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Abstract

Multi-pitch estimation is critical in many applications, includ-
ing computational auditory scene analysis (CASA), speech en-
hancement/separation and mixed speech analysis; however, de-
spite much effort, it remains a challenging problem. This paper
uses the PEFAC algorithm to extract features and proposes the
use of recurrent neural networks with bidirectional Long Short-
Term Memory (RNN-BLSTM) to model the two pitch contours
of a mixture of two speech signals. Compared with feedforward
deep neural networks (DNN), which are trained on static frame-
level acoustic features, RNN-BLSTM is trained on sequential
frame-level features and has more power to learn pitch contour
temporal dynamics. The results of evaluations using a speech
dataset containing mixtures of two speech signals demonstrate
that RNN-BLSTM can substantially outperform DNN in multi-
pitch estimation of mixed speech signals.

Index Terms: multi-pitch estimation, neural networks, RNN-
BLSTM, PEFAC

1. Introduction
Pitch, or fundamental frequency, F0, is an important charac-
teristic of speech/music signals. The task of estimating the s-
ingle F0 of clean speech from a single speech signal has at-
tracted a surprising amount of attention for decades [1], while
estimating multi-pitch values from a mixture of two or more
speech signals is still a particularly challenging task. However,
work on the challenging task of multi-pitch estimation is now
gaining momentum, fuelled by progress in signal processing
techniques and new applications such as computational audito-
ry scene analysis (CASA), speech enhancement/separation and
mixed speech analysis.

The main idea of this work is to estimate multi-pitch in a
one channel mixture of two speech signals, which can be ex-
tended to signals with more than two speech signals, assuming
that the number of mixture sources is already known. A num-
ber of studies have addressed the problem. S. W. Lee [2] pro-
posed a method to estimate multi-pitch by employing spectral
harmonicity of speech for a model-based speech separation. Z.
Jin and D. Wang [3] applied a channel selection method to ex-
tract periodicity features and calculate pitch scores which are
fed into a hidden Markov model (HMM) to extract continuous
pitch contours. Sha and Saul [4] modelled the instantaneous
frequency spectrogram with nonnegative matrix factorization
(NMF) and used the inferred weight coefficients to determine
pitch candidates for one or more voices. M. G. Christensen
[5] presented a method to estimate pitch by updating the signal
statistics with an exponential forgetting factor and subsequen-
t numerical optimization and then smoothing the estimates and
separating the pitch into slowly and rapidly varying components

with a Kalman filter. Recently Han and Wang [6] firstly quan-
tized the plausible pitch frequency range into some bins, repre-
senting pitch states, then they have shown that two alternative
neural networks (DNN and RNN) that model the pitch states
given observations both produced accurate probabilistic output-
s of pitch states. These frame-level pitch states are then con-
nected into pitch contours by Viterbi decoding [6] [7]. Liu [8]
then used DNN to develop speaker-dependent models for multi-
pitch estimation. Moreover, in [9], an unsupervised method for
obtaining multi-pitch tracks was proposed that modelled multi-
pitch tracks by a type of Gaussian mixture model with time-
varying means.

Acoustic harmonicity and pitch continuity are considered
the main characteristics for use in pitch estimation. In particu-
lar, in comparison with single-pitch estimation, multi-pitch es-
timation has trouble maintaining pitch continuity. Motivated
by the work of Han and Wang in [6], where DNN and sim-
ple RNN are used to model the posterior probability of pitch
states for single-pitch estimation, in this work, to jointly model
the acoustic harmonicity and pitch continuity, we propose RNN
with bidirectional Long Short-Term Memory (RNN-BLSTM)
to model the posterior probabilities of a pair of pitch states
from frame-level observations of two speech signals. Compared
with DNN (which relies on static frame-level acoustic features)
and simple RNN (which has a vanishing gradient problem for
long-context modelling), RNN-BLSTM [10] trains on sequen-
tial frame-level features and is capable of learning temporal dy-
namics. In addition, it has the power to address the vanishing
gradient and exploding gradient problems [11]. Therefore, it is
expected that RNN-BLSTM may generate more accurate pitch
states probabilities than DNN [6] or simple RNN, especially for
multi-pitch estimation task. Therefore, in contrast to the pre-
ceding methods, we employ the PEFAC algorithm [12] to ex-
tract the harmonic features for multi-pitch estimation. Further,
our approach utilizes an advanced classifier, RNN-BLSTM, to
generate accurate probabilistic outputs of pitch states and boost
multi-pitch estimation performance, and the proposed model-
s are speaker-independent, which avoids the need to acquire
abundant data for the target speakers. After producing the pitch
state probability for each frame, the pitch states are connected
into pitch contours by Viterbi decoding.

