PROJECTIVE COVERS AND MINIMAL APPROXIMATIONS

XIAO-WU CHEN

Let \mathcal{A} be an abelian category. A morphism $f: A \to B$ is said to be *right minimal* if any endomorphism $a \in \operatorname{End}_{\mathcal{A}}(A)$ of A satisfying $f = f \circ a$ is necessarily invertible. An epimorphism $f: A \to B$ is said to be *essential* if any morphism $t: T \to A$ is epic whenever $f \circ t$ is epic.

Let X be an object. Recall that a *projective cover* of X is an epimorphism $\pi: P \to X$ such that P is projective and that π is right minimal.

The following characterization of a projective cover is well known; for example, see [3, Lemma 3.4].

Lemma 1. Let $\pi: P \to X$ be a morphism with P projective. Then π is a projective cover of X if and only if it is an essential epimorphism.

Proof. For the "only if" part, we assume that π is a projective cover. Take any morphism $t: T \to P$ with $\pi \circ t$ epic. The projectivity of P yields a morphism $s: P \to T$ satisfying $\pi = (\pi \circ t) \circ s$. By the right minimality of π , we infer that $t \circ s$ is invertible. It follows that t is a split epimorphism.

Conversely, we assume that π is an essential epimorphism. Take any endomorphism $a: P \to P$ satisfying $\pi = \pi \circ a$. It follows that a is necessarily epic. Since P is projective, a is a split epimorphism. There exists $b: P \to P$ satisfying $a \circ b = \operatorname{Id}_P$. We have

$$\pi \circ b = (\pi \circ a) \circ b = \pi \circ (a \circ b) = \pi.$$

Since the epimorphism π is essential, we infer that b is epic. It follows that b is invertible, and so is a.

Let A be an object in \mathcal{A} . We denote by add A the full subcategory formed by direct summands of finite direct sums of A. For any ring R, we denote by proj-R the category of finitely generated projective right R-modules. The projectivization at A means the following equivalence

$$\operatorname{Hom}_{\mathcal{A}}(A, -)$$
: add $A \longrightarrow \operatorname{proj-End}_{\mathcal{A}}(A)$.

Moreover, we have a natural isomorphism

 $(0.1) \qquad \operatorname{Hom}_{\mathcal{A}}(A_0, X) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{End}_{\mathcal{A}}(A)}(\operatorname{Hom}_{\mathcal{A}}(A, A_0), \operatorname{Hom}_{\mathcal{A}}(A, X))$

sending f to $\operatorname{Hom}_{\mathcal{A}}(A, f)$ for any $A_0 \in \operatorname{add} A$ and $X \in \mathcal{A}$.

The projectivization plays a central role in the following proof.

Proposition 2. Let $\pi: P \to X$ be an epimorphism with P projective. Then X has a projective cover if and only if the right $\operatorname{End}_{\mathcal{A}}(P)$ -module $\operatorname{Hom}_{\mathcal{A}}(P, X)$ has a projective cover.

Proof. Write $\Gamma = \operatorname{End}_{\mathcal{A}}(P)$ and $F = \operatorname{Hom}_{\mathcal{A}}(P, -)$. Observe that $F(P) = \Gamma$.

For "only if" part, we assume that $\pi_0: P_0 \to X$ is a projective cover. We observe that there is a split epimorphism $t: P \to P_0$ such $\pi = \pi_0 \circ t$. In particular,

Date: September 5, 2024.

²⁰²⁰ Mathematics Subject Classification. 16D40, 18A20.

Key words and phrases. projective cover, minimal approximation.

This paper belongs to a series of informal notes, without claim of originality.

 P_0 is isomorphic to a direct summand of P. Consequently, $F(P_0)$ is a projective Γ -module.

We claim that $F(\pi_0): F(P_0) \to F(X)$ is a projective cover of F(X). It suffices to show that it is right minimal. Take any endomorphism a on $F(P_0)$ with $F(\pi_0) \circ a = F(\pi_0)$. By the projectivization, we have a unique endomorphism s on P_0 with a = F(s). Applying the equation $F(\pi_0 \circ s) = F(\pi_0)$ to the element $t \in F(P_0)$, we obtain

$$\pi_0 \circ s \circ t = \pi_0 \circ t.$$

Since t is epic, we have $\pi_0 \circ s = \pi_0$. Since π_0 is right minimal, we infer that s is invertible, and then so is a.

For the "if" part, we assume that $f: Q \to F(X)$ is a projective cover of F(X). Consider the surjective map $F(\pi): F(P) \to F(X)$ of right Γ -modules. There is a split epimorphism $g: F(P) \to Q$ satisfying $F(\pi) = f \circ g$. By the projectivization at P, we may assume that $Q = F(P_0)$ with $P_0 \in \text{add } P$; moreover, by (0.1) there are morphisms $a: P_0 \to X$ and $b: P \to P_0$ satisfying F(a) = f and F(b) = g. We have

$$F(\pi) = f \circ g = F(a) \circ F(b) = F(a \circ b).$$

By (0.1) again, we have $\pi = a \circ b$. It follows that $a: P_0 \to X$ is epic.

It remains to show that a is right minimal. For this end, we take an endomorphism s on P_0 satisfying $a = a \circ s$. Then we have

$$f = F(a) = F(a \circ s) = F(a) \circ F(s) = f \circ F(s).$$

Since f is right minimal, we infer that F(s) is invertible. By the projectivization at P, the endomorphism s is invertible. This completes the proof.

Recall that a ring R is *semiperfect* if each finitely generated right R-module has a projective cover. This property is left-right symmetric.

