THE TORSION SUBGROUP OF AN ABELIAN GROUP

XIAO-WU CHEN

ABSTRACT. We give a detailed proof on an explicit presentation by generators and relations for the torsion subgroup of an abelian group, which includes the Picard group of a weighted projective line.

Let $\mathbf{p} = (p_1, p_2, \dots, p_t)$ and $\mathbf{d} = (d_1, d_2, \dots, d_t)$ be two sequences of positive integers with $t \ge 1$. Let $L = L(\mathbf{p}, \mathbf{d})$ be an abelian group defined by generators $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_t, \vec{c}$ subject to the relations $p_i \vec{x}_i = d_i \vec{c}$ for $1 \le i \le t$. We denote by t(L)its torsion subgroup.

Set $p = \operatorname{lcm}(p_1, p_2, \dots, p_t)$ and $d = \operatorname{gcd}(\frac{pd_1}{p_1}, \frac{pd_2}{p_2}, \dots, \frac{pd_t}{p_t})$, where lcm and gcd denote the least common multiple and the greatest common divisor, respectively.

The main goal is to provide a detailed and elementary proof for the following result.

Proposition 1. Let $L = L(\mathbf{p}, \mathbf{d})$ be as above. Then the following statements hold.

- (1) The cardinality of t(L) equals $\frac{p_1p_2\cdots p_t}{p} \operatorname{gcd}(p, d)$.
- (2) gcd(p,d) = 1 if and only if t(L) is isomorphic to the abelian group with generators $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_t$ and relations $p_1\vec{x}_1 = p_2\vec{x}_2 = \dots = p_t\vec{x}_t = \vec{x}_1 + \vec{x}_2 + \dots + \vec{x}_t = 0$.

We comment on the special case with each $d_i = 1$, in which case the group L is isomorphic to the Picard group of a weighted projective line; see [2, Proposition 2.1]. Since d = 1, (2) yields an explicit presentation for the torsion subgroup t(L) by generators and relations. Indeed, this presentation is implicitly stated in [4, p.1693]. For a general sequence **d**, the group $L = L(\mathbf{p}, \mathbf{d})$ appears in the study of a canonical algebra over an arbitrary field; see [3, Section 12].

We denote by \mathbb{Z}_n the additive group of integers modulo n. Consider the cyclic subgroup $\mathbb{Z}\vec{c}$ of L generated by \vec{c} . We observe an isomorphism of groups

$$\pi\colon L/\mathbb{Z}\vec{c} \xrightarrow{\sim} \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \mathbb{Z}_{p_t},$$

sending \vec{x}_i to the unit row vector ε_i with $\bar{1}$ at the *i*-th coordinate. Here, we use the fact that the quotient group $L/\mathbb{Z}\vec{c}$ is generated by the same generators of L but with the relations $p_1\vec{x}_1 = p_2\vec{x}_2 = \cdots = p_t\vec{x}_t = 0 = \vec{c}$.

The following homomorphism of groups

$$\delta \colon L \longrightarrow \mathbb{Z}, \quad \vec{x_i} \mapsto \frac{pd_i}{p_i}, \vec{c} \mapsto p$$

is well defined. Set a = gcd(p, d). Then the image of δ is $\mathbb{Z}a$.

Lemma 2. We have $p\vec{x} = \delta(\vec{x})\vec{c}$ for each $\vec{x} \in L$. Consequently, we have $t(L) = \text{Ker } \delta$.

Date: March 12, 2015.

²⁰¹⁰ Mathematics Subject Classification. 20K10, 14C22, 16G10.

 $Key\ words\ and\ phrases.$ torsion subgroup, Picard group, weighted projective line.

This paper belongs to a series of informal notes, without claim of originality.

Proof. For the first identity, using the additivity it suffices to prove it for each generator \vec{x}_i and \vec{c} , which is trivial.

We observe that δ sends torsion elements to zero, thus $t(L) \subseteq \text{Ker } \delta$. On the other hand, each element \vec{x} in Ker δ satisfies $p\vec{x} = 0$, thus is torsion.

