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A B S T R A C T

We present a novel algorithm to compute high-quality cuts for generating low isometric
distortion planar parameterizations. Based on the observation that the conformal spher-
ical and planar parameterizations have similar distortion distributions at the extrusive
areas that lead to high isometric distortions, our method utilizes the spherical parame-
terization of the input mesh to guide the cut construction. After parameterizing the input
mesh onto a sphere as conformal as possible, a hierarchical clustering of the divisive
type is conducted on the sphere to find the high isometric distortion regions, where high
isometric distortion may also be introduced in the planar parameterization and which
are connected to define the cuts. Compared with previous methods, this approach can
generate better cuts, resulting in lower isometric distortions. We demonstrate the effi-
cacy and practical robustness of our method on a data set of over 5000 meshes, which
are parameterized with low isometric distortion by two existing parameterization ap-
proaches.

c© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Computing inversion-free planar parameterizations with low
isometric distortion is fundamental in many computer graph-
ics and geometry processing applications, such as texture map-
ping [2, 3], remeshing [4, 5] and inter-surface mapping [6, 7].
The low isometric distortion property requires that the param-
eterized mesh should preserve isometry to its original shape as
much as possible.

Since good cuts are able to improve the quality of parameteri-
zations, while inappropriate cuts tend to introduce unacceptable
effects, cutting closed triangular meshes to disk topology is an
important procedure for generating low distortion parameteriza-
tions. In the context of this paper, a cut is considered to be good
when it satisfies the following requirements as much as possi-
ble: (1) the resulting parameterizations contain low isometric
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distortions; (2) the cuts are feature-aligned, which implies vi-
sual beauty in terms of high-quality texturing; (3) the cuts are
short.

Many attempts have been proposed to construct cuts in a way
that satisfies above requirements. Gaussian curvature [8, 9] is
often used to detect the potential regions that are connected via
a minimal spanning tree (MST) to define the resulting cuts.
Since these curvature-based methods do not consider the dis-
tortion directly, they may ignore some regions with low average
Gaussian curvature but small neighborhoods where the curva-
ture is locally high, which introduces high isometric distortion.
Gu et al. [10] iteratively parameterize the surface to the plane
and find the shortest cut from the vertex with maximal distortion
to the boundary. This alternate algorithm stops if the parame-
terzation distortion increases or the maximal distortion appears
on the boundary. However, they may also ignore some inte-
rior high-distortion regions, since the highest distortion appears
on the existing cut in the last iteration (see the comparison in
Fig. 15). Recently, Poranne et al. [3] proposed a method to si-
multaneously optimize cut length and distortion. However, their
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Fig. 1. Planar parameterizations of three models. Our constructed cuts are shown by black lines, and the feature points of our clustered regions are shown
by green points. The parameterizations are generated by AQP [1]. The isometric distortion metric (which is defined in Section 4) of each triangle is colored
with white being optimal, and the models are textured by a checkerboard image. The first line of the text below the mesh indicates the maximum, average
and standard deviation of the isometric distortion over all triangles, and the second line indicates the proportions of edge number and edge length of the
cut.

cuts require additional user manipulations to be finalized and
are often not feature-aligned (see the comparison in Fig. 16).

In this paper, we propose a sphere-based cut construction
method to automatically compute high-quality cuts for the pur-
pose of generating low isometric distortion planar parameteri-
zations. Our idea comes from a simple fact that the high iso-
metric distortion mainly appears at the extrusive regions when
a mesh is parameterized onto a constant curvature domain (e.g.
a sphere or plane) as conformal as possible. In other words,
the high isometric distortion regions from an as-conformal-as-
possible spherical parameterization are also the places that may
cause high isometric distortion in the planar parameterization.
Therefore, we first parameterize an input mesh onto a sphere
as conformal as possible, then use a divisive hierarchical clus-
tering algorithm to detect high isometric distortion regions, and
finally connect these regions by constructing the MST on that
sphere and map back to the input mesh to determine the cut.
The MST construction on the sphere results in a good balance
between the feature-aligned and short requirements of the good
cuts. This is our default choice in our experiments. Besides,
we also provide another choice for users to construct cuts. If
users want shorter cuts and do not care about the feature-aligned
property (i.e., emphasizing requirement (3) and discarding (2)),
they could connect the feature regions on the original meshes,
which results in a slightly higher distortion but much shorter
cuts (see the differences in Fig. 6, 14, 15, 16).

