ON WEAK IDEMPOTENT COMPLETIONS

XIAO-WU CHEN

Let \mathcal{A} be a category. An endomorphism $e: X \to X$ is called an *idempotent* if $e^2 = e$. The idempotent e splits if there are morphisms $r: X \to Y$ and $s: Y \to X$ satisfying $e = s \circ r$ and $\mathrm{Id}_Y = r \circ s$. The category \mathcal{A} is said to be *idempotent-split* if each idempotent splits.

It is well known that each category \mathcal{A} has a canonical idempotent completion \mathcal{A}^{\natural} ; see [2, Chapter I, Theorem 6.10]. The objects of \mathcal{A}^{\natural} are pairs (X, e) such that X is an object in \mathcal{A} and that $e: X \to X$ is an idempotent. The morphisms $f: (x, e) \to (X', e')$ are given by morphisms $f \in \operatorname{Hom}_{\mathcal{A}}(X, X')$ satisfying $f = e' \circ f \circ e$. We have a canonical embedding $\mathcal{A} \hookrightarrow \mathcal{A}^{\natural}$, which sends $f: X \to X'$ to $f: (X, \operatorname{Id}_X) \to (X', \operatorname{Id}_{X'})$.

Lemma 1. Let $e: X \to X$ be an idempotent in \mathcal{A} . Then e splits in \mathcal{A} if and only if (X, e) is isomorphic to some object (Y, Id_Y) in \mathcal{A}^{\natural} .

In what follows, we assume that \mathcal{A} is pre-additive. The following two lemmas are well known.

Lemma 2. Let $e: X \to X$ be an idempotent. Then e splits if and only if $Id_X - e$ admits a kernel, if and only if $Id_X - e$ admits a cokernel.

Lemma 3. Assume that $e: X \to X$ is an idempotent such that e splits as $X \xrightarrow{r} Y \xrightarrow{s} X$ and that $\operatorname{Id}_X - e$ splits as $X \xrightarrow{r'} Y' \xrightarrow{s'} X$. Then $(s, s'): Y \oplus Y' \to X$ is an isomorphism, whose inverse is $\binom{r}{r'}$.

The following example shows that e and $Id_X - e$ do not split simultaneously in general.

Example 4. Let k be a field. Denote by C the category formed by finite dimensional k-spaces with dimension at least two. Consider the idempotent $e = \text{diag}(1, 1, 0): k^3 \rightarrow k^3$. Then e splits in C, but $\text{Id}_{k^3} - e$ does not split in C.

A pre-additive category \mathcal{A} is said to be *weakly idempotent-split*, if any idempotent $e: X \to X$ splits whenever $\mathrm{Id}_X - e$ splits. We mention that a weakly idempotent-split category necessarily has a zero object.

Example 5. (1) The category C in Example 4 is not weakly idempotent-split.

(2) Let k be a field. Denote by C' the category of even dimensional k-spaces. Then C' is weakly idempotent-split, but not idempotent-split.

(3) Any triangulated category is weakly idempotent-split; see [3, Lemma 2.2].

Lemma 6. Let \mathcal{A} be a pre-additive category. Then \mathcal{A} is weakly idempotent-split if and only if any split idempotent admits a kernel, if and only if any split idempotent admits a cokernel.

Proof. Apply Lemmas 2.

Date: May 6, 2024.

²⁰¹⁰ Mathematics Subject Classification. 16U40, 18D70.

Key words and phrases. idempotent completion.

This paper belongs to a series of informal notes, without claim of originality.

We define the weak idempotent completion \mathcal{A}^{\flat} of \mathcal{A} to be the full subcategory of \mathcal{A}^{\natural} formed by the pairs (X, e) such that $\mathrm{Id}_X - e = 0$ or $\mathrm{Id}_X - e$ is a split idempotent in \mathcal{A} .

The following fact is somehow non-trivial.

Proposition 7. The category \mathcal{A}^{\flat} is indeed weakly idempotent-split.