We denote by H the abelian group with generators $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_t$ and relations $p_1\vec{x}_1 = p_2\vec{x}_2 = \dots = p_t\vec{x}_t = \vec{x}_1 + \vec{x}_2 + \dots + \vec{x}_t = 0$. Then H is isomorphic to the quotient group of $L/\mathbb{Z}\vec{c}$ by the cyclic subgroup generated by $\vec{x}_1 + \vec{x}_2 + \dots + \vec{x}_t$.

Using the isomorphism π , we infer that H is isomorphic to the quotient group $(\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_t})/\mathbb{Z}(\bar{1}, \bar{1}, \cdots, \bar{1})$. Here, we use the fact that $\pi(\vec{x}_1 + \vec{x}_2 + \cdots + \vec{x}_t) = (\bar{1}, \bar{1}, \cdots, \bar{1})$. We observe that the orders of these two elements equal p. We infer by Lagrange's Theorem that the cardinality of H equals $\frac{p_1 p_2 \cdots p_t}{p}$.

Proof of Proposition 1(1). By Lemma 2, the homomorphism δ induces an isomorphism $\overline{\delta} \colon L/t(L) \xrightarrow{\sim} \mathbb{Z}a$, which restricts to an isomorphism $(\mathbb{Z}\vec{c} + t(L))/t(L) \simeq \mathbb{Z}p$. Therefore, we have an induced isomorphism $L/(\mathbb{Z}\vec{c} + t(L)) \simeq \mathbb{Z}a/\mathbb{Z}p$. In particular, the cardinality of $L/(\mathbb{Z}\vec{c} + t(L))$ is $\frac{p}{a}$.

By $\delta(\vec{c}) = p$, we infer that the element \vec{c} is torsionless. Then we have $t(L) \cap \mathbb{Z}\vec{c} = 0$. Therefore, t(L) is naturally viewed as a subgroup of $L/\mathbb{Z}\vec{c}$, and the corresponding quotient group is identified with $L/(\mathbb{Z}\vec{c}+t(L))$. Recall by the isomorphism π that the cardinality of $L/\mathbb{Z}\vec{c}$ equals $p_1p_2\cdots p_t$. It follows from Lagrange's Theorem that the cardinality of t(L) equals $p_1p_2\cdots p_t\frac{n}{p}$.

Recall that the image of δ equals $\mathbb{Z}a$. Take $\vec{y} \in L$ with $\delta(\vec{y}) = a$.

Lemma 3. There is an isomorphism Ker $\delta \simeq L/\mathbb{Z}\vec{y}$ of groups.

Proof. We observe $L = \text{Ker } \delta \oplus \mathbb{Z}\vec{y}$. Then the isomorphism follows immediately. \Box

Lemma 4. Assume that a = 1. Then we have $\mathbb{Z}\vec{c} \subseteq \mathbb{Z}\vec{y}$, and that the order of \vec{y} in $L/\mathbb{Z}\vec{c}$ equals p.

This observation allows us to identify $L/\mathbb{Z}\vec{y}$ with the quotient group of $L/\mathbb{Z}\vec{c}$ by the cyclic subgroup generated by \vec{y} in $L/\mathbb{Z}\vec{c}$.

Proof. By Lemma 2, we have $p\vec{y} = \vec{c}$. Moreover, if $m\vec{y}$ lies in $\mathbb{Z}\vec{c}$, by applying δ we infer that p divides m.

Proof of Proposition 1(2). We have already computed the cardinalities of H and t(L). Then the "if" part follows.

For the "only if " part, we assume that a = 1. Combing the three lemmas above, we infer that t(L) is isomorphic to the quotient group of $L/\mathbb{Z}\vec{c}$ by the cyclic subgroup generated by \vec{y} . Recall that H is isomorphic to the quotient group of $L/\mathbb{Z}\vec{c}$ by the cyclic subgroup generated by $\vec{x}_1 + \vec{x}_2 + \cdots + \vec{x}_t$. The orders of both the elements \vec{y} and $\vec{x}_1 + \vec{x}_2 + \cdots + \vec{x}_t$ in $L/\mathbb{Z}\vec{c}$ are p. The following well-known lemma implies that t(L) is isomorphic to H. Then we are done.