We demonstrate the efficacy of our method on a data set con-
taining more than 5000 complex models, which are parameter-
ized using SA [11] and AQP [1]. Fig. 1 shows planar param-
eterizations of three models. Compared with state-of-the-art
methods, our method constructs better cuts and achieves lower
isometric distortion with stronger practical robustness.

2. Related work

Cut construction. There have been many algorithms trying to
find optimal cuts in order to parameterize a closed mesh to the
plane with low isometric distortion. By using curvature in-
formation, some previous methods define the cuts by detect-
ing and connecting regions with high curvature [8, 9, 12, 13],

since these regions are often considered as the reason why high
isometric distortion of planar parameterizations appears. How-
ever, since the curvature information does not directly reveal the
distortion distribution, some important places may be ignored,
which still causes high isometric distortion parameterizations.
Gu et al. [10] alternately parameterize surface meshes onto the
plane and find the shortest path from the vertex with maximum
distortion to the existing boundary. This alternating method di-
rectly uses a measure of distortion to guide the cut construction.
However, since in the iterative process, the maximum distortion
region may appear on the boundary, the algorithm will stop and
some interior high distortion regions will be ignored. The Au-
tocuts method [3] simultaneously optimizes cut length and iso-
metric distortion. Some important parameters in their method
should be adjusted by users to fine-tune the cuts. Our method
utilizes a sphere to automatically facilitate the cut construction,
in which the isometric distortion is directly utilized to find the
cuts. We evaluate our constructed cuts via computing low iso-
metric distortion parameterizations for more than 5000 meshes.

There have been many other methods that divide the input
meshes into multi charts [14, 2, 15, 16, 17, 18]. Although these
methods can produce results with very low isometric distortion,
the cut lengths are usually very long. Some applications, such
as surface correspondence [6] and remeshing [4], prefer short
cuts and a single chart. We only consider how to cut surface
meshes to one chart using feature-aligned and short cuts in this
paper.

Some recent parameterization literature tends to focus on
quadrilateral remeshing applications [5, 19]. These methods
require extra integer constraints on the cut, which brings higher
isometric distortion. We focus on a different goal, that is to find
good cuts for generating low isometric distortion planar param-
eterizations.

Low isometric distortion parameterizations. Numerous meth-
ods for mesh parameterization have been developed (cf. the
surveys in [20, 21]). To achieve the inversion-free property,
many techniques have been proposed, such as Tutte embed-
ding and its variants [22, 23, 24, 25], maintenance of inversion-
free property [26, 27, 28, 29, 30, 1, 31, 32, 33, 34, 35], com-
putation of bounded distortion parameterizations [36, 6, 37],
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(a) (b) (c) (d) (e)
Fig. 2. The pipeline of our method. From an input triangular mesh (a), we first compute an as-conformal-as-possible spherical parameterization (b), then
find feature points and a cut path on the sphere (c), finally cut the mesh (d) and parameterize to the plane using AQP [1] (e).

or relying on different representations [38, 11]. The former
two kinds of methods guarantee inversion-free parameteriza-
tions for arbitrary triangular meshes of disk topology. Meth-
ods based on Tutte’s embedding have the guarantee of bijec-
tive property, but contain very high isometric distortion. Main-
tenance based methods use them as initializations and mini-
mize the isometric distortion while keeping the inversion-free
property by using different techniques, such as barrier func-
tions [27, 28] and explicit checks in combination with line
search [30, 29, 1, 31, 32, 33, 34]. In this paper, we utilize Sim-
plex Assembly (SA) [11] and AQP [1] to compute low isometric
distortion parameterizations to demonstrate the high quality of
our constructed cuts.

3. Method

3.1. Overview

The input closed triangular mesh M is an oriented 2-
manifold that consists of N facets F = {fi, i = 1, ...,N} and has
no boundary. First, we consider a parameterization fs that maps
the meshM to a unit sphere S as conformal as possible. Then,
a hierarchical clustering method is proposed to find a set of ver-
tices P, where high isometric distortion is potential to appear in
the subsequent planar parameterization. Next, we connect these
vertices to construct the cut path C. Finally, we cut the meshM
and generate a disk topology mesh Mc, which can be param-
eterized to the plane using existing parameterization methods.
The workflow of our algorithm is shown in Fig. 2.