2. Review of RNN-BLSTM

A recurrent neural network (RNN) is a natural extension of the
feedforward neural network (FNN). An FNN can map from in-
put to output vectors only, whereas an RNN can in principle
map from the entire history of previous inputs to each output.
Because the RNN has hidden units with delayed connections to
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each other, the output of class k at time t can be represented as:

ytk =

H∑
h=1

Whkb
t
h (1)

bth = σ

(
I∑

i=1

Wihx
t
i +

H∑
h∗=1

Wh∗hb
t−1
h∗

)
(2)

However, in practice, a standard architecture RNN is hard
to train properly, and the accessible range of context is limited.
The problem lies in the vanishing gradient and the exploding
gradient as described in [11].

One effective method to address these problems is to use
Long Short-Term Memory (LSTM) architecture [13], which us-
es memory blocks to control the flow of information. Each
memory block contains one or more self-connected memory
cells. An LSTM memory cell contains one self-connected cell
and three controlling gates. The input and output gates manage
information flow into and out of the memory cell. The multi-
plicative gates allow LSTM memory cells to store and access
information over long periods of time. Meanwhile, to ensure
that the original state of the subsequence is zero, a forget gate is
added [14]. Furthermore, there are peephole weights connect-
ing the gates to the cell, which are used to obtain more accurate
Constant Error Carousel (CEC) information [10]. As illustrated
in Figure 1, the equations of the LSTM memory blocks are as
follows:
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(
stc
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(8)

where σ is the sigmoid function, and btl , b
t
φ, btw, at

c and stc are
respectively the input gate, forget gate, output gate, cell input
activation, and cell state vectors, all of which are the same size
as the hidden vector bth.

Nevertheless, RNN with conventional LSTM is unidirec-
tional and cannot model the future context. To address this
issue, we investigate RNN with bidirectional LSTM [15] that
does model the future context by processing the input vector
sequence in both forward and backward directions. General-
ly, RNN-BLSTM is expected to achieve better performance for
multi-pitch estimation than RNN with conventional LSTM or
simple RNN.

3. Algorithm description
3.1. Feature extraction

The proposed multi-pitch estimation algorithms first extrac-
t spectral domain features from each frame and then employ
RNN-BLSTM to compute the posterior probabilities of the
multi-pitch states for each frequency bin. With probabilistic
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Figure 1: The LSTM network architecture with one memory
block.

outputs in each time frame, we then use Viterbi decoding to
connect the respective pitch states of both speech signals.

We employ the PEFAC [12] algorithm with minor modi-
fications to extract the features of mixed speech signals. We
first compute the log-frequency power spectrogram and then
normalize it to the long-term speech spectrum to enhance ro-
bustness. A filter is then used to improve the harmonicity. For a

periodic source containing the multi-pitches f
(1)
0 and f

(2)
0 , the

power spectral density in the log-frequency domain is given by

X(q) =
K∑

k=1

b
(1)
k δ(q − log k − log f

(1)
0 )

+

K∑
k=1

b
(2)
k δ(q − log k − log f

(2)
0 )

