 , and
y2 , we will get a neutrally stable response where one of the
exponents is zero. In other systems, for example, the Ro¨ssler
system that is a 3-D dynamical system, in the chaotic regime
driving with the x1 will generally not give a stable (y,z)
response. Of course, these results will also be parameter de-
pendent. We show above a table of the associated exponents
for various subsystems~Table I!. We see that using the
present approach we cannot synchronize the Lorenz84 sys-
tem. We shall see that this is not the only approach. Similar
tables can be made for other systems.

We can approach the synchronization of two chaotic sys-
tems from a more general viewpoint in which the above
technique of CR is a special case. This is one-way,diffusive
coupling, also called negative feedback control. Several ap-
proaches have been shown using this technique.15–20 What
we do is add a damping term to the response system that
consists of a difference between the drive and response vari-
ables:

dx1

dt
5F~x1!

dx2

dt
5F~x2!1aE~x12x2!, ~3!

whereE is a matrix that determines the linear combination of
x components that will be used in the difference anda de-
termines the strength of the coupling. For example, for two
Rössler systems we might have

dx1

dt
52~y11z1!,

dx2

dt
52~y21z2!1a~x12x2!,

dy1

dt
5x11ay1 ,

dy2

dt
5x21ay2 ,

dz1

dt
5b1z1~x12c!,

dz2

dt
5b1z2~x22c!,

~4!

where in this case we have chosen

E5S 1 0 0

0 0 0

0 0 0
D . ~5!

For any value ofa we can calculate the Lyapunov exponents
of the variational equation of Eq.~4!, which is calculated
similar to that of Eq.~2! except that it is three dimensional:

S dx'

dt
dy'

dt
dz'

dt

D 5S 2a 21 21

1 a 0

z 0 x2c
D •S x'

y'

z'

D , ~6!

where the matrix in Eq.~6! is the Jacobian of the full Ro¨ssler
system plus the coupling term in thex equation. Recall Eq.
~6! gives the dynamics of perturbations transverse to the syn-
chronization manifold. We can use this to calculate the trans-
verse Lyapunov exponents, which will tell us if these pertur-
bations will damp out or not and hence whether the
synchronization state is stable or not. We really only need to
calculate the largest transverse exponent, since if this is
negative it will guarantee the stability of the synchronized
state. We call this exponentlmax

' and it is a function ofa. In
Fig. 3 we see the dependence oflmax

' on a. The effect of
adding coupling at first is to makelmax

' decrease. This is
common and was shown to occur in most coupling situations
for chaotic systems in Ref. 10. Thus, at some intermediate
value ofa, we will get the two Ro¨ssler systems to synchro-
nize. However, at largea values we see thatlmax

' becomes
positive and the synchronous state is no longer stable. This
desynchronizationwas noted in Refs. 10, 21, and 22. At
extremely largea we will slavex2 to x1 . This is like replac-
ing all occurrences ofx2 in the response withx1 , i.e. as
a→` we asymptotically approach the CR method of syn-
chronization first shown above for the Lorenz systems.
Hence, diffusive, one-way coupling and CR are related16 and
the asymptotic value oflmax

' (a→`) tells us whether the CR
method will work. Conversely, the asymptotic value oflmax

'

is determined by the stability of the subsystem that remains
uncoupled from the drive, as we derived from the CR
method.

TABLE I. Conditional Lyapunov exponents for two drive-response systems,
the Rössler ~a50.2, b50.2, c59.0! and the Lorenz84,14 which we see
cannot be synchronized by the CR technique.

System
Drive
signal

Response
system

Conditional
Lyapunov exponents

Rössler x (y,z) ~10.2, 20.879!
y (x,z) ~20.056,28.81!
z (x,y) ~10.0, 211.01!

Lorenz84 x (y,z) ~10.0622,20.0662!
y (x,z) ~10.893,20.643!
z (x,y) ~10.985,20.716!

FIG. 3. The maximum transverse Lyapunov exponentlmax
' as a function of

coupling strengtha in the Rössler system.
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2. Stability for two-way or mutual coupling

Most of the analysis for one-way coupling will carry
through for mutual coupling, but there are some differences.
First, since the coupling is not one way the Lyapunov expo-
nents of one of the subsystems will not be the same as the
exponents for the transverse manifold, as is the case for
drive–response coupling. Thus, to be sure we are looking at
the right exponents we should always transform to coordi-
nates in which the transverse manifold has its own equations
of motion. Then we can investigate these for stability:

dx1

dt
52~y11z1!1a~x22x1!,

dx2

dt
52~y21z2!

1a~x12x2!,

dy1

dt
5x11ay1 ,

dy2

dt
5x21ay2 ,

dz1

dt
5b1z1~x12c!,

dz2

dt
5b1z2~x22c!.

~7!

For coupled Ro¨ssler systems like Eq.~7! we can perform the
same transformation as before. Letx'5x12x2 , xi5x11x2

and with similar definitions fory and z. Then examine the
equations forx' , y' , andz' in the limit where these vari-
ables are very small. This leads to a variational equation as
before, but one that now includes the coupling a little differ-
ently:

S dx'

dt
dy'

dt
dz'

dt

D 5S 22a 21 21

1 a 0

z 0 x2c
D •S x'

y'

z'

D . ~8!

Note that the coupling now has a factor of 2. However, this
is the only difference. Solving Eq.~6! for Lyapunov expo-
nents for variousa values will also give us solutions to Eq.
~8! for coupling values that are doubled. This use of varia-

tional equations in which we scale the coupling strength to
cover other coupling schemes is much more general than
might be expected. We show how it can become a powerful
tool later in this paper.

The interesting thing that has emerged in the last several
years of research is that the two methods we have shown so
far for linking chaotic systems to obtain synchronous behav-
ior are far from the only approaches. In the next section we
show how one can design several versions of synchronized,
chaotic systems.

IV. SYNCHRONIZING CHAOTIC SYSTEMS,
VARIATIONS ON THEMES

A. Simple synchronization circuit

If one drives only a single circuit subsystem to obtain
synchronization, as in Fig. 1, then the response system may
be completely linear. Linear circuits have been well studied
and are easy to match. Figure 5 is a schematic for a simple
chaotic driving circuit driving a single linear subsystem.23

This circuit is similar to the circuit that we first used to
demonstrate synchronization5 and is based on circuits devel-
oped by Newcomb.24 The circuit may be modeled by the
equations

dx1

dt
5a@21.35x113.54x217.8g~x2!10.77x1#,

~9!
dx2

dt
5b@2x111.35x2#.

The functiong(x2) is a square hysteresis loop that switches
from 23.0 to 3.0 atx2522.0 and switches back atx252.0.
The time factors area5103 and b5102. Equation~9! has
two x1 terms because the secondx1 term is an adjustable
damping factor. This factor is used to compensate for the fact
that the actual hysteresis function is not a square loop as in
the g function.

The circuit acts as an unstable oscillator coupled to a
hysteretic switching circuit. The amplitudes ofx1 andx2 will

FIG. 4. Attractor for the circuit-Ro¨ssler system. FIG. 5. Chaotic drive and response circuits for a simple chaotic system
described by Eqs.~9!.
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increase untilx2 becomes large enough to cause the hyster-
etic circuit to switch. After the switching, the increasing os-
cillation of x1 andx2 begins again from a new center.

The response circuit in Fig. 5 consists of thex2 sub-
system along with the hysteretic circuit. Thex1 signal from
the drive circuit is used as a driving signal. The signalsx28
andx18 are seen to synchronize withx2 andxs . In the syn-
chronization, some glitches are seen because the hysteretic
circuits in the drive and response do not match exactly. Sud-
den switching elements, such as those used in this circuit, are
not easy to match. The matching of all elements is an impor-
tant consideration in designing synchronizing circuits, al-
though matching of nonlinear elements often presents the
most difficult problem.

B. Cascaded drive-response synchronization

Once one views the creation of synchronous, chaotic
systems as simply ‘‘linking’’ various systems together, a
‘‘building block’’ approach can be taken to producing other
types of synchronous systems. We can quickly build on our
original CR scheme and produce an interesting variation that
we call acascadeddrive-response system~see Fig. 8!. Now,
provided each response subsystem is stable~has negative
conditional Lyapunov exponents!, both responses will syn-
chronize with the drive and with each other.

A potentially useful outcome is that we have reproduced
the drive signalx1 by the synchronizedx3 . Of course, we
havex15x3 only if all systems have the same parameters. If
we vary a parameter in the drive, the differencex12x3 will
become nonzero. However, if we vary the responses’ param-
eters in the same way as the drive, we will keep the null
difference. Thus, by varying the response to null the differ-
ence, we can follow the internal parameter changes in the
drive. If we envision the drive as a transmitter and the re-
sponse as a receiver, we have a way to communicate changes
in internal parameters. We have shown how this will work in
specific systems~e.g., Lorenz! and implemented parameter
variation and following in a real set of synchronized, chaotic
circuits.6

With cascaded circuits, we are able to reproduce all of
the drive signals. It is important in a cascaded response cir-
cuit to reproduce all nonlinearities with sufficient accuracy,
usually within a few percent, to observe synchronization.
Nonlinear elements available for circuits depend on material
and device properties, which vary considerably between dif-
ferent devices. To avoid these difficulties we have designed
circuits around piecewise linear functions, generated by di-
odes and op amps. These nonlinear elements~originally used
in analog computers25! are easy to reproduce. Figure 6 shows
schematics for drive and response circuits similar to the
Rössler system but using piecewise linear nonlinearities.26

The drive circuit may be described by

dx

dt
52a~Gx1by1lz!,

dy

dt
52a~x2gy10.02y!,

dz

dt
52a@2g~x!2z#,

~10!

g~x!5 H 0,
mx,

x<3,
x.3,

where the time factora is 104 s21, g is 0.05,b is 0.5,l is
1.0,l is 0.133,G50.05, andm is 15. In the response system
the y signal drives the (x,z) subsystem, after which they
subsystem is driven byx and y to producey8. The extra
factor of 0.02y in the second of Eq.~10! becomes 0.02y9 in
the response circuit in order to stabilize the op amp integra-
tor.

C. Cuomo–Oppenheim communications scheme

A different form of cascading synchronization was ap-
plied to a simple communications scheme early on by
Cuomo and Oppenheim.27,28 They built a circuit version of
the Lorenz equations using analog multiplier chips. Their
setup is shown schematically in Fig. 7. They transmitted the
x signal from their drive circuit and added a small speech
signal. The speech signal was hidden under the broadband
Lorenz signal in a process known as signal masking. At their
receiver, the differencex2x8 was taken and found to be

FIG. 6. Piecewise linear Ro¨ssler circuits arranged for cascaded synchroni-
zation. R15100 kV, R25200 kV, R35R1352 MV, R4575 kV,
R5510 kV, R6510 kV, R75100 kV, R8510 kV, R9568 kV,
R105150 kV, R115100 kV, R125100 kV, C15C25C350.001mF, and
the diode is a type MV2101.