3.2. Spherical parameterization

Our first step is to compute a spherical parameterization fs

as conformal as possible, which is used to guide the cut con-
struction. The quality of a parameterization is usually evaluated
by analyzing the distortion, which can be measured in different
forms according to different objectives. In the area of param-
eterization, the conformal, areal and isometric distortions are
commonly considered, and MIPS and its variants [26, 30] are
often used to define them. When computing the distortion of
the parameterization, we use a planar triangle to approximate
a spherical triangle, and measure the distortion of the mapping
from the source triangle fi onM to the planar triangle. We de-
fine this map as an affine transformation gi. After defining a
local coordinate system, each affine map gi can be represented
by gi(x) = Jix + bi where Ji is the Jacobian of gi and bi is the

(a) AIAP (b) ACAP

Fig. 3. Comparison between the spherical parameterizations of the Spider
model (Fig. 12) using AIAP (a) and ACAP (b). Note that the clustering
effect of the ACAP parameterization is more significant (black boxes in
(b)) than the AIAP parameterization.

translation vector. For the sake of simplicity, we first assume
that M is a closed and orientable surface having genus zero,
while high-genus surfaces are discussed in Section 3.5.

The conformal distortion of an affine map gi is defined by:

dconf
i =

1
2

(
σ1

σ2
+
σ2

σ1

)
=

1
2
‖Ji‖

2
F

det Ji
(1)

where σ1 and σ2 are the singular values of Ji, and ‖·‖F indicates
the Frobenius matrix norm. The areal distortion is defined by:

darea
i =

1
2

(
det Ji + (det Ji)−1

)
. (2)

Because a map is isometric if and only if it is conformal and
equiareal, the isometric distortion can be defined by linearly
combining the above two distortions.

diso
i = αdconf

i + (1 − α)darea
i . (3)

The parameter α is usually set to be 0.5 [30].
To compute an as-conformal-as-possible (ACAP) parameter-

ization, we use a modified AHSP method [39], which has strong
practical robustness. The original AHSP method only opti-
mizes the isometric distortion, which leads to an as-isometric-
as-possible (AIAP) spherical parameterization. So we modi-
fied the AHSP method by using its results as the initialization,
and minimzing the conformal distortion

∑
fi∈F

dconf
i . Since the

AIAP parameterization tries to distribute the isometric distor-
tion evenly, the clustering effect is not significant (Fig. 3 (a)).
By contrast, an ACAP spherical parameterization exhibits the
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(a) (b1) (b2) (b3) (b4) (b5) (c)

Fig. 4. An example of hierarchical clustering. From an ACAP spherical parameterization, we compute and colorize the isometric distortion (a). After
filtering half of the triangles, we get the high distortion region R1 (red triangles in (b1)). Then one vertex on the triangle that has the largest distortion is
marked in green. After 5 iterations (b1) – (b5), we finally obtain the feature points (green points in the red box of (c)).

clustering effect when measuring the isometric distortion, i.e.
the clustered locations have high isometric distortion. In fact,
after the triangles of extrusive regions inM are mapped onto the
sphere S as conformal as possible, their angles are usually pre-
served, and they shrink together due to high areal (or isometric)
distortion (Fig. 3 (b)). The shrinking effects on the sphere are
very similar with those on the plane when considering ACAP
parameterizations. Thus, the clustered regions of the ACAP pa-
rameterization fs are also the potential reasons for introducing
high isometric distortion to the planar parameterizations.

3.3. Cut construction
After computing an ACAP parameterization, we can con-

struct the cut by first finding a set of points P and then connect-
ing them to become a cut C. The points in P can be recognized
as the extremal points of the clustering regions in terms of the
isometric distortion.

Hierarchical clustering. To find the extremal point set P, we
introduce a hierarchical clustering method of the divisive type
over S. In this paper, two triangles are said to be connected
if they share one common vertex. We denote a set of regions
that composed of connected triangles at the kth iteration as Rk

and a set of feature triangles as Pt. Our clustering method first
finds the high distortion region set Rk, by which Pt is then de-
termined, and we select one vertex from each feature triangle as
the feature point. Fig. 4 shows the process of our hierarchical
clustering, and the algorithm is described as follows:

1. Compute the ACAP fs and record the isometric distortion
(Equation (3)) on each facet.

2. Initialize k B 0, the initial region set R0 only contains one
region F , i.e. all of the triangles, and the feature triangle set
Pt B ∅.

3. In each region in Rk, find a triangle with maximal isometric
distortion. If this triangle is not in Pt, then add it to the set
Pt.