(9)

where q = log f , b
(1)
k and b

(2)
k represent the power of the k-th

harmonic voiced by two speakers, respectively, δ denotes the
Dirac delta function and K is the number of harmonics. Note
that, in the log-frequency domain, the spacing of the harmon-

ics does not depend on the pitches (f
(1)
0 , f

(2)
0 ). As a result,

their energy can be summed by convolving X(q) using a filter
with broadened peaks that has an impulse response defined as
follows:

h(q) =

{
1

γ−cos(2πeq)
− β, log(0.5) < q < log(K + 0.5)

0 , otherwise
(10)

where β is chosen so that ∫ h(q)dq = 0, and γ controls the

peak width. The convolution X̃(q) = X(q) ∗ h(−q) will re-

sult in two peaks at q
(1)
0 = log f

(1)
0 , q

(2)
0 = log f

(2)
0 together

with additional peaks that correspond to simple rational multi-

ples and sub-multiples of f
(1)
0 or f

(2)
0 . Ideally, the two pitch-

es, f
(1)
0 and f

(2)
0 can be found by taking the two highest peak-

s in the output of the filter. However, in our work, we treat
xt = (X̃t(q1), . . . , X̃t(qn))

T as the extracted feature and em-
ploy supervised learning to generate pitch probabilities, i.e., to
learn the mapping from the features to the pitch frequencies.
We expect supervised learning to yield better results.

3.2. RNN-BLSTM based multi-pitch estimation

We select RNN-BLSTM to address the multi-pitch estimation
problem. The proposed RNN-BLSTM architecture is illustrat-
ed in Figure 2. As shown in Figure 2, the RNN-BLSTM model
has two outputs for both male and female speaker groups in the
current frame given the input features of mixed speech with an
acoustic context. The goal of training this RNN-BLSTM is to
generate the posterior probabilities that a pair of pitch states oc-
cur at frame m. To simplify the computation, we quantize the
plausible pitch frequency range into M frequency bins, corre-
sponding to M pitch states s1, . . . , sM . We use 24 bins per
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Figure 2: Blockdiagram of our RNN-BLSTM architecture for
multiple pitch estimation.

octave in a logarithmic scale to quantize the plausible pitch fre-
quency range (60 to 400Hz) into 67 bins, i.e., the quantized
frequency of the m-th bin is 60 × 2(m−1)/24Hz. In addition,
we incorporate a non-pitch state s0 that corresponds to an un-
voiced speech or speech-free state. Therefore, there is a total of
68 states [16]. Because the RNN-BLSTM architecture in Fig-
ure 2 has two target speakers, the resulting output has 136 units,

[O
(1)
1 , . . . , O

(1)
68 , O

(2)
1 , . . . , O

(2)
68 ].

To train the RNN-BLSTM classifier, each training sample
is the feature vector xt (DNNs need its neighbouring frames as
well), and the corresponding target is a 2 (M + 1)-dimensional

vector of the two pitch states [s
(1)
t , s

(2)
t ], whose element sit is

1 when the groundtruth pitch falls into the corresponding fre-
quency bin and 0 otherwise. The input for the RNN-BLSTM
classifier is mixed speech signals of arbitrary speakers of differ-
ent gender, while the outputs refer to the respective pitch state
probabilities of the female and male speaker groups in a super-
vised manner. This architecture avoids the limitations of requir-
ing abundant data from the target speakers to develop speaker-
dependent models [8]. Moreover, our proposed RNN-BLSTM
architecture improves the continuity of estimated pitch states
along both time and frequency axes.

To learn the probabilistic outputs, we use cross-entropy as
the objective function:

L = −α
M∑

m=0

y(1)
m ln fm(x)− β

M∑
m=0

y(2)
m ln fm(x) (11)

where α and β are ratio coefficient (usually α = β = 1),
x denotes the features extracted from mixed speech signals,

y = (y
(1)
0 , . . . , y

(1)
M , y

(2)
0 , . . . , y

(2)
M )T is the desired output and

fm(·) is the actual output of the m-th neuron in the output lay-
er. The activation function in the hidden layers is the sigmoid
function and the output layer uses the softmax function for prob-
abilistic outputs.