FIG. 7. Schematic for the Cuomo–Oppenheim scheme.
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approximately equal to the masked speech signal~as long as
the speech signal was small!. Other groups later demon-
strated other simple communications schemes.29–32 It has
been shown that the simple chaotic communication schemes
are not ‘‘secure’’ in a technical sense.33,34 Other encoding
schemes using chaos may be harder to break, although one
must consider that this description usually works by finding
patterns, and chaotic systems, because they are deterministic,
are often pattern generators. Later we show how one might
avoid patterns in chaotic systems.

D. Nonautonomous synchronization

Nonautonomous synchronization has been accomplished
in several nonautonomous systems and circuits,35–39 but the
more difficult problem of synchronizing two nonautonomous
systems with separate, but identical, forcing functions has
not been treated, except for the work by Carroll and Pecora.7

In this system we start out with a cascaded version of a
three-variable, nonautonomous system so as to reproduce the
incoming driving signal when the systems are in synchroni-
zation~see Fig. 9!. Similar to the cascaded, parameter varia-
tion scheme when the phases of the limit-cycle forcing func-
tions are not the same, we will see a deviation from the null

in the differencex12x3 . We can use this deviation to adap-
tively correct the phase of the response forcing to bring it
into agreement with the drive.7

A good way to do this is to use a Poincare´ section con-
sisting of x1 and x3 , which is ‘‘strobed’’ by the response
forcing cycle. If the drive and response are in sync, the sec-
tion will center around a fixed point. If the phase is shifted
with respect to the drive, the points will cluster in the first or
third quadrants depending on whether the response phase
lags or leads the drive phase, respectively. The shift in Poin-
carépoints will be roughly linear and, hence, we know the
magnitude and the sign of the phase correction. This has
been done in a real circuit. See Ref. 7 for details.

E. Partial replacement

In the drive-response scenario thus far we have replaced
one of the dynamical variables in the response completely
with its counterpart from the drive~CR drive response!. We
can also do this in a partial manner as shown by Ref. 40. In
the partial substitution approach we replace a response vari-
able with the drive counterpart only in certain locations. The
choice of locations will depend on which will cause stable
synchronization and which are accessible in the actual physi-
cal device we are interested in building.

An example of replacement is the following system
based on the Lorenz system:

ẋ15s~y12x1!, ẏ15rx12y12x1z1 , ż15x1y12bz1,

~11!
ẋ25s~y12x2!, ẏ25rx22y22x2z2 , ż25x2y22bz2 .

Note the underlined driving termy1 in the second system.
The procedure here is to replace onlyy2 in this equation and
not in the other response equations. This leads to a varia-
tional Jacobian for the stability, which is now 333, but with
a zero wherey1 is in theẋ2 equation. In general, the stability
is different than CR drive response. There may be times
when this is beneficial. The actual stability~variational!
equation is

d

dt S x'

y'

z'

D 5DF–S x'

y'

z'

D 5S 2s 0 0

r 2z2 21 x2

y2 x2 2b
D •S x'

y'

z'

D ,

~12!

where following Ref. 40 we have marked the Jacobian com-
ponent that is now zero with an underline.

F. Occasional driving

Another approach is to send a drive signal only occa-
sionally to the response and at those times we update the
response variables. In between the updates we let both drive
and response evolve independently. This approach was first
suggested by Amritkaret al.41 They discovered that this ap-
proach affected the stability of the synchronized state, in
some cases causing synchronization where continuous driv-
ing would not.

FIG. 8. Cascading scheme for obtaining synchronous chaos using complete
replacement.

FIG. 9. Nonautonomous synchronization schematic. The local periodic
drive is indicated as going into the ‘‘bottom’’ of the drive or response, but it
can show up in any or all blocks. The incoming signalx1 is compared to the
outgoingx3 using a strobe. When the periodic drives are out of phase~i.e.,
fÞf8! we will see a pattern in the strobex1-x3 diagram that will allow us
to adjustf8 to matchf.
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Later this idea was applied with a view toward commu-
nications by Stojanovskiet al.42,43 For private communica-
tions, in principle, occasional driving should be more diffi-
cult to decrypt or break since there is less information
transmitted per unit time.

G. Synchronous substitution

We are often in a position of wanting several or all drive
variables at the response when we can only send one signal.
For example, we might want to generate a function of several
drive variables at the response, but we only have one signal
coming from the drive. We show that we can sometimes
substitute a response variable for its drive counterpart to
serve our purpose. This will work when the response is syn-
chronized to the drive~then the two variables are equal! and
the synchronization is stable~the two variables stay equal!.
We refer to this practice assynchronous substitution. For
example, this approach allows us to send a signal to the
response that is a function of the drive variables and use the
inverse of that function at the response to generate variables
to use in driving the response. This will generally change the
stability of the response.

The first application of this approach was given in Refs.
44 and 45. Other variations have also been offered, including
use of an active/passive decomposition.46

In the original case,44,45strong spectral peaks in the drive
were removed by a filter system at the drive and then the
filtered signal was sent to the response. At the response a
similar filtering system was used to generate spectral peaks
from the response signals similar to those removed at the
drive. These were added to the drive signal and the sum was
used to drive the response as though it were the original
drive variable. Schematically, this is shown in Fig. 10. In
equation form we have

dx1

dt
5 f ~x1 ,y1 ,z1!,

dx2

dt
5 f ~x2 ,u,z2!,

dy1

dt
5g~x1 ,y1 ,z1!,

dy2

dt
5g~x2 ,y2 ,z2!,

dz1

dt
5h~x1 ,y1 ,z1!,

dz2

dt
5h~x2 ,u,z2!,

w15c~y1!, u5y22c~y2!1w1 ,

~13!

where subscripts label drive and response andc is a filter
that passes all signals except particular, unwanted spectral
peaks that it attenuates~e.g., a comb filter!. At the response
side we have a cascaded a system in which we use the local
~response! y2 variable to regenerate the spectral peaks by
subtracting the filteredy2 from y2 itself and adding in the
remaining signalw that was sent from the drive. If all the
systems are in sync,u will equal y1 in the drive. The test will
be the following: is this system stable? In Refs. 44 and 45,
Carroll showed that there do exist filters and chaotic systems
for which this setup is stable. Figure 11 showsy1 and the
broadcastw signal. Hence, we can modify the drive signal
and use synchronous substitution on the response end to
undo the modification, all in a stable fashion. This allows us
more flexibility in what types of signals we can transmit to
the response.

In Ref. 47 we showed that one could use nonlinear func-
tions to produce a drive signal. This approach also changes
the stability of the response since we have a different func-
tional relation to the drive system. An example of this is a
Rössler-like circuit system using partial replacement in Ref.
47:

FIG. 10. Schematic for synchronous substitution using a filter.

FIG. 11. The originaly signal and its filtered, transmitted versionw.
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dx1

dt
52a~rx11by11z1!,

dx2

dt
52a~rx21by21z2!,

dy1

dt
52a~gy12x12ay1!,

dy2

dt
52a~gy22x22aỹ!,

dz1

dt
52a@z12g~x1!#,

dz2

dt
52a@z22g~x2!#,

g~x1!5 H 0,
15~x123!,

if x,3
if x>3

g~x2!5same form as driveg,
ỹ52w~x214.2!,

w5
2y1

x114.2
.

~14!

What we have done above is to take the usual situation of
partial replacement ofy2 with y1 and instead transform the
drive variables using the functionw and send that signal to
the response. Then we invertw at the response to give us a
good approximation toy1' ỹ and drive the response using
partial replacement withỹ. This, of course, changes the sta-
bility. The Jacobian for the response becomes

2aS r b 1

211aw g 0

2g 0 1
D . ~15!

With direct partial replacement~i.e., sendingy1 and using it
in place ofỹ above! the Jacobian would not have the1aw
term in the first column. The circuit we built using this tech-
nique was stable.

We can write a general formulation of the synchronous
substitution technique as used above.47 We start with an
n-dimensional dynamical systemdr /dt5F(r ), where r
5(x,y,z,...). We use ageneral functionT from Rn→R. We
send the scalar signalw5T(x1 ,y1 ,z1 ...). At the response
we invert T to give an approximation to the drive variable
x1 , namelyx̃5T1(w,y2 ,z2 ,...), whereT1 is the inverse of
T in the first argument. By the implicit function theoremT1

will exist if ]T/]xÞ0. Synchronous substitution comes inT1

where we normally would needy1 ,z1 ,..., to invert T. Since
we do not have access to those variables, we use their syn-
chronous counterpartsy2 ,z2 ,..., in theresponse.

Using this formulation in the case of partial replacement
or complete replacement ofx2 or some other functional de-
pendence onw in the response we now have a new Jacobian
in our variational equation:

ddr

dt
5@D rF1DwF D rT1#–dr , ~16!

where we have assumed that the response vector fieldF has
an extra argument,w, to account for the synchronous substi-
tution. In Eq.~16! the first term is the usual Jacobian and the

second term comes from the dependence onw. Note that, if
we use complete replacement ofx2 with x1 , theDxF part of
the first term in Eq.~16! would be zero.

There are other variations on the theme of synchronous
substitution. We introduce another here since it leads to a
special case that is used in control theory and that we have
recently exploited. One way to guarantee synchronization
would be to transmit all drive variables and couple them to
the response using negative feedback, viz.

dx~2!/dt5F~x~2!!1c~x~1!2x~2!!, ~17!

where, unlike before, we now use superscripts in parentheses
to refer to the drive~1! and the response~2! variables and
x(1)5(x1

(1) ,x2
(1) ,...,xn

(1)), etc. With the right choice of coup-
ling strengthc, we could always synchronize the response.
But again we are limited in sending only one signal to the
response. We do the following, which makes use of synchro-
nous substitution.

Let S:Rn→Rn be a differentiable, invertible transforma-
tion. We constructw5S(x(1)) at the drive and transmit the
first componentw1 to the response. At the response we gen-
erate the vectoru5S(x(2)). Near the synchronous stateu
'w. Thus we have approximations at the response to the
componentswi that we do not have access to. We therefore
attempt to use Eq.~17! by forming the following:

dx~2!

dt
5F~x~2!!1c@S21~w̃!2x~2!#, ~18!

where in order to approximatec(x(1)2x(2)) we have used
synchronous substitution to formw̃(w1 ,u2 ,u3 ,...,un) and
applied the inverse transformationS21.

All the rearrangements using synchronous substitution
and transformations may seem like a lot of pointless algebra,
but the use of such approaches allows one to transmit one
signal and synchronize a response that might not be synchro-
nizable otherwise as well as to guide in the design of syn-
chronous systems. Moreover, a particular form of theS
transformation leads us to a commonly used control-theory
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method. The synchronous substitution formalism allows us
to understand the origin of the control-theory approach. We
show this in the next section.