4. For each region in Rk, first find the median of isometric dis-
tortions on its triangles, then filter half of the triangles whose
isometric distortions are below the median, and finally group
the connected triangles into several new isolated regions. For
each new region, if the number of triangles is larger than a
threshold NR then add this region to Rk+1.

5. If Rk+1 = ∅, stop the algorithm and output P by randomly
selecting one vertex from each triangle in Pt. Otherwise, let
k B k + 1 and go to Step 3.

(0.05%N, 31)

(4.88/1.14/0.12)
(1.23%/1.28%)

(0.15%N, 25)

(5.03/1.15/0.13)
(1.16%/1.22%)

(0.45%N, 22)

(5.17/1.15/0.13)
(1.12%/1.20%)

(1.00%N, 16)

(5.18/1.17/0.18)
(1.06%/1.13%)

Fig. 5. Cut construction using different NR. The last line of the text is the
value of NR and the number of feature points. From the comparison, we
observe that larger NR results in less feature points, higher distortion and
shorter cut length.

(5.19/1.13/0.14) (4.15/1.11/0.15)
(1.67%/1.21%) (1.72%/1.50%)

Fig. 6. Construct cuts on the original mesh M (left) and the sphere S
(right). Note that if we find cuts directly on the original mesh, the cuts do
not tend to be along the feature lines and can result in higher distortions.
The parameterizations are both generated by AQP [1].

Note that the threshold NR is important in the above algo-
rithm. Large NR may make some feature points lost and small
one may result in some redundant feature points. Thus, we
choose an appropriate value and set NR = 0.15%N in all our
experiments. For comparison, we also test several different val-
ues of NR and show in Fig. 5. From the results, we can find that
although the numbers of feature points are varients, the final
distortions are changed slightly. This implies that our method
is not sensitive to this parameter.

Minimal spanning tree on S. Next, we connect the obtained
feature points P by constructing a minimal spanning tree on the
sphere S and then map back to the original meshM to define
the cut. The detailed steps are as follows:

1. For each pair of the feature points, we compute the shortest
path on the sphere S between them.

2. Construct a complete graph G by treating all of the feature
points as nodes, and the edge weight is the length of the short-
est path.
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Fig. 7. We color the triangles in terms of ln(|̂fi | · |fi |
−1), where f̂i refers to the

image of a triangle fi and | · | denotes the area of a triangle.

(a) (b)

(c)(d)(e)

handle

Fig. 8. Cut construction on high genus models. We first find its handles (a),
cut the mesh along these handles, and fill the holes (b). After computing
a conformal spherical parameterization (c), we can use our method to find
feature points (green), and connect the feature points, as well as the handle
vertices, by a spanning tree. Then, a cut can be generated by our method
(d). The final cut is the union of its handles and the spanning tree (e).

3. Compute the minimal spanning tree T ofG, and the resulting
edges on T form the cut C.

Cut construction on S vs. onM. We construct the cut on the
sphere S, but a more intuitive way is to construct the cut on
the original meshM. In Fig. 6, we compare these two ways in
the cut construction. From the results, the cut on the sphere S
finally tends to follow the feature regions ofM, which results in
lower isometric distortion in the final parameterization. Since
the feature regions of a mesh (e.g. an sharp edge of a cube)
are a kind of bulges or depressions, the ACAP parameterization
on the sphere S produces high area distortion and shortens the
edge lengths (see Fig. 7). The shortened edges along the feature
lines have high possibility to be added into the shortest paths
and the minimal spanning tree T . Thus, the cut path C tend to
be along these feature lines. In fact, there is a trade-off between
low distortion and short cut. In our experiments, the cuts are
constructed on S by default. Nevertheless, if the user prefers
shorter cuts while sacrificing its low distortion and visual effect,
we also provide an optional construction on the original surface
meshM.

3.4. High genus meshes

For an input high genus model (Fig. 8), we first use [40] to
find its handles, cut the mesh along these handles, and fill the
holes to generate a new genus-zero surface. Note that each ver-
tex on a handle have two copies, and both of them have to be
connected to the final cut. We then compute a spherical param-
eterization and find feature points using the hierarchical cluster-
ing method. When connecting the feature points, we mark the
copied vertices on the handles as feature points, which should
be connected to other feature points or handles. Next, the cut
Ĉ can be generated by our cut construction method. Note that

(a1) (a2) (a3)

(b1) (b2) (b3)

Fig. 9. Comparison of different filter choices. If we filter the triangles by
average (top row), some feature points will be missed (a1) and the final pa-
rameterization (a2), (a3) has large distortion. However, using the median
to filter half of the triangles, we can get six more feature points and a bet-
ter cut (b1), and the final parameterization has lower distortion (b2), (b3).
The parameterizations are generated by AQP [1].

