THE RADICAL VECTORS OF CARTAN MATRICES

XIAO-WU CHEN

Let $C = (a_{ij})_{1 \leq i,j \leq n} \in M_n(\mathbb{Z})$ be a symmetric Cartan matrix. We identify C with its diagram Γ . We will assume that C is indecomposable, or equivalently, its diagram Γ is connected.

Consider the root lattice $\mathbb{Z}^n = \bigoplus_{1 \leq i \leq n} \mathbb{Z}\mathbf{e}_i$. The Tits form

$$(-,-):\mathbb{Z}^n\times\mathbb{Z}^n\longrightarrow\mathbb{Z}$$

is a symmetric bilinear form given by $(\mathbf{e}_i, \mathbf{e}_j) = a_{ij}$. The radical of the Tits form is given by

$$rad(-,-) = \{ \alpha \in \mathbb{Z}^n \mid (\alpha,-) = 0 \}.$$

Nonzero vectors in rad(-, -) are called radical vectors of the Cartan matrix C.

Lemma 1. Let $\alpha = \sum_{i=1}^{n} a_i \mathbf{e}_i$ be a nonzero vector. Then α is radical if and only if $2a_i = \sum_{j \neq i} |a_{ij}| a_j$ for each $1 \leq i \leq n$.

Proof. We just observe that $(\alpha, \mathbf{e}_i) = 2a_i + \sum_{j \neq i} a_{ij} a_i$ and that $a_{ij} \leq 0$ for $i \neq j$. \square

Example 2. The following two diagrams correspond to two Cartan matrices. We identify any vector $\sum_{i=1}^{n} a_i \mathbf{e}_i$ as a map, whose value on the i-th vertex is a_i . We write the value a_i on the i-th vertex. Then the following vectors are both radical.

$$1 = 1 - 0 - (-1) = (-1)$$

In the above examples, the radical vectors have alternating signs. In contrast, the following fact is remarkable; see [1, Section 2].

Proposition 3. Let C be an indecomposable Cartan matrix with a radical vector $\sum_i a_i \mathbf{e}_i$ such that $a_i \geq 0$ for each i. Then $a_i > 0$ for each i, and C is of affine type. In other words, the diagram Γ is of type \tilde{A}_n , \tilde{D}_n and $\tilde{E}_{6,7,8}$.

Date: November 2, 2019.

²⁰¹⁰ Mathematics Subject Classification. 17B67, 15A63.

Key words and phrases. Cartan matrix, radical, stat-shaped graph.

This paper belongs to a series of informal notes, without claim of originality.

Let $t \geq 2$ and $\mathbf{p} = (\mathbf{p_1}, \mathbf{p_2}, \dots, \mathbf{p_t})$ be a weight sequence such that $p_1 \geq p_2 \geq \dots \geq p_t \geq 2$. The star-shaped graph $T_{\mathbf{p}}$ is of the following form

Lemma 4. Consider the star-shaped graph $T_{\mathbf{p}}$. Then the corresponding Cartan matrix has a radical vector if and only if $\mathbf{p} = (6,3,2), (4,4,2), (3,3,3)$ or (2,2,2,2).

Proof. The "if" part is well known, once we observe that $T_{(6,3,2)} = \tilde{E}_8$, $T_{(4,4,2)} = \tilde{E}_7$, $T_{(3,3,3)} = \tilde{E}_6$ and $T_{(2,2,2,2)} = \tilde{D}_4$.

For the "only if" part, we take a radical vector $a_*\mathbf{e}_* + \sum_{i=1}^t \sum_{j=1}^{p_i-1} a_{(i,j)} \mathbf{e}_{(i,j)}$. By Lemma 1, we infer that $a_{(i,j)} = ja_{(i,1)}$ and $a_* = p_i a_{(i,1)}$ for any i,j. Therefore, we infer that each $a_{(i,j)}$ is nonzero and of the same sign. The identity $2a_* = \sum_{i=1}^t a_{(i,1)}$ yields

$$2 = \sum_{i=1}^{t} \frac{1}{p_i}.$$

The solutions of the above equation are well known.

Acknowledgements. We thank Xueqing Chen for helpful comments.

References

 S. BERMAN, R. MOODY, AND M. WONENBURGER, Cartan matrices with null roots and finite Cartan matrices, Indiana Univ. Math. J. 21 (12) (1972), 1091–1099.

Xiao-Wu Chen

Key Laboratory of Wu Wen-Tsun Mathematics, Chinese Academy of Sciences,

School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, P.R. China.

URL: http://home.ustc.edu.cn/ $^\sim$ xwchen

E-mail: xwchen@mail.ustc.edu.cn.