H. Control theory approaches, a special case of
synchronous substitution

Suppose in our above use of synchronous substitution
the transformationS is a linear transformation. Then
S21(w̃)2S21(u)5S21(w̃2u), and sincew̃2u has only its
first component as nonzero, we can writew̃2u5@KT(x(1)

2x(2)),0,0,...,0#, whereKT is the first row ofS. Then the
coupling term cS21(w̃2u) becomes BKT(x(1)2x(2)),
whereB is the first column ofS21 and we have absorbed the
coupling constantc into B. This form of the coupling~called
BK coupling from here on! is common in control theory.48

We can see where it comes from. It is an attempt to use a
linear coordinate transformation (S) to stabilize the synchro-
nous state. Because we can only transmit one signal~one
coordinate! we are left with a simpler form of the coupling
that results from using response variables~synchronous sub-
stitution! in place of the missing drive variables.

Recently, experts in control theory have begun to apply
BK and other control-theory concepts to the task of synchro-
nizing chaotic systems. We will not go into all the details
here, but good overviews and explanations on the stability of
such approaches can be found in Refs. 49–52. In the follow-
ing sections we show several explicit examples of using the
BK approach in synchronization.

I. Optimization of BK coupling

Our own investigation of the BK method began with
applying it to the piecewise-linear Rossler circuits. As is usu-
ally pointed out~e.g., see Penget al.53!, the problem is re-

duced to finding an appropriate BK combination resulting in
negative Lyapunov exponents at the receiver. The piecewise-
linear Rossler systems~see above! lend themselves well to
this task as the stability is governed by two constant Jacobian
matrices, and the Lyapunov exponents are readily deter-
mined. To seek out the proper combinations ofB’s andK ’s,
we employ an optimization routine in the six-dimensional
space spanned by the coupling parameters. From a six-
dimensional grid of starting points in BK space, we seek out
local minima of the largest real part of the eigenvalue of the
response Jacobian@J2BKT#.

By limiting the size of the coupling parameters and col-
lecting all of the deeply negative minima, we find that we
can choose from a number of BK sets that ensure fast and
robust synchronization. For example, the minimization rou-
tine reveals, among others, the following pair of minima well
separated in BK space:B15$22.04,0.08,0.06% K1
5$21.79,22.17,21.84%, and B25$0.460,2.41,0.156% K2

5$21.37,1.60,2.33%. The real parts of the eigenvalues for
these sets are21.4 and21.3, respectively. In Fig. 12, we
show the fast synchronization usingB1K1

T as averaged over
100 runs, switching on the coupling att50. The time of the
period-1 orbit in the circuit is about 1 ms, in which time the
synchronization error is drastically reduced by about two or-
ders of magnitude.

Similarly, we can apply the method to the volume pre-
serving hyperchaotic map system of sectionx. The only dif-
ference is that we now wish to minimize the largest norm of
the eigenvalues of the response Jacobian. With our optimi-
zation routine, we are able to locate eigenvalues on the order
of 1024, corresponding to Lyapunov exponents around29.

J. Hyperchaos synchronization

Most of the drive–response synchronous, chaotic sys-
tems studied so far have had only one positive Lyapunov
exponent. More recent work has shown that systems with
more than one positive Lyapunov exponent~called hypercha-
otic systems! can be synchronized using one drive signal.
Here we display several other approaches.

A simple way to construct a hyperchaotic system is to
use two, regular chaotic systems. They need not be coupled;
just the amalgam of both is hyperchaotic. Tsimiring and
Suschik54 recently made such a system and considered how
one might synchronize a duplicate response. Their approach
has elements similar to the use of synchronous substitution
we mentioned above. They transmit a signal, which is the
sum of the two drive systems. This sum is coupled to a sum
of the same variables from the response. When the systems
are in sync the coupling vanishes and the motion takes place
on an invariant hyperplane and hence is identical synchroni-
zation.

An example of this situation using one-dimensional sys-
tems is the following:54

FIG. 12. The BK method is demonstrated on the piecewise-linear Ro¨ssler
circuit. The difference in theX variables of receiver and transmitter is
shown to converge to about 20 mV in under one cycle of the period-1 orbit
~about 1 ms!. The plot is an average of 100 trials.
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x1~n11!5 f 1@x1~n!#, x2~n11!5 f 2@x2~n!#,

w5 f 1@x1~n!#1 f 2@x2~n!#2 f 1@y1~n!#2 f 2@y2~n!#

5transmitted signal,
~19!

y1~n11!5 f 1@y1~n!#1e$ f 1@x1~n!#1 f 2@x2~n!#

2 f 1@y1~n!#2 f 2@y2~n!#%,

y2~n11!5 f 2@y2~n!#1e$ f 1@x1~n!#1 f 2@x2~n!#

2 f 1@y1~n!#2 f 2@y2~n!#%,

Linear stability analysis, as we introduced above, shows that
the synchronization manifold is stable.54 Tsimring and Sus-
chik investigated several one-dimensional maps~tent, shift,
logistic! and found that there were large ranges of coupling
e, where the synchronization manifold was stable. For cer-
tain cases they even got analytic formulas for the Lyapunov
multipliers. However, they did find that noise in the com-
munications channel, represented by noise added to the
transmitted signalw, did degrade the synchronization se-
verely, causing bursting. The same features showed up in
their study of a set of drive-response ODEs~based on a
model of an electronic synchronizing circuit!. The reasons
for the loss of synchronization and bursting are the same as
in our study of the coupled oscillators below. There are local
instabilities that cause the systems to diverge momentarily,
even above Lyapunov synchronization thresholds. Any slight
noise tends to keep the systems apart and ready to diverge
when the trajectories visit the unstable portions of the attrac-
tors. Whether this can be ‘‘fixed’’ in practical devices so that
multiplexing can be used is not clear. Our study below of
synchronization thresholds for coupled systems suggests that
for certain systems and coupling schemes we can avoid
bursting, but more study of this phenomenon for
hyperchaotic/multiplexed systems has to be done. Perhaps a
BK approach may be better at eliminating bursts since it can
be optimized. This remains to be seen.

The issue of synchronizing hyperchaotic systems was
addressed by Penget al.53 They started with two identical
hyperchaotic systems,ẋ5F(x) andẏ5F(y). Their approach
was to use the BK method to synchronize the systems. As
before, the transmitted signal wasw5KTx and we add a
coupling term to they equations of motion:ẏ5F(y)1B(w
2 v), wherev5KTy. Penget al. show that for many cases
one can chooseK andB so that they system synchronizes
with the x system. This and the work by Tsimring and Sus-
chik solve a long-standing question about the relation be-
tween the number of drive signals that need to be sent to
synchronize a response and the number of positive Lypunov
exponents, namely that there is no relation, in principle.
Many systems with a large number of positive exponents can
still be synchronized with one drive signal. Practical limita-
tions will surely exist, however. The latter still need to be
explored.

Finally, we mention that synchronization of hypercha-
otic systems has been achieved in experiments. Tamasevi-
cius et al.25 have shown that such synchronization can be

accomplished in a circuit. They built circuits that consisted
of either mutually coupled or unidirectionally coupled 4-D
oscillators. They show that for either coupling both positive
conditional Lypunov exponents of the ‘‘uncoupled’’ sub-
systems become negative as the coupling is increased. They
go on to further show that they must be above a critical value
of coupling which is found by observing the absence of a
blowout bifurcation.55–57Such a demonstration in a circuit is
important, since this proves at once that hyperchaos synchro-
nization has some robustness in the presence of noise and
parameter mismatch.

We constructed a four-dimensional piecewise-linear cir-
cuit based on the hyperchaotic Ro¨ssler equations.53,58 The
modified equations are as follows:

dx

dt
520.05x20.502y20.62z,

dy

dt
5x10.117y10.402w,

dz

dt
5g~x!21.96z,

dw

dt
5h~w!20.148z10.18w,

where

g~x!510~x20.6!, x.0.6,

50, x,0.6,

h~w!520.412~w23.8!, w.3.8,

50, w,3.8.

One view of the hyperchaotic circuit is shown in the plot of
w vs y in Fig. 13. Again, as with the 3-D Rossler circuit, the
4-D circuit is synchronized rapidly and robustly with the BK
method. In this circuit, we are aided by the fact that the
dynamics are most often driven by one particular matrix out

FIG. 13. A projection of the dynamics of the hyperchaotic circuit based on
the 4-D Rössler equations.
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of the four possible Jacobians. We have found that minimi-
zation of the real eigenvalues in the most-visited matrix is
typically sufficient to provide overall stability. Undoubtedly
there are cases in which this fails, but we have had a high
level of success using this technique. A more detailed sum-
mary of this work will be presented elsewhere, so we briefly
demonstrate the robustness of the synchronization in Fig. 14.
The coupling parameters in this circuit are given byB
5$0.36,2.04,21.96,0.0% andK5$21.97,2.28,0,1.43%.

K. Synchronization as a control theory observer
problem

A control theory approach to observing a system is a
similar problem to synchronizing two dynamical systems.
Often the underlying goal is the synchronization of the ob-
server dynamical system with the observed system so the
observed system’s dynamical variables can be determined
fully from knowing only a few of the observed system’s
variables or a few functions of those variables. Often we
have only a scalar variable~or time series! from the observed
system and we want to recreate all the observed system’s
variables.

So, Ott, and Dayawansa follow such approaches in Ref.
59. They showed that a local control theory approach based
essentially on the Ott–Grebogi–Yorke technique.60 The
technique does require knowledge of the local structure of
stable and unstable manifolds. In an approach that is closer
to the ideas of drive-response synchronization presented
above Brownet al.61–64 showed that one can observe a cha-
otic system by synchronizing a model to a time series or
scalar signal from the original system. They showed further
that one could often determine a set of maps approximating
the dynamics of the observed system with such an approach.
Such maps could reliably calculate dynamical quantities such
as Lyapunov exponents. Brownet al. went much further and
showed that such methods could be robust to additive noise.

Somewhat later, Parlitz also used these ideas to explore the
determination of an observed system’s parameters.65

L. Volume-preserving maps and communications
issues

Most of the chaotic systems we describe here are based
on flows. It is also useful to work with chaotic circuits based
on maps. Using map circuits allows us to simulate volume-
preserving systems. Since there is no attractor for a volume-
preserving map, the map motion may cover a large fraction
of the phase space, generating very broadband signals.

It seems counterintuitive that a nondissipative system
may be made to synchronize, but in a multidimensional
volume-preserving map, there must be at least one contract-
ing direction so that volumes in phase space are conserved.
We may use this one direction to generate a stable sub-
system. We have used this technique to build a set of syn-
chronous circuits based on the standard map.66

In hyperchaotic systems, there are more than one posi-
tive Lyapunov exponent and for a map this may mean that
the number of expanding directions exceeds the number of
contracting directions, so that there are no simple stable sub-
systems for a one-drive setup. We may, however, use the
principle of synchronous substitution~described in Sec. VI
below! or its specialization to the BK to generate various
synchronous subsystems. We have built a circuit to simulate
the following map:67

xn1152~ 4
3! xn1zn

yn115~ 1
3! yn1zn

zn115xn1yn

J mod 2, ~20!

where ‘‘mod~2!’’ means take the result modulus62. This
map is quite similar to the cat map68 or the Bernoulli shift in
many dimensions. The Lyapunov exponents for this map
~determined from the eigenvalues of the Jacobian! are 0.683,
0.300, and20.986.

