ADJOINT PAIRS AND CANONICAL MORPHISMS FOR BIMODULES

XIAO-WU CHEN

ABSTRACT. It is well known that bimodules, rather than one-sided modules, play a central role in algebra. The main reason is that bimodules give rise to adjoint pairs between module categories. We collect the adjoint pairs and canonical morphisms associated to a given bimodule. The composition of these adjoint pairs is studied.

For a unital ring R, we denote by R-Mod and Mod-R the category of left R-modules and the category of right R-modules, respectively. We denote by Hom_R the Hom group in R-Mod and by Hom_R the one in Mod-R. We identify right R-modules as left R^{op} -modules, where R^{op} is the opposite ring of R. A left R-module X is indicated by $_RX$ and a right R-module Y is indicated by Y_R .

Let R and S be two unital rings. We fix an R-S-bimodule $_RM_S$. We will also view M as an S^{op} - R^{op} -bimodule. We denote by Hom_{R-S} the Hom group in the category of R-S-bimodules.

Lemma 1. For $_{S}X$ and $_{R}Y$, the canonical isomorphism

(0.1) $\operatorname{Hom}_{R}(M \otimes_{S} X, Y) \xrightarrow{\sim} \operatorname{Hom}_{S}(X, \operatorname{Hom}_{R}(M, Y))$

sends f to $(x \mapsto (m \mapsto f(m \otimes x)))$. In other words, we have an adjoint pair

$$S-Mod$$
 $R-Mod$
 $R-Mod$

The unit of the adjoint pair is given by

$$X \longrightarrow \operatorname{Hom}_R(M, M \otimes_R X), \quad x \mapsto (m \mapsto m \otimes x),$$

while the counit is given by

$$M \otimes_S \operatorname{Hom}_R(M, Y) \longrightarrow Y, \quad m \otimes g \mapsto g(m).$$

Remark 2. For the given ${}_{S}X$ and ${}_{R}Y$, the group $\operatorname{Hom}_{\mathbb{Z}}(X,Y)$ is naturally an R-S-bimodule. In view of (0.1), the following isomorphism is of interest

 $\operatorname{Hom}_{R}(M \otimes_{S} X, Y) \xrightarrow{\sim} \operatorname{Hom}_{R-S}(M, \operatorname{Hom}_{\mathbb{Z}}(X, Y)), \quad f \mapsto (m \mapsto (x \mapsto f(m \otimes x)).$

We observe that the next lemma might be obtained by applying Lemma 1 for the bimodule $_{S^{\text{op}}}M_{R^{\text{op}}}$.

Lemma 3. For Z_R and W_S , the canonical isomorphism

 $\operatorname{Hom}_{-S}(Z \otimes_R M, W) \xrightarrow{\sim} \operatorname{Hom}_{-R}(Z, \operatorname{Hom}_{-S}(M, W))$

Date: May 13, 2018.

²⁰¹⁰ Mathematics Subject Classification. 16D20, 16D10, 18A40.

Key words and phrases. bimodule, adjoint pair, canonical morphism, dual bimodule. This paper belongs to a series of informal notes, without claim of originality.

sends f to $(z \mapsto (m \mapsto f(z \otimes m)))$. In other words, we have an adjoint pair

$$\operatorname{Mod}_{-R} \underbrace{\operatorname{Mod}_{-S(M,-)}}_{\operatorname{Hom}_{-S}(M,-)} \operatorname{Mod}_{-S}.$$

The unit of the adjoint pair is given by

$$Z \longrightarrow \operatorname{Hom}_{-S}(M, Z \otimes_R M), \quad z \mapsto (m \mapsto z \otimes m),$$

while the counit is given by

$$\operatorname{Hom}_{-S}(M, W) \otimes_R M \longrightarrow W, \quad g \otimes m \mapsto g(m).$$

Remark 4. Similar to Remark 2, we have the following isomorphism

 $\operatorname{Hom}_{-S}(Z \otimes_R M, W) \xrightarrow{\sim} \operatorname{Hom}_{R^{-S}}(M, \operatorname{Hom}_{\mathbb{Z}}(Z, W)), \quad f \mapsto (m \mapsto (z \mapsto f(z \otimes m))).$

The following contravariant adjoint pair is less well known. The opposite category of a category C is denoted by C^{op} .

