THE GENERAL FOXBY EQUIVALENCE

XIAO-WU CHEN

We first recall the general Foxby equivalence from [2, Section 1]. Let \mathcal{C} and \mathcal{D} be two categories. Assume that (F,G) is an adjoint pair between them, with $F:\mathcal{C}\to\mathcal{D}$ and $G:\mathcal{D}\to\mathcal{C}$. Denote the unit by $\eta:\mathrm{Id}_{\mathcal{C}}\to GF$ and the counit by $\varepsilon\colon FG\to\mathrm{Id}_{\mathcal{D}}$.

The corresponding Auslander category $\mathcal{A} = \mathcal{A}(F,G)$ is defined to the full subcategory of \mathcal{C} formed by those objects C with η_C an isomorphism. Analogously, the Bass category $\mathcal{B} = \mathcal{B}(F,G)$ is the full subcategory of \mathcal{D} formed by those objects D with ε_D an isomorphism.

We have the following general fact.

Lemma 1. The adjoint pair (F,G) induces an equivalence $F|_{\mathcal{A}} \colon \mathcal{A} \to \mathcal{B}$, whose quasi-inverse is given by $G|_{\mathcal{B}} \colon \mathcal{B} \to \mathcal{A}$.

The obtained equivalence is known as the general Foxby equivalence. We observe that (F,G) is an adjoint equivalence if and only if $\mathcal{A} = \mathcal{C}$ and $\mathcal{B} = \mathcal{D}$.

In practice, it might be nontrivial to describe the subcategories \mathcal{A} and \mathcal{B} . In what follows, we describe these subcategories for the Hom-tensor adjoint pair between module categories over artin algebras.

Let A be an artin algebra over a commutative artinian ring. Denote by A-mod the abelian category of finitely generated left A-modules. Let T be a finitely generated left A-module. Set $B = \operatorname{End}_A(T)^{\operatorname{op}}$ to the opposite algebra of its endomorphism algebra. Then T becomes an A-B-bimodule.

We are interested in the following Hom-tensor adjoint pair.

$$A\text{-mod} \xrightarrow{T \otimes_B -} B\text{-mod}$$

It is well known that such an adjoint pair induces an equivalence

$$\operatorname{add}(T) \xrightarrow{\sim} B$$
-proj.

Here, add(T) denotes the full subcategory of A-mod consisting of direct summands of finite direct sums of T, and B-proj denotes the category of finitely generated projective B-modules. This restricted equivalence is known as the *projectivization*; see [1, II.2].

The corresponding Auslander category is given by

$$\mathcal{A}(T) = \{ Y \in B\text{-mod} \mid \eta_Y \colon Y \to \operatorname{Hom}_A(T, T \otimes_B Y) \text{ is an isomorphism} \}.$$

Here, $\eta_Y(y) \colon T \to T \otimes_B Y$ sends a to $a \otimes_B y$. The Bass category is given by

$$\mathcal{B}(T) = \{X \in A\text{-mod} \mid \varepsilon_X \colon T \otimes_B \operatorname{Hom}_A(T, X) \to X \text{ is an isomorphism}\}.$$

Here, $\varepsilon_X(b \otimes_B f) = f(b)$. We observe that B-proj $\subseteq \mathcal{A}(T)$ and $\mathrm{add}(T) \subseteq \mathcal{B}(T)$.

Date: March 27, 2025.

²⁰²⁰ Mathematics Subject Classification. 18A40, 16D90.

Key words and phrases. adjoint pair, Hom functor, factor module, submodule.

This paper belongs to a series of informal notes, without claim of originality.

Recall that fac(T) denotes the full subcategory formed by factor modules of finite direct sums of T. For an A-module M, a T-presentation means an exact sequence of A-modules

$$\xi \colon T_1 \longrightarrow T_0 \longrightarrow M \longrightarrow 0$$

with $T_i \in \operatorname{add}(T)$ such that $\operatorname{Hom}_A(T,\xi)$ is still exact. Denote by $\operatorname{fac}_1(T)$ the full subcategory formed by those modules admitting a T-presentation.

Example 2. Let A be the path algebra of the linear quiver

$$1 \longrightarrow 2$$

over a field. The unique indecomposable projective-injective module is $P_1 \simeq I_2$. Then we have $fac(P_1) = add(P_1 \oplus S_1)$ and $fac_1(P_1) = add(P_1)$.

Denote by D the Matlis duality. We observe that DT is naturally a B-A-bimodule. Recall that $\mathrm{sub}(DT)$ denotes the full subcategory of B-mod formed by submodules of finite direct sums of DT. For a B-module N, a DT-copresentation means an exact sequence of B-modules

$$\kappa \colon \ 0 \longrightarrow N \longrightarrow E^0 \longrightarrow E^1$$

with each $E^i \in \operatorname{add}(DT)$ such that $\operatorname{Hom}_B(\kappa, DT)$ is still exact, or equivalently, $T \otimes_B \kappa$ is exact. Denote by $\operatorname{sub}^1(DT)$ the full subcategory of $\operatorname{sub}(DT)$ consisting of those modules admitting a DT-copresentation.

Proposition 3. Keep the notation as above. Then we have

$$\mathcal{A}(T) = \operatorname{sub}^{1}(DT) \text{ and } \mathcal{B}(T) = \operatorname{fac}_{1}(T).$$

Consequently, we have an ajoint equivalence

$$\operatorname{fac}_1(T) \xrightarrow[\operatorname{Hom}_A(T,-)]{T \otimes_B -} \operatorname{sub}^1(DT).$$

Proof. The main idea is to use the projectivization to send projective presentations in B-mod to T-presentations, and injetive copresentations in A-mod to DT-copresentations. We omit the details.

We apply the consideration above to the A-module T=DA. Then we may take B=A. The Nakayama functors are $\nu=DA\otimes_A-$ and $\nu^-=\mathrm{Hom}_A(DA,-),$ which are endofunctors on A-mod. We identify D(DA) with A. The subcategory $\mathrm{sub}^1(A)$ coincides with A-refl, the category of reflexive modules. By duality, the subcategory $\mathrm{fac}_1(DA)$ coincides with A-corefl, the category of coreflexive modules. Here, we recall that an A-module X is coreflexive if and only if its dual DX is reflexive.

Corollary 4. We have an adjoint equivalence

$$A$$
-corefl $\xrightarrow{\nu}$ A -refl.

Remark 5. (1) The equivalence above restricts to an adjoint equivalence between A-inj and A-proj.

(2) By duality, the equivalence above follows from the following more well-known duality between reflexive modules.

$$A\text{-refl} \xrightarrow[\text{Hom}_A(-,A)]{\text{Hom}_A(-,A)} A^{\text{op}}\text{-refl}$$

Acknowledgements. We thank Zhi-Wei Li for helpful discussion.

References

- [1] M. Auslander, I. Reiten, and S.O. Smalo, Representation Theory of Artin Algebras, Cambridge Univ. Press, 1997.
- [2] A. FRANKILD, AND P. JORGENSEN, Foxby equivalence, complete modules, and torsion modules, J. Pure Appl. Algebra 174 (2) (2002), 135–147.

Xiao-Wu Chen

School of Mathematical Sciences, University of Science and Technology of China

No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China.

URL: http://home.ustc.edu.cn/^xwchen, E-mail: xwchen@mail.ustc.edu.cn.