We may create a stable subsystem of this map using the
method of synchronous substitution.47 We produce a new
variablewn5zn1gxn from the drive system variables, and
reconstruct a driving signalz̃n at the response system:

wn5zn1gxn , z̃n5wn2gxn8 ,
~21!

xn118 52~ 4
3! xn81 z̃n , yn118 5~ 1

3! yn81 z̃n ,

where the modulus function is assumed. In the circuit, we
usedg524/3, although there is a range of values that will
work. We were able to synchronize the circuits adequately in
spite of the difficulty of matching the modulus functions.

The transmitted signal from this circuit has essentially a
flat power spectrum and approximately a delta-function au-
tocorrelation, making the signal a good alternative to a con-
ventional pseudonoise signal. Our circuit is in essence a self-
synchronizing pseudonoise generator. We present more
information on this system, its properties and communica-
tions issues in Refs. 67 and 69.

FIG. 14. The BK method as applied to the hyperchaotic circuit. The cou-
pling is switched on when the pictured gate voltage is high, andB is effec-
tively $0,0,0,0% when the gate voltage is low. The sample rate is 20ms/
sample.
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M. Using functions of drive variables and information

An interesting approach involving the generation of new
synchronizing vector fields was taken by Kocarev.70,71 This
is an approach similar to synchronous substitution that uses
an invertible function of the drive dynamical variables and
the information signal to drive the response, rather than just
using one of the variables itself as in the CR approach. Then
on the response the function is inverted using the fact that the
system is close to synchronization.

Schematically, this looks as follows. On the drive end
there is a dynamical systemẋ5F(x,s), wheres is the trans-
mitted signal and is a function ofx and the informationi (t),
s5h(x,i ). On the receiver end there is an identical dynami-
cal system set up to extract the information:ẏ5F(y,s) and
i R5h21(y,s). When the systems are in synci R5 i . We have
shown this is useful by using XOR as ourh function in the
volume-preserving system.69

N. Synchronization in other physical systems

Until now we have concentrated on circuits as the physi-
cal systems that we want to synchronize. Other work has
shown that one can also synchronize other physical systems
such as lasers and ferrimagnetic materials undergoing cha-
otic dynamics.

In Ref. 72 Roy and Thornburg showed that lasers that
were behaving chaotically could be synchronized. Two solid
state lasers can couple through overlapping electromagnetic
lasing fields. The coupling is similar to mutual coupling
shown in Sec. III A 3, except that the coupling is negative.
This causes the lasers to actually be in oppositely signed
states. That is, if we plot the electric field for one against the
other we get a line at245° rather than the usual 45°. This is
still a form of synchronization. Actually since Roy and
Thornburg only examined intensities the synchronization
was still of the normal, 45° type. Colet and Roy continued to
pursue this phenomenon to the point of devising a commu-
nications scheme using synchronized lasers.73 This work was
recently implemented by Alsinget al.74 Such laser synchro-
nization opens the way for potential uses in fiberoptics.

Petermanet al.75 showed a novel way to synchronize the
chaotic, spin-wave motion in rf pumped yttrium iron garnet.
In these systems there are fast and slow dynamics. The fast
dynamics amounts to sinusoidal oscillations at GHz frequen-
cies of the spin-wave amplitudes. The slow dynamics gov-
erns the amplitude envelopes of the fast dynamics. The slow
dynamics can be chaotic. Petermanet al. ran their experi-
ments in the chaotic regimes and recorded the slow dynami-
cal signal. They then ‘‘played the signals back’’ at a later
time to drive the system and cause it to synchronize with the
recorded signals. This shows that materials with such high-
frequency dynamics are amenable to synchronization
schemes.

O. Generalized synchronization

In their original paper on synchronization Afraimovich
et al. investigated the possibility of some type of synchroni-

zation when the parameters of the two coupled systems do
not match. Such a situation will certainly occur in real,
physical systems and is an important question. Their study
showed that for certain systems, including the 2-D forced
system they studied, one could show that there was a more
general relation between the two coupled systems. This rela-
tionship was expressed as a one-to-one, smooth mapping be-
tween the phase space points in each subsystem. To put this
more mathematically, if the full system is described by a 4-D
vector (x1 ,y1 ,x2 ,y2), then there exists smooth, invertible
function f from (x1 ,y1) to (x2 ,y2).

Thus, knowing the state of one system enables one, in
principle, to know the state of the other system, and vice
versa. This situation is similar to identical synchronization
and has been calledgeneralized synchronization. Except in
special cases, like that of Afraimovichet al., rarely will one
be able to produce formulae exhibiting the mappingf. Prov-
ing generalized synchronization from time series would be a
useful capability and sometimes can be done. We show how
below. The interested reader should examine Refs. 76–78 for
more details.

Recently, several attempts have been made to generalize
the concept of general synchronization itself. These begin
with the papers by Rul’kovet al.76,79 and onto a paper by
Kocarev and Parlitz.80 The central idea in these papers is that
for the drive-response setup, if the response is stable~all
Lypunov exponents are negative!, then there exists a mani-
fold in the joint drive-response phase space such that there is
a function from the drive (X) to the response (Y), f:X→Y.
In plain language, this means we can predict the response
state from that of the drive~there is one point on the re-
sponse for each point on the drive’s attractor! and the points
of the mappingf lie on a smooth surface~such is the defi-
nition of a manifold!.

This is an intriguing idea and it is an attempt to answer
the question we posed in the beginning of this paper, namely,
does stability determine geometry? These papers would an-
swer yes, in the drive-response case the geometry is a mani-
fold that is ‘‘above’’ the drive subspace in the whole phase
space. The idea seems to have some verification in the stud-
ies we have done so far on identical synchronization and in
the more particular case of Afraimovich–Verichev–
Rabinovich generalized synchronization. However, there are
counterexamples that show that the conclusion cannot be
true.

First, we can show that there are stable drive-response
systems in which the attractor for the whole system is not a
smooth manifold. Consider the following system:

ẋ5F~x! ż52hz1x1 , ~22!

wherex is a chaotic system andh.0. Thez system can be
viewed as a filter~LTI or low-pass type! and is obviously a
stable response to the drivex. It is now known that certain
filters of this type lead to an attractor in which there is a map
~often called a graph! f of the drive to the response, but the
mapping is not smooth. It is continuous and so the relation
between the drive and response is similar to that of the real
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line and the Weierstrass function above it. This explains why
certain filters acting on a time series can increase the dimen-
sion of the reconstructed attractor.81,82

We showed that certain statistics could detect this
relationship,82 and we introduce those below. Several other
papers have proven the nondifferentiability property rigor-
ously and have investigated several types of stable filters of
chaotic systems.83–89 We note that the filter is just a special
case of a stable response. The criteria for smoothness in any
drive-response scenario is that the least negative conditional
Lypunov exponents of the response must be less than the
most negative Lypunov exponents of the drive.87,90 One can
get a smooth manifold if the response isuniformly contract-
ing, that is, the stability exponents arelocally always
negative.87,91Note that if the drive is a noninvertible dynami-
cal system, then things are ‘‘worse.’’ The drive-response re-
lation may not even be continuous and may be many valued,
in the latter case there is not even a functionf from the drive
to the response.

There is an even simpler counterexample that no one
seems to mention that shows that stability does not guarantee
thatf exists and this is the case of period-2 behavior~or any
multiple period behavior!. If the drive is a limit cycle and the
response is a period doubled system~or higher multiple-
period system!, then for each point on the drive attractor
there are two~or more! points on the response attractor. One
cannot have a function under such conditions and there is no
way to predict the state of the response from that of the
drive. Note that there is a function from response to the drive
in this case. Actually, any drive-response system that has the
overall attractor on an invariant manifold that is not diffeo-
morphic to a hyperplane will have the same, multivalued
relationship and there will be no functionf.

Hence, the hope that a stable response results in a nice,
smooth, predictable relation between the drive and response
cannot always be realized and the answer to our question of
whether stability determines geometry is ‘‘no,’’ at least in
the sense that it does not determine one type of geometry.
Many are possible. The term general synchronization in this
case may be misleading in that it implies a simpler drive-

response relation than may exist. However, the stable drive–
response scenario is obviously a rich one with many possible
dynamics and geometries. It deserves more study.

V. COUPLED SYSTEMS: STABILITY AND
BIFURCATIONS

A. Stability for coupled, chaotic systems

Let us examine the situation in which we have coupled,
chaotic systems, in particularN diffusively coupled,
m-dimensional chaotic systems:

dx~ i !

dt
5F~x~ i !!1cE~x~ i 11!1x~ i 21!22x~ i !!, ~23!

where i 51,2,...,N and the coupling is circular (N1151).
The matrixE picks out the combination of nearest neighbor
coordinates that we want to use in our coupling andc deter-
mines the coupling strength. As before, we want to examine
the stability of the transverse manifold when all the ‘‘nodes’’
of the system are in synchrony. This means thatx(1)5x(2)

5•••5x(N), which defines anm-dimensional hyperplane,
the synchronization manifold. We show in Ref. 10 that the
way to analyze the transverse direction stability is to trans-
form to a basis in Fourier spatial modes. We writeAk

5(1/N)S ix( i )e
22p ik/N. WhenN is even~which we assume

for convenience!, we haveN/211 modes that we label with
k50,1,...,N/2. For k50 we have the synchronous mode
equation, since this is just the average of identical systems:

Ȧ05F~A!, ~24!

which governs the motion on the synchronization manifold.
For the other modes we have equations that govern the mo-
tion in the transverse directions. We are interested in the
stability of these modes~near their zero value! when their
amplitudes are small. This requires us to construct the varia-
tional equation with the full Jacobian analogous to Eq.~2!. In
the original x( i ) coordinates the Jacobian~written in block
form! is

FIG. 15. A naive view of the stability of a transverse mode in an array of
synchronous chaotic systems as a function of couplingc.

FIG. 16. The circuit Ro¨ssler attractor.
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S DF22cE cE 0 ••• cE

cE DF22cE cE 0 •••

0 cE DF22cE cE •••

A A

cE ••• 0 cE DF22cE

D , ~25!

where each block ism3m and is associated with a particular nodex( i ). In the mode coordinates the Jacobian is block diagonal,
which simplifies finding the stability conditions,

S DF 0 0 ••• c

0 DF24cE sin2@p/N# 0 0 •••

A A A A

0 ••• 0 DF24cE sin2@pk/N# •••

A

D , ~26!

where each value ofkÞ0 or kÞN/2 occurs twice, once for
the ‘‘sine’’ and once for the ‘‘cosine’’ modes. We want the
transverse modes represented by sine and cosine spatial dis-
turbances to die out, leaving only thek50 mode on the
synchronization manifold. At first sight what we want for
stability is for all the blocks withkÞ0 to have negative
Lypunov exponents. We will see that things are not so
simple, but let us proceed with this naive view.