Proof. Let (X, e) be an object in \mathcal{A}^{\flat} such that $\mathrm{Id}_X - e$ splits as $X \xrightarrow{r} Y \xrightarrow{s} X$. Let (X', e') be another object such that $\mathrm{Id}_{X'} - e'$ splits as $X' \xrightarrow{r'} Y' \xrightarrow{s'} X$. We observe the following identities

(0.1)
$$r \circ e = 0 = e \circ s \text{ and } r' \circ e' = 0 = e' \circ s'.$$

Let $f: (X, e) \to (X', e')$ and $g: (X', e') \to (X, e)$ be two morphisms such that $f \circ g = e' = \mathrm{Id}_{(X', e')}$. Then we have

(0.2)
$$f = e' \circ f \circ e \text{ and } g = e \circ g \circ e'.$$

The idempotent $g \circ f \colon (X, e) \to (X, e)$ splits in \mathcal{A}^{\flat} .

We have to show that $\mathrm{Id}_{(X,e)} - g \circ f = e - g \circ f \colon (X,e) \to (X,e)$ also splits. For this end, we first observe that

$$(X\oplus Y', \begin{pmatrix} e-g\circ f & 0\\ 0 & 0 \end{pmatrix})$$

is an object in \mathcal{A}^{\flat} . Indeed, using (0.1) and (0.2), we infer that $\begin{pmatrix} \operatorname{Id}_X - e + g \circ f & 0 \\ 0 & \operatorname{Id}_{Y'} \end{pmatrix}$ splits as

$$X \oplus Y' \xrightarrow{\begin{pmatrix} r & r \circ g \circ s' \\ f & s' \end{pmatrix}} Y \oplus X' \xrightarrow{\begin{pmatrix} s & g \\ r' \circ f \circ s & r' \end{pmatrix}} X \oplus Y'.$$

We further observe that $e - g \circ f$ splits in \mathcal{A}^{\flat} as follows

$$(X,e) \xrightarrow{\begin{pmatrix} e-g \circ f \\ 0 \end{pmatrix}} (X \oplus Y', \begin{pmatrix} e-g \circ f & 0 \\ 0 & 0 \end{pmatrix}) \xrightarrow{\begin{pmatrix} e-g \circ f & 0 \end{pmatrix}} (X,e).$$

This completes the proof.

Example 8. Let R be any unital ring. Denote by \mathcal{A} the category of finitely generated free R-modules. Then \mathcal{A}^{\natural} is equivalent to the category of finitely generated projective R-modules, and \mathcal{A}^{\flat} is equivalent to the category of stably free R-modules.

The following result might be of interest. For any additive category \mathcal{A} , we denote by $\mathbf{K}^{b}(\mathcal{A})$ the homotopy category of bounded cochain complexes in \mathcal{A} .

Proposition 9. Let $F: \mathcal{A} \to \mathcal{A}'$ be an additive functor between two additive categories. Then the induced functor $\mathbf{K}^{b}(F): \mathbf{K}^{b}(\mathcal{A}) \to \mathbf{K}^{b}(\mathcal{A}')$ is a triangle equivalence if and only if the induced functor $F^{\flat}: \mathcal{A}^{\flat} \to \mathcal{A}'^{\flat}$ is an equivalence.

Proof. Apply [1, Theorem 4.1 and Corollary 4.3(1)].

Acknowledgements. We thank Zhi-Wei Li for helpful discussion.

References

- M.V. BONDARKO, AND S.V. VOSTOKOV, The hearts of weight structures are the weakly idempotent complete categories, arXiv:2005.11518, 2020.
- [2] M. KAROUBI, K-Theory-An introduction, Grund. Math. Wiss. 226, Springer, 1978.
- [3] J. LE, AND X.W. CHEN, Karoubianness of a triangulated category, J. Algebra 310 (2007), 452–457.

Xiao-Wu Chen

- Key Laboratory of Wu Wen-Tsun Mathematics, Chinese Academy of Sciences
- School of Mathematical Sciences, University of Science and Technology of China
- No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China.

 ${\it URL: http://home.ustc.edu.cn/^{\sim}xwchen, E-mail: xwchen@mail.ustc.edu.cn.}$