Let p be a positive integer. We say that a finite abelian group A is p-torsion if the order of each element divides p.

Lemma 5. Let A be a finite abelian group which is p-torsion. Assume that x and y are two elements in A with order p. Then there is an isomorphism $A/\mathbb{Z}x \simeq A/\mathbb{Z}y$ of groups.

Proof. We identity *p*-torsion groups with finite \mathbb{Z}_p -modules. The ring \mathbb{Z}_p is quasi-Frobenius, in particular, the regular module \mathbb{Z}_p is injective; see [1, §30]. Both $\mathbb{Z}x$ and $\mathbb{Z}y$ are isomorphic to \mathbb{Z}_p , thus are injective \mathbb{Z}_p -modules. Therefore, both submodules of *A* are direct summands. Then we have isomorphisms $A \simeq \mathbb{Z}x \oplus A/\mathbb{Z}x \simeq$ $\mathbb{Z}y \oplus A/\mathbb{Z}y$. The required isomorphism follows from Krull-Schmidt Theorem; see [1, Theorem 12.9].

Remark 6. We assume that gcd(p, d) = 1.

(1) We consider the following embedding of t(L) in $L/\mathbb{Z}\vec{c}$

 $t(L) \xrightarrow{\operatorname{inc}} L \xrightarrow{\operatorname{can}} L/\mathbb{Z}\vec{c},$

where "inc" denotes the inclusion and "can" denotes the canonical projection. Indeed, this identifies t(L) as a direct summand of $L/\mathbb{Z}\vec{c}$. This statement follows from the decomposition $L = t(L) \oplus \mathbb{Z}\vec{y}$ and the inclusion $\mathbb{Z}\vec{c} \subseteq \mathbb{Z}\vec{y}$.

We mention that if $gcd(p, d) \neq 1$, t(L) might not be a direct summand of $L/\mathbb{Z}\vec{c}$. Take $\mathbf{p} = (4, 4)$ and $\mathbf{d} = (2, 2)$ for example.

(2) Proposition 1(2) implies that the group t(L) is isomorphic to H. However, the following natural homomorphism

$$t(L) \xrightarrow{\operatorname{inc}} L \xrightarrow{\operatorname{can}} H$$

is in general not an isomorphism. Here, we identify H with the quotient group $L/(\mathbb{Z}\vec{c} + \mathbb{Z}(\vec{x}_1 + \vec{x}_2 + \cdots + \vec{x}_t))$. For the non-isomorphism example, we may take $\mathbf{p} = (2, 2)$ and $\mathbf{d} = (1, 1)$.

Acknowledgements The author is supported by National Natural Science Foundation of China (No. 11201446) and NCET-12-0507.

References

- F.W. ANDERSON, AND K.R. FULLER, Rings and Categories of Modules, Second Edition, Springer-Verlag, New York Inc., 1992.
- [2] W. GEIGLE, AND H. LENZING, A class of weighted projective curves arising in representation theory of finite dimensional algebras, in: Singularities, representations of algebras and vector bundles, Lecture Notes in Math. 1273, 265–297, Springer, 1987.
- [3] H. LENZING, A K-theoretic study of canonical algebras, Can. Math. Soc. Conf. Proc. 18, 433–454, 1996.
- [4] H. LENZING, AND H. MELTZER, The automorphism group of the derived category for a weighted projective line, Comm. Algebra 28 (4) (2000), 1685–1700.

Xiao-Wu Chen

Key Laboratory of Wu Wen-Tsun Mathematics, Chinese Academy of Sciences

School of Mathematical Sciences, University of Science and Technology of China

No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China.

URL: http://home.ustc.edu.cn/~xwchen, E-mail: xwchen@mail.ustc.edu.cn.