Figure 15 shows the naive view of how the maximum
Lypunov exponent for a particular mode block of a trans-
verse mode might depend on couplingc. There are four
features in the naive view that we will focus on.

~1! As the coupling increases from 0 we go from the
Lyapunov exponents of the free oscillator to decreasing
exponents until for some threshold couplingcsync the
mode becomes stable.

~2! Above this threshold we have stable synchronous chaos.
~3! We suspect that as we increase the coupling the expo-

nents will continue to decrease.
~4! We can now couple together as many chaotic oscillators

as we like using a couplingc.csync and always have a
stable synchronous state.

We already know from Fig. 3 that this view cannot be cor-
rect@increasingc may desynchronize the array—feature~3!#,
but we will now investigate these issues in detail. Below we
will use a particular coupled, chaotic system to show that
there are counterexamples to all four of these ‘‘features.’’

We first note a scaling relation for Lypunov exponents
of modes with differentk’s. Given any Jacobian block for a
mode k1 we can always write it in terms of the block for
another modek2 , viz.,

DF24C sin2@pk1 /N#5DF24cES sin2@pk1 /N

sin2@pk2 /N# D
3sin2@pk2 /N#, ~27!

where we see that the effect is to shift the coupling by the
factor sin2(pk1 /N)/sin2(pk2 /N). Hence, given any mode’s

stability plot ~as in Fig. 3! we can obtain the plot for any
other mode by rescaling the coupling. In particular, we need
only calculate the maximum Lypunov exponent for mode 1
(lmax

1 ) and then the exponents for all other modesk.1 are
generated by ‘‘squeezing’’ thelmax

1 plot to smaller coupling
values.

This scaling relation, first shown in Ref. 10, shows that
as the mode’s Lypunov exponents decrease with increasingc
values the longest-wavelength modek1 will be the last to
become stable. Hence, we first get the expected result that
the longest wavelength~with the largest coherence length! is
the least stable for small coupling.

B. Coupling thresholds for synchronized chaos and
bursting

To test our four features we examine the following sys-
tem of four Rossler-like oscillators diffusively coupled in a
circle, which has a counterpart in a set of four circuits we
built for experimental tests,10

dx/dt52a~Gx1by1lz!,

dy/dt5a~x1gy!, ~28!

dz/dt5a@g~x!2z#,

whereg is a piece-wise linear function that ‘‘turns on’’ when
x crosses a threshold and causes the spiraling out behavior to
‘‘fold’’ back toward the origin,

g~x!5 H 0,
mx,

x<3,
x.3. ~29!

For the valuesa5104 s21, G50.05, b50.5, l51.0, g
50.133, andm515.0 we have a chaotic attractor very simi-
lar to the Rossler attractor~see Figs. 4 and 16!.

We couple four of these circuits through they compo-
nent by adding the following term to each system’sy equa-
tion: c(yi 111yi 2122yi), where the indices are all mod 4.
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This means the coupling matrixE has just one nonzero ele-
ment,E2251. A calculation of the mode Lypunov exponents
indeed shows that the longest-wavelength mode becomes
stable last atcsync50.063. However, when we examine the
behavior of the so-called synchronized circuits above the
threshold we see unexpected behaviors. If we takex̄ to be the
instantaneous average of the 4 circuits’x components, then a
plot of the difference of circuitx1 from the averaged5x1

2 x̄ versus time should be'0 for synchronized systems.
Such a plot is shown for the Rossler-like circuits in Fig. 17.
We see that the differenced is not zero and shows large
bursts. These bursts are similar in nature to on–off
intermittency.56,92,93What causes them?

Even though the system is above the Lyapunov exponent
thresholdcsync we must realize that this exponent is only an
ergodic average over the attractor. Hence, if the system has
any invariant sets that have stability exponents greater than
the Lypunov exponents of the modes, even at couplings
abovecsync, these invariant sets may still be unstable. When
any system wanders near them, the tendency will be for in-
dividual systems to diverge by the growth of that mode,
which is unstable on the invariant set. This causes the bursts
in Fig. 17. We have shown that the bursts can be directly
associated with unstable periodic orbits~UPO! in the
Rossler-like circuit.94 These bursts do subside at greater cou-
pling strengths, but even then some deviations can still be
seen that may be associated with unstable portions of the
attractor that are not invariant sets~e.g., part of an UPO!.

The criteria for guaranteed synchronization is still under
investigation,95–97but the lesson here is that the naive views
@~1! and ~2! above# that there is a sharp threshold for syn-
chronization and that above that threshold synchronization is
guaranteed, are incorrect. The threshold is actually a rather
‘‘fuzzy’’ one. It might be best drawn as an~infinite! number
of thresholds.98,99 This is shown in Fig. 18, where a more
realistic picture of the stability diagram near the mode 1
threshold is plotted. We see that at a minimum we need to
have the coupling beabovethe highest threshold for invari-
ant sets~UPOs and unstable fixed points!. A better synchron-
ization criteria, above the invariant sets one, has been sug-
gested by Gauthieret al.97 Their suggestion, for two diffu-
sively coupled systems~x(1) and x(2)!, is to use the criteria
duDxu/dt,0, whereDx5x(1)2x(2). A similar suggestion re-

garding ‘‘monodromy’’ in a perturbation decrease was put
forward by Kapitaniak.100 There would be generalizations of
this mode analysis forN coupled systems, but these have not
been worked out. An interesting approach is taken by
Brown,95 who shows that one can use an averaged Jacobian
~that is, averaged over the attractor! to estimate the stability
in an optimal fashion. This appears to be less strict than the
Gauthier requirement, but more strict than the Lyapunov ex-
ponents criterion. Research is still ongoing in this area.96

C. Desynchronization thresholds at increased
coupling

Let us look at the full stability diagram for modes 1 and
2 for the Rossler-like circuit system when we couple with the
x coordinates diffusively, rather than they’s. That is, choose
Ei j 50 for all i and j 51, 2,3, exceptE1151. This is shown
in Fig. 19. Note how the mode-2 diagram is just a rescaled
mode-1 diagram by a factor of 1/2 in the coupling range. We
can now show another, counterintuitive feature that we
missed in our naive view. Figure 19~similar to Fig. 3! shows
that the modes go unstable as weincreasethe coupling. The
synchronized motion is Lyapunov stable only over a finite
range of coupling. Increasing the coupling does not neces-
sarily guarantee synchronization. In fact, if we couple the

FIG. 17. The Instantaneous difference,d5x12 x̄, in the y-coupled circuit-
Rössler system as a function of time.

FIG. 18. The schematic plot of ‘‘synchronization’’ threshold showing
thresholds for individual UPOs.

FIG. 19. The stability diagram for modes 1 and 2 for thex-coupled Ro¨ssler
circuits.
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systems by thez variables we will never get synchronization,
even whenc5`. The latter case of infinite coupling is just
the CR drive response usingz. We already know that in that
regime both thez andx drivings do not cause synchroniza-
tion in the Rossler system. We now see why. Coupling
through only one component does not guarantee a synchro-
nous state and we have found a counterexample for number
~3! in our naive views, that increasing the coupling will guar-
antee a synchronous state.

Now, let us look more closely at how the synchronous
state goes unstable. In finding thecsync threshold we noted
that mode 1 was the most unstable and was the last to be
stabilized as we increasedc. Near cdesync we see that the
situation is reversed: mode 2 goes unstable first and mode 1
is the most stable. This is also confirmed in the experiment21

where the four systems go out of synchronization by having,
for example, system-15system-3 and system-25system-4
while system-1 and system-2 diverge. This is exactly a spa-
tial mode-2 growing perturbation. It continues to rather large
differences between the systems with mode-1 perturbations
remaining at zero, i.e., we retain the system-15system-3 and
system-25system-4 equalities.

Since for larger systems (N.4) the higher mode stabil-
ity plots will be squeezed further toward the ordinate axis,
we may generalize and state that if there exists acdesyncupon
increasing coupling, then thehighest-order mode will always
go unstable first. We call this ashort-wavelength
bifurcation.21 It means that the smallest spatial wavelength
will be the first to grow abovecdesync. This is counter to the
usual cases, where the longest or intermediate wavelengths
go unstable first. What we have in the short-wavelength bi-
furcation is an extreme form of the Turing bifurcation101 for
chaotic, coupled systems.

Note that this type of bifurcation can happen in any
coupled system where each oscillator or node has ‘‘internal
dynamics’’ that are not coupleddirectly to other nodes. In
our experiment, usingx coupling, y and z are internal dy-
namical variables. In biological modeling where cells are
coupled through voltages or certain chemical exchanges, but
there are internal chemical dynamics, too, the same situation
can occur. All that is required is that the uncoupled variables
form an unstable subsystem and the coupling can be pushed
abovecdesync. If this were the case for a continuous system
~which would be modeled by a PDE!, then the short-
wavelength bifurcation would produce a growing perturba-
tion that had an infinitesimal wavelength. So far we do not
know of any such findings, but they would surely be of in-
terest and worth looking for.

D. Size limits on certain chaotic synchronized arrays

When we consider the cases in which (N.4) we come
to the following surprising conclusion that counters naive
feature ~4!. Whenever there is desynchronization with in-
creasing coupling there is always an upper limit on the num-
ber of systems we can add to the array and still find a range
of coupling in which synchronization will take place.

To see this examine Fig. 20, which comes from anN

516 Rossler-like circuit system. We see that the scaling laws
relating the stability diagrams for the modes eventually
squeeze down the highest mode’s stability until just as the
first mode is becoming stable, the highest mode is going
unstable. In other wordscsync andcdesynccross on thec axis.
Above N516 we never have a situation in which all modes
are simultaneously stable. In Ref. 21 we refer to this as asize
effect.

E. Riddled basins of synchronization

There is still one more type of strange behavior in
coupled chaotic systems, and this comes from two phenom-
ena. One is the existence of unstable invariant sets~UPOs! in
a synchronous chaotic attractor and the other is the simulta-
neous existence of two attractors, a chaotic synchronized one
and another, unsynchronized one. In our experiment these
criteria held just belowcdesync, where we had a synchronous
chaotic attractor containing unstable UPOs and we had a
periodic attractor~see Fig. 21!. In this case, instead of attrac-
tor bursting or bubbling, we see what have come to be called
riddled basins. When the systems burst apart near an UPO,
they are pushed off the synchronization manifold. In this
case they have another attractor they can go to, the periodic
one.

The main feature of this behavior is that the basin of
attraction for the periodic attractor is intermingled with the
synchronization basin. In fact, the periodic attractor’s basin

FIG. 20. The stability diagram for 16x-coupled Ro¨ssler circuits showing
that all modes cannot be simultaneously stable, leading to a size limit in the
number of synchronized oscillators we can couple.