ToMATo [41] Ours
(4.04/1.13/0.13)
(2.48%/2.45%)

(3.18/1.15/0.18)
(2.39%/2.33%)

Fig. 10. Comparison with persistence-based clustering [41]. Both of the
results have 25 feature points. Note that in their result, some feature points
are not found, while some regions contain too many feature points (red
box zoomins). Thus, our result has higher maximum distortion and lower
average distortion.

these handle points are only marked as feature points used in
our algorithm, but not feature points in terms of high distortion.
The final cut C of the input model is the union of its handles
and Ĉ. Some results of high genus models are shown in Fig. 1
and 13.

3.5. Discussions

Median of the distortions. We use the median of isometric dis-
tortion to filter out half of the triangles in one region, which
brings about fast convergence of clustering and insensitivity to
the quality of the spherical parameterization fs. However, there
are some other possible choices, such as the average distortion,
i.e. in each iteration, the triangles whose distortion measures
are less than the average distortion of the region will be filtered
out. Fig. 9 shows a comparison with the average distortion. We
observe that the average distortion can be easily affected by the
maximum and minimum values, so the clustering will be sus-
ceptible to the quality of fs.
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97.4
8.67
25.9

3.85
1.31
0.028

87.4
4.24
4.77

4.18
1.31
0.038

2.37%
0.73%
0.079

2.84%
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0.076

94.9
7.20
29.5

4.00
1.26
0.061

79.4
4.08
3.79

5.79
1.27
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0.13

3.45%
0.94%
0.13

78.2
6.16
13.2

1.63
1.18
0.007

95.9
4.21
4.19

5.34
1.19
0.013

6.06%
1.00%
0.14

3.36%
0.98%
0.12

97.5
5.49
13.8

8.61
1.14
0.048

22.8
3.91
2.39

4.09
1.15
0.023

5.01%
1.34%
0.26

4.92%
1.25%
0.23

Fig. 11. The histograms on about 5000 models using different cut construction method. We tested four cut construction method from top to bottom:
Geometry Image [10], Seamster [9], Ours (cut on mesh), Ours (cut on sphere). We use AQP [1] and SA [11] to compute planar parameterizations and
compute maximum and average isometric distortion for each model, and compute the proportions of edge lengths and edge numbers of the cut over the
total edge lengths and edge numbers, respectively. In addition, for each histogram, we also compute maximum, average and standard deviation texted at
the right top corner on each figure.

Persistence-based clustering. There is another well-developed
clustering method, called persistence-based clustering [42, 41],
which can be used to find feature points. To compare with this
method, we use the isometric distortion of the conformal spheri-
cal parameterization as the density function, and compute clus-
ters using ToMATo method [41]. For fair comparison, we set
the number of clusters to be the same as the number of feature
points found by our method. From the results, we can find that
in their method some feature regions are lost, while many fea-
ture points are found in one feature region (Fig. 10).

One or no feature point. If the vertices of a model are lying
on a sphere, which has no distortion after parameterizing to the
sphere, then there is no feature point found. We simply select
the two vertices farthest away from each other, and find a short-
est path as the cut. If only one vertex is not lying on a sphere,
our method will find only one feature point. For this case, we
also find a vertex farthest away from this feature point, and con-
struct the cut by connecting them.

4. Experiments and comparisons

We have applied our sphere-based cut construction method
to various complex meshes. In this section, we first introduce
the constructed data set, and then show comparisons with three
previous methods.

Isometric distortion metric. We utilize the isometric distortion
metric in [30] to measure the quality of planar parameteriza-
tions. For each triangle fi, its isometric distortion metric is

defined as δiso
i := max{σp

1 , 1/σ
p
1 , σ

p
2 , 1/σ

p
2 } where σp

1 and σ
p
2

are the singular values of Jp
i that is the Jacobian of the planar

parameterization at fi. We report the maximum, average and
standard deviation of the isometric distortion metrics over all
the triangles, which are shown in the first line below the mesh.
The color bar used for coloring the isometric distortion is the
same with the one in Fig. 1.