Lemma 5. For $_{R}Y$ and W_{S} , the canonical isomorphism

(0.2)
$$\operatorname{Hom}_{-S}(W, \operatorname{Hom}_{R}(Y, M)) \xrightarrow{\sim} \operatorname{Hom}_{R}(Y, \operatorname{Hom}_{-S}(W, M))$$

sends g to $(y \mapsto (w \mapsto g(w)(y)))$. In other words, we have an adjoint pair

$$R\operatorname{-Mod}_{\operatorname{Hom}_{-S}(-,M)}^{\operatorname{Hom}_{R}(-,M)}(\operatorname{Mod}_{-S})^{\operatorname{op}}.$$

The unit is given by

$$Y \longrightarrow \operatorname{Hom}_{-S}(\operatorname{Hom}_{R}(Y, M), M), \quad y \mapsto (f \mapsto f(y))$$

while the counit is given by the following homomorphism in Mod-S

$$W \longrightarrow \operatorname{Hom}_{R}(\operatorname{Hom}_{-S}(W, M), M), \quad w \mapsto (g \mapsto g(w)).$$

Remark 6. For the given $_{R}Y$ and W_{S} , we have a natural R-S-bimodule $Y \otimes_{\mathbb{Z}} W$. In view of (0.2), we have the following natural isomorphism

 $\operatorname{Hom}_{-S}(W, \operatorname{Hom}_{R}(Y, M)) \xrightarrow{\sim} \operatorname{Hom}_{R-S}(Y \otimes_{\mathbb{Z}} W, M), \quad f \mapsto (y \otimes w \mapsto f(w)(y)).$

In what follows, we study the composition of these functors.

For the bimodule $_RM_S$, $\operatorname{End}_R(M) = \operatorname{Hom}_R(M, M)$ is naturally an S-bimodule and $\operatorname{End}_{-S}(M) = \operatorname{Hom}_{-S}(M, M)$ is naturally an R-bimodule. Indeed, the Sbimodule structure on $\operatorname{End}_R(M)$ is induced by the ring homomorphism $S^{\operatorname{op}} \to \operatorname{End}_R(M)$. Similarly, the R-bimodule structure on $\operatorname{End}_{-S}(M)$ is induced by the ring homomorphism $R \to \operatorname{End}_{-S}(M)$.

The following observation seems to be of independent interest.

Lemma 7. There is an isomorphism of S-R-bimodules

$$\operatorname{Hom}_{R}(M, \operatorname{End}_{-S}(M)) \xrightarrow{\sim} \operatorname{Hom}_{-S}(M, \operatorname{End}_{R}(M)), \quad f \mapsto (m \mapsto (m' \mapsto f(m')(m))).$$

We might call the above common S-R-bimodule the dual bimodule of M, which will be denoted by M^{\vee} .

Proof. The isomorphism follows from (0.2). We observe that the isomorphism respects the S-R-bimodule structures.

Lemma 8. For $_{S}X$ and W_{S} , we have canonical isomorphisms of S-modules

 $\operatorname{Hom}_R(M \otimes_S X, M) \xrightarrow{\sim} \operatorname{Hom}_S(X, \operatorname{End}_R(M)), f \mapsto (x \mapsto (m \mapsto f(m \otimes x))),$ and

 $\operatorname{Hom}_{R}(M, \operatorname{Hom}_{-S}(W, M)) \xrightarrow{\sim} \operatorname{Hom}_{-S}(W, \operatorname{End}_{R}(M)), g \mapsto (w \mapsto (m \mapsto g(m)(w))).$

 ${\it In \ other \ words, \ we \ have \ natural \ isomorphisms \ between \ functors}$

$$\operatorname{Hom}_{R}(-, M) \circ M \otimes_{S} - \xrightarrow{\sim} \operatorname{Hom}_{S}(-, \operatorname{End}_{R}(M)),$$

and

$$\operatorname{Hom}_R(M, -) \circ \operatorname{Hom}_{-S}(-, M) \xrightarrow{\sim} \operatorname{Hom}_{-S}(-, \operatorname{End}_R(M))$$

Similarly, we have the following result.