4. Experimental results and comparisons
4.1. Corpus and parameter selection

We evaluated the performance for the proposed approach using
the SSC (Speech separation challenge) corpus [17]. This corpus
consists of recordings of 500 sentences spoken by each of 34 s-
peakers (18 males, 16 females). We chose ten male speakers
(speaker No. 1, 2, 3, 5, 6, 8, 9, 10, 12, 13 ) and selected 2500
sentences from among these male speakers equally. Similarly,
we picked 2500 sentences equally from among ten chosen fe-
male speakers (speaker No. 4, 7, 11, 15, 16, 18, 20, 21, 22, 23).
These sentences, spoken by male and female speakers, were

mixed one-to-one at signal-to-noise ratios (SNRs) (here, we
consider female speech as noise) ranging from -2dB to 2dB in
increments of 2dB. Altogether we prepared 2500× 3 = 7500
sentences for the training set. We then chose five male and five
female speakers (speaker No. 26, 27, 28, 30, 32; 25, 29, 31, 33,
34) and constructed 500 mixed sentences for the testing set at
SNRs equal to 0dB. No utterances and speakers from the testing
set existed in the training set. The groundtruth pitches were ex-
tracted from single-speaker utterances using STRAIGHT [18]
before the signals were mixed.

Han [6] and Liu [8] have shown that DNN outperforms oth-
er traditional models both in single-pitch and multi-pitch esti-
mation. Therefore, we compared our proposed methods with
DNN based multi-pitch estimation. A short-time Fourier trans-
form [19] was adopted to compute the discrete Fourier trans-
form (DFT) for each overlapping windowed frame. We then
extracted 192-dimensional PEFAC features per frame. For anal-
ysis purposes, to ensure that both DNN and RNN-BLSTM yield
their best performances, we adjusted the parameters according-
ly. In all experiments the DNN consisted of 960 input nodes (a
stack of 5 neighbouring frames), 2 hidden layers, which used
a sigmoid activation function with 512 nodes per layer and du-
al 68 output nodes (the probabilities of the pitch states of male
and female targets), while the RNN-BLSTM consisted of 192
input nodes (no neighbouring frames), 2 hidden layers, which
also used a sigmoid activation function but with 256 nodes per
layer. The output layers are the same as those for the DNN.

We evaluated multi-pitch estimation results in terms of
three measurements: precision rate (PR) [6], pitch decision er-
ror (PDE) [6] and estimation accuracy rate (EAR). The three
measurements were all evaluated on single speakers. As an
example of the precision rate for female speakers, PR(F), a s-
ingle pitch estimate for female speakers is considered correct
when the deviation of the estimated F0 is within 5% of the fe-
male groundtruth F0 (0 Hz denotes unvoiced frames), while the
PDE denotes the percentage of frames that have been estimated
but attributed to the wrong speaker. To calculate PDE(F) and
PDE(M), we added another support measurement: the estima-
tion accuracy rate (EAR). The EAR indicates the percentage of
frames that have been estimated correctly–regardless of whether
they have been misclassified to the wrong speaker. Consider
that the target speaker is female, then

PR(F ) =
N0.05

f→f

N
(12)

EAR(F ) =
N0.05

f→f +N0.05
f→m

N
(13)

PDE(F ) = EAR(F )− PR(F ) (14)

Here, N0.05
f→f denotes the number of frames in which the female

speakers’ estimated pitch frequency deviates less than 5% from
the female groundtruth frequency, while N0.05

f→m denotes the
number of frames in which the male speakers’ estimated pitch
frequency deviates less than 5% from the female groundtruth
frequency. N denotes the total number of frames in a sentence.
PR(M), EAR(M), PDE(M) are calculated in a similar manner.

4.2. Results and comparisons

Table 1 shows the results of multi-pitch estimation based on
RNN-BLSTM applied to the testing set. The testing set in-
cludes a total of 5 female and 5 male speakers. Due to the
diversity of body structure and pronunciation, there is a huge
gap–upwards 40%–between the highest and lowest PR values.
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Figure 3: (a) Groundtruth pitch states of a female speech signal.
(b) Groundtruth pitch states of a male speech signal. (c) Proba-
bilities of the female pitch states estimated by RNN-BLSTM. (d)
Probabilities of the male pitch states estimated by RNN-BLSTM.