Data set. We test the practical robustness and effectiveness
of our method on a data set containing more than 5000 mod-
els, and we show the distribution of the maximun and aver-
age isometric distortions of the parameterizations generated by
AQP [1] and SA [11] in histograms (last row in Fig. 11). The
average distortions vary from 1.0 to 1.5 and concentrate on
around 1.15 for both methods, meaning that our generated cuts
have very high quality. We also compute the number and length
of cut edges over those of all edges for each model, plot the
proportion of the edge number and length of cuts in the last row
of Fig. 11, and show in the second line below all results. The
average proportion of the edge number and length of cuts are
1.34% and 1.26% respectively. We show 13 genus zero meshes
in Fig. 12 and 8 high genus meshes in Fig. 13. The rendered
cuts in these figures indicate the approximately feature-aligned
property of our method. We will release the complete data set
in future.

Timings. Our experiments were conducted on a desktop com-
puter with Intel Core i7-4790 processor and 16GB memory. For
the ant model in Fig. 1 having 9501 vertices, it takes 12.49s to
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(2.62/1.14/0.11) (5.08/1.18/0.17)
(5.43/1.17/0.13)

(2.33/1.11/0.09) (2.26/1.13/0.10) (2.79/1.16/0.13) (2.19/1.15/0.10)

(4.90/1.13/0.17) (6.80/1.14/0.15) (3.21/1.14/0.12)

(5.27/1.14/0.13)
(4.36/1.16/0.17)

(6.00/1.18/0.21)

(2.56%/2.50%) (3.44%/3.50%)
(0.57%/0.54%)

(0.95%/0.76%) (1.26%/1.04%) (0.82%/0.79%) (1.53%/1.62%)

(2.42%/2.85%) (1.46%/1.52%) (1.96%/1.74%)

(2.34%/2.26%)
(0.87%/0.88%)

(1.52%/1.51%)

Fig. 12. Gallery of our cut construction results. The parameterization results above and below the dashed line are generated by SA [11] and AQP [1],
respectively.
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(4.79/1.15/0.13) (3.28/1.22/0.19) (4.46/1.19/0.13)

(3.32/1.09/0.08)

(2.73/1.07/0.09) (6.41/1.10/0.11) (4.65/1.07/0.08)
(4.40/1.15/0.12)

(1.67%/1.20%) (1.05%/1.05%) (0.98%/0.96%)

(0.75%/0.77%)

(2.44%/2.31%) (0.93%/0.95%) (1.66%/1.25%)
(1.26%/1.21%)

Fig. 13. Results of high genus models. The parameterization results above and below the dashed line are generated by SA [11] and AQP [1], respectively.

(a) (3.81/1.09/0.11) (b) (4.58/1.05/0.13) (c) (4.44/1.04/0.09)
(1.44%/1.23%) (1.26%/1.14%) (1.68%/1.43%)

Fig. 14. Comparison with [9]. We use [9] (a) and our method (b & c) to
generate feature points (green). In our method, we can construct the cut
on the original mesh (b), or on the sphere (c). The parameterizations are
all generated by [1]. From the results, we observe that the method [9] do
not find some feature points at the edge of the desk (black box), therefore
producing higher distortion.

generate the conformal spherical parameterzation and 0.03s to
construct the cut. For the dragon model in the center of Fig. 12

having 52513 vertices, it takes 94.97s to generate the spherical
parameterization and 0.20s to construct the cut.

4.1. Comparisons

We compare our method with three existing methods: Seam-
ster [9], Geometry Image [10] and Autocuts [3]. We also test
over 5000 models using Seamster and Geometry Image, and
show the histograms in Fig. 11. As an optional choice, we can
directly find cut on the original mesh (the third row in Fig. 11),
which lead to higher distortion and shorter cut length than our
cuts. The histograms indicate that our method with cutting on
the sphere performs the best with respect to the maximum and
average isometric distortion, but has the longest cut length and
number of cut edges. Comparing with Geometry Image, our cut
length is longer than theirs, but their distortion is too high to be
accepted by subsequent applications. Comparing with Seam-
ster, our method with cutting on the mesh (the third row) gener-
ates cuts with comparable cut length but much lower distortion.
Since Autocuts need user interactions to avoid severe global
overlap, we only give one example for comparison.