FIG. 21. Simultaneous existence of two attractors in the coupled Ro¨ssler.
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riddles the synchronized attractor’s basin. This was first stud-
ied theoretically by Alexanderet al.102 and followed by sev-
eral papers describing the theory of riddled
basins.56,57,98,103–105Later direct experimental evidence for
riddled basins was found by Heagyet al.22 Since then Lai106

has shown that parameter space can be riddled and others
have studied the riddling phenomena in other systems.107,108

In our experiment with four coupled, chaotic systems we
used a setup that allowed us to examine what might be called
a cross section of the riddled basin. We varied initial condi-
tions of the four oscillators so as to produce a 2-D basin map
that was consistent with the short-wavelength instability that
showed up in the bursts taking the overall system to the other
attractor off the synchronization manifold. Allz variables
were set to the same value for all initial conditions. All four
x components were set to the same value that was varied
from 23.42 to 6.58. A new variableu representing the
mode-2 perturbation was varied from 0.0 to 7.0 for each
initial condition and they variables were set to values that
matched the mode-2 wave form:y15y35u and y25y4

52u. The variablesx andu made up the 2-D initial condi-
tion ‘‘grid’’ that was originally suggested by Ott.109 Varying
x changed all the system’sx components and kept the sys-
tems on the synchronization manifold. Varyingu away from
zero lifted the systems from the synchronization manifold.

When one of the initial conditions led to a final state of
synchronization, it was colored white. When the final state
was the periodic, nonsynchronized attractor it was colored
black. Figure 22 shows the result of this basin coloring for
both the experiment and numerical simulation.22 The basin
of the synchronized state is indeed riddled with points from
the basin of the periodic state. The riddling in these systems
is extreme in that even infinitesimally close to the synchro-
nization manifold there are points in the basin of the periodic
attractor. To put it another way, any open set containing part
of the synchronization manifold willalwayscontain points

from the periodic attractor basin and those points will be of
nonzero measure.

Ott et al.57 have shown that near the synchronization
manifold the densityr of the other attractor’s basin points
will scale asr;ua. In our numerical model we founda
52.06 and in the experiment we founda52.03.

The existence of riddled basins means that the final state
is uncertain, even more uncertain than where there exist
‘‘normal’’ fractal basin boundaries.110–113

F. Master stability equation for linearly coupled
systems

Recently we have explored synchronization in other cou-
pling schemes. Surprisingly, large classes of coupled-
systems problems can be solved by calculating once and for
all a stability diagram unique to the oscillators used by using
scaling arguments similar to above. In fact, the scaling ap-
proach of diffusively coupled systems is a special case of our
more general solutions. Although we will be publishing de-
tailed results elsewhere,114,115 we will outline the approach
here and show how the general master stability function so
obtained can be used for any linear coupling scheme.

If we start with the particular coupling scheme in Eq.
~25! and first decompose the matrix into a diagonal part
~with F along the diagonal! and second ‘‘factor out’’ theE
matrix that is in all the remaining terms, we get an equation
of motion,

dx

dt
5F~x!1cG^ E–x, ~31!

whereF~x! hasF(x( i ) for the i th node block and a variational
~stability! equation of the form

dj

dt
5@1^ DF1cG^ E#–j, ~32!

where x5(x(1),x(2),...,x(N)), 1 is an N3N unit matrix, j
5(j (1),j (2),...,j (N)) with eachj ( i ) a perturbation on thei th
node’s coordinatesx( i ),) andG is given by

G5S 22 1 0 ••• 1

1 22 1 ••• 0

0 1 22 ••• 0

A A A A A

1 0 ••• 1 22

D . ~33!

The decomposition and factoring are rigorous since we do
the ‘‘multiplication’’ with a direct product of matrices~^!.
The E matrix operates on individual node components to
choose the same combination of dynamical variables from
each node and theG matrix determines what combination of
nodes will feed into each individual node. To obtain the
block diagonal variational form of Eq.~25! we have used
Fourier modes to diagonalize the node matrixG.

We now make the observation that Eq.~31! is the form
for any linear coupling scheme involving identical nodes in
which we use the same linear combination of each node’s

FIG. 22. Simultaneous existence of two attractors in the coupled Ro¨ssler.
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variables. Therefore, in diagonalizingG we will always re-
duce the variational problem to anm-dimensional ‘‘mode’’
equation like

dj~k!

dt
5@DF1cgkE#–j~k!, ~34!

wheregk is an eigenvalue ofG.
Now consider making the following stability diagram.

Start with the generic variational equation,

dz

dt
5@DF1~a1 ib!E#–z, ~35!

and calculate the maximum Lyapunov exponents for all val-
ues ofa andb. The surface oflmax values over the complex
~a,b! plane provides information on the stability forall the
possible linear couplings~G! using the particular local vari-
ables selected byE, and it gives the master stability function
we mentioned above. Hence, given aG we diagonalize it
~getting, in general, complex eigenvaluesgk! and for each
complex numbercgk we merely examine thelmax surface at
a1 ib5cgk to see if that eigenmode is stable. In this way,
given E, we reduce the stability problem to a simple eigen-
value problem for each linear coupling schemeG.

We produced such a plot for the Ro¨ssler oscillator. This
is shown in Fig. 23. If we now want to coupleN such oscil-
lators using only thex components in an asymmetric, cyclic
way:

E5S 1 0 0

0 0 0

0 0 0
D , ~36!

dx~ i !

dt
52~y~ i !1z~ i !!1s~c1x~ i 11!1c2x~ i 21!22x~ i !!,

wherec11c252, andi 51,...,N, we will get complex eigen-
values forG: 2s@12cos(2pk/N)#6i2s(12c1)sin(2pk/N), k
50,1,...,†@N/2#‡, where †@•#‡ means integer part of. If we
choose a coupling constant ofs50.55, G components of
c151.4 andc250.6 andN55, we get the dots in Fig. 23.
The number on each dot is the mode number. We see by the
location of the dots that the synchronous state is just barely
stable. Variations in the coupling constants can cause various
modes to go unstable. We are presently working on this more
general approach and testing it with coupled chaotic circuits.
We will report more on this elsewhere.

VI. DETECTION: TIMES SERIES, SYNCHRONIZATION,
AND DYNAMICAL INTERDEPENDENCE

A. The general problem: Simultaneous time series

Suppose we had simultaneous time series of all the vari-
ables of two dynamical systems~system 1 and system 2!
with equal dimension. We could tell if they were in identical
synchronization by plotting them in pairs~system 1 variable
versus system 2 variable! and seeing if all pairings gave a
45° line. Suppose we suspected that the two systems were
not identical, but in some type of general synchronization
with each other. For example, we suspect there is a one-to-
one, smooth functionf relating system 1 to system 2. How
could we determine if such af existed from the data?

In our recent papers77,78,82we considered such questions
as this. These questions come up quite often when analyzing
time series data, for example for determinism, effects of fil-
tering, for synchronization or general synchronization, and
correct embedding dimension. What we are asking can be
broken down to several simpler questions: is there a function
f from system 1 to system 2 that is continuous? Does the
inverse off exist ~equivalently, isf21 continuous!? Is f
smooth~differentiable!? Isf21 smooth~differentiable!? We
showed that one can develop statistics that directly gauge
whether two datasets are related by continuous and/or
smooth functions. These statistics have proven to be funda-
mental in that questions about continuity and smoothness
come up in different guises very often.

For example, what is the relationship of an attractor re-
constructed from a time series to the reconstruction from the
same time series passed through a filter? Will both attractors
have the same fractal dimension? It is known that filters can
change the dimension of an attractor.81 But it is also known
that if the relation between the unfiltered and filtered attrac-
tor is continuously differentiable (C1),116 then the fractal
dimension will not change. In this case it would be useful to
have a statistical quantity that could gauge if there existed a
C1f that related the reconstructions.

We can also test determinism in time series using conti-
nuity statistics. Determinism means that points in phase
space close in the present will be close in the future. This just
states the continuity property of a deterministic flow. Given
pure data, we do not know if there is a flow, so such a

FIG. 23. Contour map of the stability surface for a Ro¨ssler oscillator~a
5b50.2, c57.0!. The dashed lines demark negative~stable! contours and
the solid lines demark positive~unstable! contours. The numbered dots show
the value of the coupling constant times the eigenvalues for an array of five
asymmetrically, diffusively coupled Ro¨ssler systems.
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statistic would be useful. The inverse continuity and smooth-
ness conditions can tell us if the flow is invertible and dif-
ferentiable, respectively.

There are other uses for such statistics. Below we show
some simple examples of how we can use them to determine
generalized synchronization situations.

B. The statistics: Continuity and differentiability

We give a short introduction on how to develop our
statistics. We refer the reader to more detailed derivations in
the literature.77,78,82 Below we assume we are working on
multivariate data in two spacesX andY, not necessarily of
the same dimension. Simultaneous reconstruction of two at-
tractors from datasets as mentioned above is an example of
such a situation. In such reconstructions individual points in
X andY are associated simply by virtue of being measured at
the same time. We call this associationf :X→Y. We ask,
given the data, when can we be convinced thatf is continu-
ous? Thatf 21 is continuous? Thatf is differentiable?

We start with the continuity statistic. The definition of
continuity is, the functionf is continuous at a pointx0PX if
;.0'd.0 such thatix2x0i,d⇒i f (x)2 f (x0)i,e. In
simpler terms, if we restrict ourselves to some local region
aroundf (x0)PY, then there must exist a local region around
x0 all of whose points are mapped into thef (x0) region. We
choose ane-sized set around the fiducial pointy0 , we also
choose ad-sized set around its pre-imagex0 . We check
whether all the points in thed set mapinto the e set. If not,
we reduced and try again. We continue until we run out of
points or all points from a small-enoughd set fall in thee set.
We count the number of points in thee set (ne) and thed set
(nd). We do not include the fiducial pointsy0 or x0 , since
they are present by construction. Generallyne>nd , since
points other than those nearx0 can also get mapped to thee
set, but this does not affect continuity.

We now choose a null hypothesis that helps us generate
a probability that one should findne andnd points in such an
arrangement. We choose the simplest, namely, that place-
ments of the points on thex andy attractors are independent
of each other. This null hypothesis is not trivial. It is typical
of what one would like to disprove early on in any attractor
analysis, namely that the data have a relation to each other.

Given the null hypothesis we approximate the probabil-
ity of a point from thed set falling at random in thee set as
p5ne /N, whereN is the total number of points on the at-
tractor. Then the probability thatnd points will fall in the e
set ispnd. We obtain a likelihood that this will happen by
taking the ratio of this probability to the probability for the
most likely event,pbinmax. The latter is just the maximum of
the binomial distribution fornd points given probabilityp
for each individual event. We see thatpnd is simply the ‘‘tail
end’’ of the binomial distribution. The maximum generally
will occur for some intermediate number ofd points, say
m(,nd), falling in the e set. If pnd!pbinmax, then the null
hypothesis is not likely and can be rejected.