However, the mean precision rates over 500 mixed input signals
of female and male voices reach 81.51% and 83.42%, respec-
tively, which is a satisfactory result. Figure 3 illustrates multi-
pitch estimation results using RNN-BLSTM. The example is a
mixture of utterances from the testing set whose PR(F) equals
83.89% and whose PR(M) equals 83.25%. Figure 3(a) and (b)
show the groundtruth multi-pitch states extracted from the two
single-speaker speeches using STRAIGHT [18]. In each frame,
the probability of a pitch state is 1 if it corresponds to the female
or male groundtruth pitch and 0 otherwise. Figure 3(c) and (d)
show the probabilistic outputs of female and male utterances,
respectively. Compared to Figure 3(a) and (b), the probabilities
of the correct pitch states dominate at most time frames in both
(c) and (d), demonstrating that the RNN-BLSTM successfully
separated and predicted pitch states from mixed speech.

Table 1: Precision rates (PR), in %, of multi-pitch estimation
based RNN-BLSTM.

observation PR(F) PR(M)

mean 81.51 83.42

best 94.78 97.54

worst 47.54 53.42

Table 2: Comparison between RNN-BLSTM and DNN (EAF,
PR, PDE, in %).

model gender EAR PR PDE

DNN female 78.18 68.10 10.09

DNN male 86.45 73.55 12.90

RNN-BLSTM female 87.32 81.51 5.81

RNN-BLSTM male 91.26 83.42 7.85

The comparisons between methods based on DNN and
RNN-BLSTM are shown in Table 2. RNN-BLSTM, which is
capable of learning temporal dynamics, is expected to consid-
erably outperform DNN in multi-pitch estimation, considering
that pitch itself has a strong temporal continuity. First, estima-
tion accuracy rate (EAR) represents the probability of identify-
ing a single pitch candidate from a speech mixture, regardless
of the unfortunate situations in which the female pitch candi-
dates jump to a male pitch contour, or the male pitch candidates
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Figure 4: multi-pitch estimation results of the f7-bbwl9s-m6-
bbbl5n-0dB.wav file. (a) Probabilistic outputs from the RNN-
BLSTM. (b) Probabilistic outputs from the DNN.

jump to a female pitch contour. As shown in Table 2, the results
of EAR(F) and EAR(M) demonstrate that RNN-BLSTM is bet-
ter at estimating pitch candidates than DNN. Second, both the
PDE(F) and PDE(M) of RNN-BLSTM are smaller than those
of DNN. This result highlights the temporal modelling capaci-
ty of RNN-BLSTM from another point of view, because pitch
decision error (PDE) denotes the percentage of frames whose
pitch candidate has been estimated successfully but attributes
it to the wrong speaker. This is a typical case where tempo-
ral context is lacking. As a result, the precision rates (PR) of
RNN-BLSTM are much higher than DNN for both female and
male utterances. Figure 4 shows the comparison between RNN-
BLSTM and DNN on the same test speech mixture. Observing
the DNN result at approximately 1.78 s into this speech signal,
the multiple black units denote the pitch candidates that should
be estimated as female pitch states unfortunately jump to the
male pitch contour, leading to a decrease in PR(F). Such results
suggest that the reason RNN-BLSTM yields better probabilis-
tic outputs than DNN is because it is better able to capture the
temporal context; therefore, its outputs are smoother than those
of DNN.

5. Conclusions
In this work, we use RNN-BLSTM to generate the posterior
probabilities of pitch states for multi-pitch estimation. In com-
parison with the DNN based method, RNN-BLSTM takes ad-
vantage of the temporal continuity of pitch. The experimen-
tal results showed that RNN-BLSTM can not only outperfor-
m DNN when estimating pitch candidates but also effectively
prevent pitch candidates from being misclassified to the wrong
speaker.
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