Comparison with Seamster [9]. The method [9] is based on the
fact that high curvature regions are the potential places that may
introduce high isometric distortion to the final planar parameter-
izations. However, some flat areas can still cause high isometric
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(a) (4.07/1.28/0.37) (b) (4.78/1.13/0.12) (c) (4.03/1.11/0.11)
(0.97%/1.09%) (1.51%/1.40%) (1.89%/1.74%)

Fig. 15. Comparison with [10]. We use [10] (a) and our method (b & c) to
find the cuts (black lines). We provide both our resulting cuts constructed
on the original mesh (b) and on the sphere (c). The parameterizations are
all generated by AQP [1]. Note that in the result of [10] some important
regions (like the head in the red box) cannot be found, while our method
can find such regions and reduce the isometric distortion.

(a) (7.71/1.27/0.52) (b) (1.95/1.16/0.14) (c) (1.95/1.15/0.14)
(4.20%/4.06%) (3.85%/4.01%) (4.46%/4.38%)

Fig. 16. Comparison with [3] (a). In our method, we construct the cut on
either the original mesh (b) or the sphere (c). Note that our method can
generate high quality cuts automatically, while their method need addi-
tional manipulations.

distortion. (Fig. 14). Furthermore, how to choose appropriate
thresholds of the required parameters for all models is also a
challenging problem. If the parameters are not well tuned, some
redundant feature points can be found or some important ones
can be ignored. If we construct the cut on the sphere (Fig. 14
(c)), the cut will be a little longer. However, we provide an op-
tional method, i.e., constructing the cut on the original mesh,
which generates shorter cuts and comparable isometric distor-
tion (Fig. 14 (b)).

Comparison with Geometry Image [10]. We show a compari-
son to [10] in Fig. 15. From the comparisons, we observe that
their cuts are not along the feature line because of the alter-
nate scheme, and some high distortion area is not found (the
head of the man), leading to high distortion results. This is ac-
tually because in the last iteration step, the highest distortion
region is on the boundary so that the algorithm ignores some
interior high distortion regions. Although the cuts generated by
our method are longer and contains more edges, our method
generates more reasonable cuts and lower isometric distortion
parameterization.

Comparison with Autocuts [3]. The most recent method Auto-
cuts [3] optimizes cuts and distortion simultaneously, but since
the cuts is not along the feature line and the parameterizations
often have self-overlaps, this method requires additional user
manipulations to finalize the results. Moreover, this method be-
comes slow if the input mesh has a high resolution and easily
gets stuck into a local minimum without user interactive opera-
tions. Compared to their method, our method is fully automatic
and more efficient for the high resolution input mesh. For a low
resolution mesh (252 vertices and 500 triangles) as shown in
Fig. 16, they generate reasonable results, but their parameters
need to be adjusted carefully.

5. Conclusion and discussions

We present a sphere-based method to construct high-quality
paths used to cut the input meshes to be disk topology ones so
that they can be parameterized to the plane with low isomet-
ric distortions. Our method exhibits better quality and stronger
practical robustness than previously existing methods. How-
ever, a few limitations do exist, and we would like to address
them in future work.

Coupled planar parameterizations. Currently, we only con-
sider how to construct a cut, meaning that the two stages of the
planar parameterization, cut construction and parameterization
computation, are separate. However, they are coupled in fact.
In our method, we use a spherical domain to realize a weak ver-
sion of the coupling, which produces satisfactory results for all
of the testing examples, but we still believe that direct combi-
nation of the two stages in a global optimization can generate
better results. Recently, the Autocuts method [3] gives a first
step of optimizing cut and distortion simultaneously. In future,
we would like to extend our method by taking the balance be-
tween cut length and distortion into consideration.

Domains other than the sphere. There is another bunch of
methods [24, 25] that can generate seamless parameterizations.
However, these seamless domains are not suitable for our prob-
lem because they require some given landmarks and cuts for
computing the embeddings. The different landmarks induce
that the generated embeddings have various isometric distor-
tions, leading to inconspicuous clustering effect. To construct
cuts for high genus meshes, other specific seamless domains
can be utilized, e.g., the complex plane for genus-1 surfaces
and hyperbolic disks for higher-genus models [43]. But, we ob-
serve that these parameterizations do not exhibit clear clustering
phenomena to guide the feature detection and cut construction.
Thus, we have to design other customized algorithms for each
kind of these special parameterizations, which is beyond the
scope of this article. We would like to explore more flexible
seamless domains in future.