Corollary 3. Let $\pi: P \to X$ be an epimorphism with P projective. Assume further that the endomorphism ring $\operatorname{End}_{\mathcal{A}}(P)$ is semiperfect. Then X has a projective cover in \mathcal{A} .

Proof. We observe that the right $\operatorname{End}_{\mathcal{A}}(P)$ -module $\operatorname{Hom}_{\mathcal{A}}(P, X)$ is cyclic. Since $\operatorname{End}_{\mathcal{A}}(P)$ is semiperfect, $\operatorname{Hom}_{\mathcal{A}}(P, X)$ has a projective cover. Then the statement follows from Proposition 2.

Recall that an additive category C is *Krull-Schmidt* if each object is a finite direct sum of indecomposable objects with local endomorphism rings. By [1, Theorem A.1], C is Krull-Schmidt if and only if it is idempotent-split and the endomorphism ring of each object is semiperfect; see also [3, Corollary 4.4].

We have the following immediate consequence of Corollary 3.

Corollary 4. Let \mathcal{A} be a Krull-Schmidt abelian category with enough projective objects. Then each object has a projective cover.

Let \mathcal{C} be a skeletally small additive category. By a right \mathcal{C} -module we mean a contravariant additive functor from \mathcal{C} to the category of abelian groups. Denote by Mod- \mathcal{C} the abelian category of right \mathcal{C} -modules. A right \mathcal{C} -module M is *finitely* generated if there is an epimorphism $\mathcal{C}(-, A) \to M$ for some object A in \mathcal{C} .

The following result is implicitly used in [2, the proof of 1.3 Lemma].

Corollary 5. Let C be a Krull-Schmidt category, which is skeletally small. Then each finitely generated C-module has a projective cover.

Proof. Let M be a finitely generated C-module with an epimorphism $C(-, A) \to M$. The representable module C(-, A) is projective in Mod-C. By Yoneda Lemma the endomorphism ring of C(-, A) is isomorphic to $\operatorname{End}_{\mathcal{C}}(A)$, which is semiperfect. Then we are done by Corollary 3.

Remark 6. The smallness condition above is superfluous. Indeed, Proposition 2 holds true for idempotent-split exact categories. For the proof of Corollary 5 in the general case, we just work with the exact category formed by finitely generated C-modules.

Let \mathcal{C} be an additive category. Consider a full additive subcategory \mathcal{M} . Let X be an object in \mathcal{C} . By a *right* \mathcal{M} -approximation of X, we mean a morphism $f: \mathcal{M} \to X$ with $\mathcal{M} \in \mathcal{M}$ and every morphism from an object in \mathcal{M} to X factors through f. Such a right \mathcal{M} -approximation is *minimal*, provided that it is right minimal.

It is well known that an object X has a right \mathcal{M} -approximation if and only if the \mathcal{M} -module $\mathcal{C}(-, X)|_{\mathcal{M}}$ is finitely generated.

The following lemma is proved using Yoneda Lemma.

Lemma 7. Let $f: M \to X$ be a morphism with $M \in \mathcal{M}$. Then f is right minimal if and only if the induced morphim $(-, f)|_{\mathcal{M}}: \mathcal{M}(-, M) \to \mathcal{C}(-, X)|_{\mathcal{M}}$ between \mathcal{M} -modules is right minimal. \Box

In view of Lemma 7, we have the following fact.

Lemma 8. An object X has a right minimal \mathcal{M} -approximation if and only if the \mathcal{M} -module $\mathcal{C}(-, X)|_{\mathcal{M}}$ is finitely generated and has a projective cover. \Box

The following result is a variant of Proposition 2.

Proposition 9. Let $f: M \to X$ be a right \mathcal{M} -approximation of X. Then X has a right minimal \mathcal{M} -approximation if and only if the right $\operatorname{End}_{\mathcal{C}}(M)$ -module $\operatorname{Hom}_{\mathcal{C}}(M, X)$ has a projective cover.

Proof. The approximation f yields an epimorphism $\mathcal{M}(-, M) \to \mathcal{C}(-, X)|_{\mathcal{M}}$ between \mathcal{M} -modules. By Lemma 8 X has a right minimal \mathcal{M} -approximation if and only if $\mathcal{C}(-, X)|_{\mathcal{M}}$ has a projective cover.

We will apply Proposition 2 to the category of \mathcal{M} -modules; compare Remark 6. We observe that the endomorphism ring of $\mathcal{M}(-, M)$ is isomorphic to $\operatorname{End}_{\mathcal{C}}(M)$, and that the Hom group from $\mathcal{M}(-, M)$ to $\mathcal{C}(-, X)|_{\mathcal{M}}$ is isomorphic to $\operatorname{Hom}_{\mathcal{C}}(M, X)$. Based on these observations and Proposition 2, we infer that $\mathcal{C}(-, X)|_{\mathcal{M}}$ has a projective cove if and only if the right $\operatorname{End}_{\mathcal{C}}(M)$ -module $\operatorname{Hom}_{\mathcal{C}}(M, X)$ has a projective cover.

We mention that one easily deduces Proposition 2 from the proposition above.

References

- X.W. CHEN, Y. YE, AND P. ZHANG, Algebras of derived dimension zero, Comm. Algebra 36 (1) (2008), 1–10.
- [2] B. KELLER, AND D. VOSSIECK, Aisles in derived categories, Bull. Soc. Math. Belg. 40 (1988), 239–253.
- [3] H. KRAUSE, Krull-Schmidt categories and projective covers, Expo. Math. 33 (4) (2015), 535-549.

Xiao-Wu Chen

School of Mathematical Sciences, University of Science and Technology of China

No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China.

 $\label{eq:url:http://home.ustc.edu.cn/~xwchen, E-mail: xwchen@mail.ustc.edu.cn.} \\$