Lemma 9. For $_{R}Y$ and Z_{R} , we have canonical isomorphisms of R-modules

 $\operatorname{Hom}_{-S}(Z \otimes_R M, M) \xrightarrow{\sim} \operatorname{Hom}_{-R}(Z, \operatorname{End}_{-S}(M)), \quad f \mapsto (z \mapsto (m \mapsto f(z \otimes m))),$

and

$$\operatorname{Hom}_{-S}(M, \operatorname{Hom}_R(Y, M)) \xrightarrow{\sim} \operatorname{Hom}_R(Y, \operatorname{End}_{-S}(M)), \quad g \mapsto (y \mapsto (m \mapsto g(m)(y))).$$

In other words, we have natural isomorphisms between functors

$$\operatorname{Hom}_{-S}(-, M) \circ - \otimes_R M \xrightarrow{\sim} \operatorname{Hom}_{-R}(-, \operatorname{End}_{-S}(M))$$

and

$$\operatorname{Hom}_{-S}(M, -) \circ \operatorname{Hom}_{R}(-, M) \xrightarrow{\sim} \operatorname{Hom}_{R}(-, \operatorname{End}_{-S}(M)).$$

The following general fact is needed.

Lemma 10. Let T be another ring. Assume that ${}_{S}A_{T}$ and ${}_{R}B_{T}$ are an S-Tbimodule and an R-T-bimodule, respectively. For each ${}_{S}X$, there is a canonical isomorphism of right R-modules

$$\operatorname{Hom}_{T}(B, \operatorname{Hom}_{S}(X, A)) \xrightarrow{\sim} \operatorname{Hom}_{S}(X, \operatorname{Hom}_{T}(B, A))$$

sending f to $(x \mapsto (b \mapsto f(b)(x)))$. In other words, we have a natural isomorphism between functors

$$\operatorname{Hom}_{-T}(B, -) \circ \operatorname{Hom}_{S}(-, A) \xrightarrow{\sim} \operatorname{Hom}_{S}(-, \operatorname{Hom}_{-T}(B, A)).$$

The following result seems to be not well known.

Proposition 11. Let $_RM_S$ be the R-S-bimodule as above and $_SM^{\vee}{}_R$ its dual bimodule. Then there are two commutative diagrams

and

3

Proof. For the first commutative diagram, we just combine the isomorphisms

$$\operatorname{Hom}_R(-,M) \circ M \otimes_S - \xrightarrow{\sim} \operatorname{Hom}_S(-,\operatorname{End}_R(M))$$

and

$$\operatorname{Hom}_{-S}(M, -) \circ \operatorname{Hom}_{S}(-, \operatorname{End}_{R}(M)) \xrightarrow{\sim} \operatorname{Hom}_{S}(-, \operatorname{Hom}_{-S}(M, \operatorname{End}_{R}(M))).$$

We refer to Lemmas 8 and 10 for these isomorphisms. The second diagram is proved in a similar way, which might be deduced by the composition of the above three adjoint pairs. $\hfill \Box$

Acknowledgements. This note arises in a dg algebra seminar in Hefei, April 2018. We observe that the results stated here hold in the dg setting, where the signs should be taken care of.

Xiao-Wu Chen

Key Laboratory of Wu Wen-Tsun Mathematics, Chinese Academy of Sciences,

School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, P.R. China.

URL: http://home.ustc.edu.cn/~xwchen E-mail: xwchen@mail.ustc.edu.cn.