We define the continuity statistic asQC051
2pnd/pbinmax. WhenQC0'1, we can confidently reject the

null hypothesis. The points in thee set are behaving as
though they are generated by a continuous function on thed
set. WhenQC0'0 we cannot reject the null hypothesis and
the points are behaving as though they are independent. Note
that if we run out of points (nd50), then we usually take the
logical position that we cannot reject the null hypothesis and
set QC050. QC0 will depend one, the resolution, and we
will examine the statistic for a range ofe’s. To get a global
estimate of the continuity off on the attractor we average
QC0 over the entire attractor or over a random sampling of
points on it. We present those averages here. For testing the
inverse map (f21) continuity we just reverse the roles ofX
andY andd ande. This give us a statisticQ I0, which gives
evidence of the continuity off21.

The differentiability statistic is generated in the same
vein as the continuity statistic. We start with the mathemati-
cal definition of a derivative and apply it locally to the two
reconstructions. The generation of the linear map that ap-
proximates the derivative and the likelihood estimate associ-

FIG. 24. ~a! Rössler and~b! and ~c! Lorenz attractors when the Ro¨ssler is
driving the Lorenz through a diffusive coupling for two different coupling
values.
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ated with it are more complex than for continuity.
The definition of a derivative at a pointx0 is that a linear

operator A exists such that;e.0'd.0 for which
ix2x0i,d⇒i f (x0)1A(x2x0)2 f (x)i,eix2x0i . This
means that there is a linear map that approximates the func-
tion at nearby points with an errore in the approximation
that is proportional to the distance between those points.
Note thate serves a purpose here different from continuity.

The algorithm that we generate from this definition is to
first choose ane ~error bound! and ad. Then we find all the
points in the locald set $xi% and theiry counterparts$y1%
PY. We approximate the linear operatorA as the least
squares solution of the linear equationsA(xi2x0)5(yi

2y0). The solution is accomplished by singular value de-
composition ~SVD!.77 We check if iyi2y02A(xi2x0)i
,eix2x0i . If not, we decreased and try again with fewer,
but nearer points. We continue this until we have success or
we run out of points.

We choose the null hypothesis that the two sets of vec-
tors $xi% and$yi% have zero correlation. We show77 that this
generates a likelihood that any two such sets will give the
operatorA ‘‘by accident’’ ase(1/2)(nd2r x)(nd2r y)r 2d, wherer 2

is the usual multivariate statistical correlation between$xi%
and$yi%, d5min(rx ,ry), andr x ,r y are the ranks of thex and
y spaces that come out of the SVD.77 This is an asymptotic
formula. The differentiability statisticQC1 is given by one
minus this likelihood. WhenQC1'1 we can reject the pos-
sibility that the points are accidentally related by a linear
operator, a derivative. WhenQC1'0, we cannot reject the
null hypothesis. As before, when we shrinkd so small that
no points other thanx0 remain, we setQC150. Analogous
to QC0, the statisticQC1 depends one. We typically calcu-
lateQC1 for a range ofe’s and average over the attractor or
over a random sampling of points on it. Similar to the con-
tinuity situation we can test the differentiability off21 by
reversingX and Y and d and e roles. We call this statistic
Q I1.

C. Generalized synchronization

We examine the generalized synchronization situation
when we have a Ro¨ssler system driving a Lorenz system
through a diffusive coupling with coupling constantk:

ẋ52~y1z!, u̇52su1sn,

ẏ5x1ay, ṅ52uw1ru2n1k~y2n!,

ẋ5b1z~x2c!, ẇ5un2gw,

Rössler Lorenz,

~37!

wherea5b50.2, c59.0, s510, r 560, andg58/3. Figure
24 shows the Ro¨ssler attractor and two Lorenz attractors at
k510 andk540. It appears impossible to tell what the rela-
tion is between the Ro¨ssler and two Lorenz attractors. How-
ever, the statistics indicate an interesting relationship.

At lower coupling (k510) there appears to be no func-
tion f mapping the Ro¨ssler system into the Lorenz. Both the
continuity statistic (QC0) and the differentiability statistic
(QC1) are low, as shown in Fig. 25. But atk540 the con-

tinuity statistic approaches 1.0 even for smalle sets. That
means that we can be confident that the relation between the
Rössler and Lorenz is continuous for continuities abovee
50.01, which is shown in Figs. 24~b! and 24~c!. This is a
small set. On the other hand, the differentiability statistic
never gets very high and falls off to zero rather quickly. This
implies that atk540 we have a functional relation between
the drive and response that isC0, but notC1. It turns out that
the response is most stable atk540 and increasing the cou-
pling beyond that point will not improve the properties off.
This means that the fractal dimension of the entire Ro¨ssler–
Lorenz attractor is larger than that of the Ro¨ssler itself.
Points nearby on the Ro¨ssler are related to points nearby on
the Lorenz, but not in a smooth fashion.

C. Dynamical interdependence

We see that to show synchronization we need to have
access to all the variables’ time series. Can we say anything
about two simultaneously measured scalar time series and
their corresponding reconstructed attractors? The answer is,
yes, and it provides information that would be useful in
many experimental situations.

Our scenario is that we have an experiment in which we
have two~or more! probes at spatially separate points pro-
ducing dynamical signals that we are sampling and storing as
two, simultaneous time series. We use each to reconstruct an
attractor. If the signals came from independent dynamical
systems, we would expect generically no relationship be-
tween them so that the statisticsQC0 and QC1 and their
inverse versions would be low~near zero!. However, if they
came from the same system, by Taken’s theorem each attrac-

FIG. 25. Continuity and differentiability statistics for a possible functional
relationf: Rössler→Lorenz. The statistics were calculated for various num-
ber of points on the attractors~16, 32, 64, and 128 K!. All e values are
scaled to the standard deviation of the attractors.
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tor would be related by a diffeomorphism to the original
system’s phase space attractor. Since a relationship by dif-
feomorphism is transitive~i.e., if A is diffeomorphic toB
andB is diffeomorphic toC, thenA is diffeomorphic toC!.
The reconstructions would be diffeomorphic. We can use our
statistics to test for this.

We can calculateQC0, QC1, Q I0, andQ I1 for the two
attractors. If they are all near 1.0 for smalle values, we have
evidence that the two reconstructions are diffeomorphically
related. Since the odds for this happening by chance to inde-
pendent dynamical systems must be small, we make the con-
clusion that our two time series were sampled from different
parts of the same dynamical system—we now have a test for
dynamical interdependence. For example, we might sample
simultaneously thex and y components of the Lorenz sys-
tem.

An interesting use of this test for dynamical interdepen-
dence was done by Schiffet al. in an EEG time series.117

They showed that statistics similar toQC0 could be devel-
oped in which each point would be compared to forward-
time-shifted points on the other attractor. This mixes in pre-
diction ~determinism! with direct, point-to-point continuity
and differentiability. Their results show that dynamical inter-
dependence could be seen where standard statistical tests
~e.g., linear correlations! showed no relationships.

Finally, we note that these statistics would also be useful
in numerical work since we cannot always have a closed
form functional relationship. In the example of the Ro¨ssler-
driven Lorenz we did not have access to a functionf:
Rössler→Lorenz, but we could generate the time series for
all variables. We could then test for evidence of functional
relationships. Such evidence could guide rigorous attempts
to prove or disprove the existence of properties of such a
function.
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33G. Pérez and H. A. Cerderia, ‘‘Extracting messages masked by chaos,’’
Phys. Rev. Lett.74, 1970~1995!.

34K. M. Short, ‘‘Steps toward unmasking secure communications,’’ Int. J.
Bifurcations Chaos4, 959 ~1994!.

35A. H. MacDonals and M. Plischke, ‘‘Study of the driven damped pendu-
lum: Application to Josephson Junctions and charge-density-wave sys-
tems,’’ Phys. Rev. B27, 201 ~1983!.

36E. Brauer, S. Blochwitz, and H. Beige, ‘‘Periodic windows inside chaos—
Experiment versus theory,’’ Int. J. Bifurcation Chaos4, 1031–1039
~1993!.

37S. Tankara, T. Matsumoto, and L. O. Chua, ‘‘Bifurcation scenario in a
driven R-L-diode circuit,’’ Physica D28, 317–344~1987!.

38C. Grebogi, E. Ott, and J. A. Yorke, ‘‘Attractors on ann-torus: Quasip-
eriodicity versus chaos,’’ Physica D15, 354–373~1985!.

39D. D’Humieres, M. R. Beasley, B. A. Hubermanet al., ‘‘Chaotic states
and routes to chaos in the forced pendulum,’’ Phys. Rev. A26, 3483
~1982!.

40J. Guemez, M. A. Mataset al., ‘‘Modified method for synchronizing and
cascading chaotic systems,’’ Phys. Rev. E52, 2145~1995!.

41R. E. Amritkar and Neelima Gupte, ‘‘Synchronization of chaotic orbits:
The effect of a finite time step,’’ Phys. Rev. E47, 3889~1993!.

42T. Stojanovski, L. Kocarev, and U. Parlitz, ‘‘Driving and synchronizing
by chaotic impulses,’’ Phys. Rev. E54, 2128–2131~1996!.

541Pecora et al.: Fundamentals of synchronization

Chaos, Vol. 7, No. 4, 1997



43T. Stojanovski, L. Kocarev, Urlich Parlitzet al., ‘‘Sporadic driving of
dynamical systems,’’ Phys. Rev. E55, 4035~1997!.

44T. L. Carroll, ‘‘Synchronizing chaotic systems using filtered signals,’’
Phys. Rev. E50, 2580–2587~1994!.

45T. L. Carroll, ‘‘Communicating with use of filtered, synchronized chaotic
signals,’’ IEEE Trans. Circuits Syst.42, 105 ~1995!.

46L. Kocarev and U. Parlitz, ‘‘General approach for chaotic synchronization
with applications to communication,’’ Phys. Rev. Lett.74, 5028~1995!.

47T. L. Carroll, J. F. Heagy, and L. M. Pecora, ‘‘Transforming signals with
chaotic synchronization,’’ Phys. Rev. E54~5!, 4676~1996!.

48W. L. Brogan,Modern Control Theory~Prentice–Hall, Englewood Cliffs,
NJ, 1991!.

49M. di Bernardo, ‘‘An adaptive approach to the control and synchroniza-
tion of continuous-time chaotic systems,’’ Int. J. Bifurcations Chaos6,
557–568~1996!.

50M. di Bernardo, ‘‘A purely adaptive controller to synchronize and control
chaotic systems,’’ Phys. Lett. A214, 139 ~1996!.

51C.-C. Chen, ‘‘Direct chaotic dynamics to any desired orbits via a closed-
loop control,’’ Phys. Lett. A213, 148 ~1996!.

52G. Chen and D. Lai, ‘‘Feedback control of Lyapunov exponents for
discrete-time dynamical systems,’’ Int. J. Bifurcations Chaos6, 1341
~1996!.

53J. H. Peng, E. J. Ding, M. Dinget al., ‘‘Synchronizing hyperchaos with a
scalar transmitted signal,’’ Phys. Rev. Lett.76, 904–907~1996!.

54L. S. Tsimring and M. M. Sushchik, ‘‘Multiplexing chaotic signals using
synchronization,’’ Phys. Lett.213B, 155–166~1996!.