Conformal spherical parameterizations. The conformal pa-
rameterizations fromM to the unit sphere are not unique. Dif-
ferent ACAP spherical parameterizations induce different fea-
ture points and cuts. Thus, our method has no theoretical guar-
antee to generate high-quality cuts. However, the high-quality



10 Preprint Submitted for review / Computers & Graphics (2018)

Source Isotropic Anisotropic [44] Sparse

(4.99/1.17/0.18) (3.73/1.19/0.17) (5.62/1.18/0.19) (3.74/1.19/0.18)
(2.06%/1.97%) (1.85%/1.85%) (1.18%/1.23%) (3.33%/3.20%)

Fig. 17. Parameterization results for one shape with different tessellations.
The parameterizations are generated by AQP [1].

cuts generated for over 5000 models, which have been parame-
terized with low isometric distortions, indicates that our method
has strong practical robustness. In future, we want to design
theoretical guaranteed conformal parameterizations that exhibit
clustering effect.

Tessellations. We get different cuts for different tessellations of
one shape, because different ACAP spherical parameterizations
are generated and our cut paths are formed by the mesh edges
(see Fig. 17). Nevertheless, the final parameterizations of dif-
ferent tessellations still have low distortion. This demonstrates
that the cuts generated by our method are effective and reason-
able.

Symmetric objects. Symmetry is also important for good cuts
and fast processing. Since it is nontrivial to detect symmetry
for general models, we do not consider symmetric models, so
the cuts generated by our method are not symmtric in general.
However, taking the symmetry into account is a meaningful
problem, and we leave this as future work.
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[38] Sheffer, A, Lévy, B, Mogilnitsky, M, Bogomyakov, A. ABF++: fast
and robust angle based flattening. ACM Trans Graph 2005;24(2):311–
330.

[39] Hu, X, Fu, XM, Liu, L. Advanced Hierarchical Spherical Parameteri-
zations. IEEE T Vis Comput Gr 2017;PP.

[40] Dey, TK, Fan, F, Wang, Y. An Efficient Computation of Handle
and Tunnel Loops via Reeb Graphs. ACM Trans Graph (SIGGRAPH)
2013;32(4):32:1–32:10.

[41] Chazal, F, Guibas, LJ, Oudot, SY, Skraba, P. Persistence-based cluster-
ing in riemannian manifolds. Journal of the ACM (JACM) 2013;60(6):41.

[42] Edelsbrunner, H, Letscher, D, Zomorodian, A. Topological persistence
and simplification. In: Foundations of Computer Science, 2000. Proceed-
ings. 41st Annual Symposium on. IEEE; 2000, p. 454–463.

[43] Li, X, Bao, Y, Guo, X, Jin, M, Gu, X, Qin, H. Globally optimal
surface mapping for surfaces with arbitrary topology. IEEE T Vis Comput
Gr 2008;14(4):805–819.

[44] Fu, XM, Liu, Y, Snyder, J, Guo, B. Anisotropic simplicial meshing
using local convex functions. ACM Trans Graph (SIGGRAPH ASIA)
2014;33(6):182:1–182:11.

http://people.csail.mit.edu/jsolomon/assets/killing_param.pdf
http://people.csail.mit.edu/jsolomon/assets/killing_param.pdf
https://cs.nyu.edu/~panozzo/papers/Scaffold-2017.pdf
https://cs.nyu.edu/~panozzo/papers/Scaffold-2017.pdf
http://staff.ustc.edu.cn/~fuxm/projects/ProgressivePara/
http://www.wisdom.weizmann.ac.il/~ylipman/BoundedDistortion/bounded_distortion_may_1.pdf
http://www.wisdom.weizmann.ac.il/~ylipman/2015_LargeScaleBD.pdf
http://www.wisdom.weizmann.ac.il/~ylipman/2015_LargeScaleBD.pdf
http://www.cs.ubc.ca/~sheffa/papers/abf_plus_plus.pdf
http://www.cs.ubc.ca/~sheffa/papers/abf_plus_plus.pdf
http://ieeexplore.ieee.org/document/7927729/
http://ieeexplore.ieee.org/document/7927729/
http://web.cse.ohio-state.edu/~wang.1016/papers/sig2013-loops.pdf
http://web.cse.ohio-state.edu/~wang.1016/papers/sig2013-loops.pdf
http://research.microsoft.com/en-us/um/people/yangliu/publication/aniso.pdf
http://research.microsoft.com/en-us/um/people/yangliu/publication/aniso.pdf

	Introduction
	Related work
	Method
	Overview
	Spherical parameterization
	Cut construction
	High genus meshes
	Discussions

	Experiments and comparisons
	Comparisons

	Conclusion and discussions