55A. Cenys, A. Namajunas, A. Tamaseviciuset al., ‘‘On–off intermittency
in chaotic synchronization experiment,’’ Phys. Lett. A213, 259 ~1996!.

56E. Ott and J. C. Sommerer, ‘‘Blowout bifurcations: The occurrence of
riddled basins and on–off intermittency,’’ Phys. Lett. A188, 39–47
~1994!.

57E. Ott, J. C. Sommerer, J. C. Alexanderet al., ‘‘Scaling behavior of
chaotic systems with riddled basins,’’ Phys. Rev. Lett.71, 4134~1993!.

58F. Moon,Chaotic Vibrations~Wiley, New York, 1987!.
59P. So, E. Ott, and W. P. Dayawansa, ‘‘Observing chaos: Deducing and

tracking the state of a chaotic system from limited observation,’’ Phys.
Lett. A 176, 421 ~1993!.

60E. Ott, C. Grebogi, and J. A. Yorke, ‘‘Controlling a chaotic system,’’
Phys. Rev. Lett.64, 1196~1990!.

61R. Brown and P. Bryant, ‘‘Computing the Lyapunov spectrum of a dy-
namical system from an observed time series,’’ Phys. Rev. A43, 2787
~1991!.

62R. Brown, ‘‘Calculating Lyapunov exponents for short and/or noisy data
sets,’’ Phys. Rev. E47, 3962~1993!.

63R. Brown, N. F. Rul’kov, and N. B. Tufillaro, ‘‘The effects of additive
noise and drift in the dynamics of the driving on chaotic synchroniza-
tion,’’ preprint, 1994.

64R. Brown, N. F. Rul’kov, and N. B. Tufillaro, ‘‘Synchronization of cha-
otic systems. The effects of additive noise and drift in the dynamics of the
driving,’’ preprint, 1994.

65U. Parlitz, ‘‘Estimating model parameters from time series by autosyn-
chronization,’’ Phys. Rev. Lett.76, 1232~1996!.

66J. F. Heagy and T. L. Carroll, ‘‘Chaotic synchronization in Hamiltonian
systems,’’ Chaos4, 385–390~1994!.

67T. L. Carroll and L. M. Pecora, ‘‘Synchronizing hyperchaotic volume-
preserving map circuits,’’ IEEE Trans. Circuits Syst.~in press!.

68A. J. Lichtenberg and M. A. Lieberman,Regular and Stochastic Motion
~Springer-Verlag, New York, 1983!.

69L. M. Pecora and T. L. Carroll, ‘‘Volume-preserving and volume expand-
ing, synchronized chaotic systems,’’ Phys. Rev. E~in press!.

70L. Kocarev, ‘‘Chaos synchronization of high-dimensional dynamical sys-
tems,’’ IEEE Trans. Circuits Syst.42, 1009–1012~1995!.

71L. Kocarev, U. Parlitz, and T. Stojanovski, ‘‘An application of synchro-
nized chaotic dynamic arrays,’’ Phys. Lett. A217, 280–284~1996!.

72R. Roy and K. Scott Thornburg Jr., ‘‘Experimental synchronization of
chaotic lasers,’’ Phys. Rev. Lett.72, 2009~1994!.

73P. Colet and R. Roy, ‘‘Digital communication with synchronized chaotic
lasers,’’ Opt. Lett.19, 2056~1994!.

74P. M. Alsing, A. Gavrielides, V. Kovaniset al., ‘‘Encoding and decoding
messages with chaotic lasers,’’ Phys. Rev. E~in press!.

75D. W. Peterman, M. Ye, and P. E. Wigen, ‘‘High frequency synchroniza-
tion of chaos,’’ Phys. Rev. Lett.74, 1740~1995!.

76N. Rul’kov, M. M. Sushchik, L. S. Tsimringet al., ‘‘Generalized synchro-

nization of chaos in directionally coupled chaotic systems,’’ Phys. Rev. E
51, 980 ~1995!.

77L. Pecora, T. Carroll, and J. Heagy, ‘‘Statistics for mathematical proper-
ties of maps between time-series embeddings,’’ Phys. Rev. E52, 3420
~1995!.

78L. M. Pecora, T. L. Carroll, and J. F. Heagy, ‘‘Statistics for continuity and
differentiability: An application to attractor reconstruction from time se-
ries,’’ in Nonlinear Dynamics and Time Series: Building a Bridge Be-
tween the Natural and Statistical Sciences, Fields Institute Communica-
tions, edited by C. D. Cutler and D. T. Kaplan~American Mathematical
Society, Providence, RI, 1996!, Vol. 11, pp. 49–62.

79H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, ‘‘Generalized
synchronization of chaos: The auxiliary system approach,’’ Phys. Rev. E
53, 4528~1996!.

80L. Kocarev and U. Parlitz, ‘‘Generalized synchronization, predictability
and equivalence of unidirectionally coupled systems,’’ Phys. Rev. Lett.
76, 1816–1819~1996!.

81R. Badii, G. Broggi, B. Derighettiet al., ‘‘Dimension Increase in Filtered
Chaotic Signals,’’ Phys. Rev. Lett.60, 979 ~1988!.

82L. Pecora and T. Carroll, ‘‘Discontinuous and nondifferentiable functions
and dimension increase induced by filtering chaotic data,’’ Chaos6, 432–
439 ~1996!.

83K. M. Campbell and M. E. Davies, ‘‘The existence of inertial functions in
skew product systems,’’ Nonlinearity9, 801–817~1996!.

84M. E. Davies and K. M. Campbell, ‘‘Linear recursive filters and nonlinear
dynamics,’’ Nonlinearity9, 487–499~1996!.

85D. S. Broomhead, J. P. Huke, G. D. de Villierset al., Report No. Appen-
dix 10, Final Report to SRP, Assignment No. AS02 BP20, 1994.

86J. Stark and M. E. Davies, ‘‘Recursive filters driven by chaotic signals,’’
IEE Digest143, 1–16~1994!.

87J. Stark~private communication!.
88B. Hunt, E. Ott, and J. A. Yorke, ‘‘Differentiable generalized synchroni-

zation of chaos,’’ Phys. Rev. E55, 4029~1997!.
89B. R. Hunt, E. Ott, and J. A. York, ‘‘Fractal dimensions of chaotic saddles

of dynamical systems,’’ Phys. Rev. E54~5!, 4819~1996!.
90J. Stark, ‘‘Invariant graphs for forced systems,’’ Physica D~in press!.
91B. Hunt ~private communication!.
92J. F. Heagy, N. Platt, and S. M. Hammel, ‘‘Characterization of on–off

intermittency,’’ Phys. Rev. E49, 1140~1994!.
93N. Platt, S. M. Hammel, and J. F. Heagy, ‘‘Effects of additive noise on

on–off intermittency,’’ Phys. Rev. Lett.72, 3498~1994!.
94J. F. Heagy, T. L. Carroll, and L. M. Pecora, ‘‘Desynchronization by

periodic orbits,’’ Phys. Rev. E52, R1253~1995!.
95R. Brown, ‘‘Synchronization of chaotic systems: Transverse stability of

trajectories in invariant manifolds,’’ Chaos7, 395 ~1997!.
96L. M. Pecora, T. L. Carroll, D. J. Gauthieret al., ‘‘Criteria which guar-

antee synchronization in coupled, chaotic systems’’~in preparation!.
97D. J. Gauthier and J. C. Bienfang, ‘‘Intermittent loss of synchronization in

coupled chaotic oscillators: Toward a new criterion for high-quality syn-
chronization,’’ Phys. Rev. Lett.77, 1751~1996!.

98P. Ashwin, J. Buescu, and I. Stewart, ‘‘From attractor to chaotic saddle: A
tale of transverse instability,’’ Nonlinearity9, 703–737~1994!.

99S. C. Venkataramani, B. Hunt, and E. Ott, ‘‘The bubbling transition,’’
Phys. Rev. E54, 1346–1360~1996!.

100T. Kapitaniak, ‘‘Monotone synchronization of chaos,’’ Int. J. Bifurca-
tions Chaos6, 211 ~1996!.

101A. Turing, Philos. Trans. B237, 37 ~1952!.
102J. C. Alexander, J. A. Yorke, Z. Youet al., ‘‘Riddled basins,’’ Int. J.

Bifurcations Chaos2, 795 ~1992!.
103I. Kan, ‘‘Open sets of diffeomorphisms having two attractors, each with

an everywhere dense basin,’’ Bull. Am. Math. Soc.31, 68 ~1994!.
104E. Ott, J. C. Alexander, I. Kanet al., ‘‘The transition to chaotic attractors

with riddled basins,’’ Physica D~in press!.
105J. C. Sommerer and E. Ott, ‘‘A physical system with qualitatively uncer-

tain dynamics,’’ Nature~London! 365, 138–140~1993!.
106Y-C. Lai and R. L. Winslow, ‘‘Riddled parameter space in spatio-

temporal chaotic dynamical systems,’’ Phys. Rev. Lett.72, 1640~1994!.
107R. H. Parmenter and L. Y. Yu, ‘‘Riddled behavior of certain synchro-

nized systems,’’ Phys. Lett. A189, 181–186~1994!.
108P. Ashwin, J. Buescu, and I. Stewart, ‘‘Bubbling of attractors and syn-

chronization of chaotic oscillators,’’ Phys. Lett. A193, 126–139~1994!.
109E. Ott ~private communication!.
110C. Grebogi, E. Ott, and J. A. Yorke, ‘‘Crises, sudden changes in chaotic

542 Pecora et al.: Fundamentals of synchronization

Chaos, Vol. 7, No. 4, 1997



attractors and transient chaos,’’ Physica D7, 181 ~1983!.
111T. L. Carroll, L. M. Pecora, and F. J. Rachford, ‘‘Chaotic transients and

multiple attractors in spin-wave experiments,’’ Phys. Rev. Lett.59, 2891
~1987!.

112S. W. McDonald, C. Grebogi, E. Ottet al., ‘‘Fractal basin boundaries,’’
Physica D17, 125 ~1985!.

113B.-S. Park, C. Grebogi, E. Ottet al., ‘‘Scaling of fractal basin boundaries
near intermittency transitions to chaos,’’ Phys. Rev. A40, 1576~1989!.

114L. M. Pecora, ‘‘Synchronization conditions and desynchronizing patterns

in coupled limit-cycle and chaotic systems,’’ in preparation.
115L. M. Pecora, T. L. Carroll, G. Johnsonet al., ‘‘Master stability function

for synchronized coupled systems,’’ in preparation.
116T. Sauer and J. A. Yorke, ‘‘Are the dimensions of a set and its image

equal under typical smooth functions?,’’ Ergodic Theory Dyn. Syst.~in
press!.

117S. Schiff, P. So, T. Changet al., ‘‘Detecting dynamical interdependence
and generalized synchrony through mutual prediction in a neural en-
semble,’’ Phys. Rev. E54, 6708–6724~1996!.

543Pecora et al.: Fundamentals of synchronization

Chaos, Vol. 7, No. 4, 1997


