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PREPROJECTIVE ALGEBRAS

XIAO-WU CHEN

Abstract. We give a detailed proof on the 2-Calabi-Yau property of a pre-
projective algebra.

Let K be a field and Q = (Q0, Q1; s, t) be a finite quiver. Denote by KQ the
path algebra. For each vertex i, we denote by ei the corresponding idempotent. In
what follows, the unadorned tensor ⊗ means the tensor over K.

Lemma 1. We have a short exact sequence of KQ-KQ-bimodules.

0 −→
⊕
α∈Q1

KQet(α) ⊗Kα⊗ es(α)KQ
d−→

⊕
i∈Q0

KQei ⊗ eiKQ
µ−→ KQ −→ 0(0.1)

Here, µ is given by the multiplication of KQ, and d is uniquely determined by

d(et(α) ⊗ α⊗ es(α)) = α⊗ es(α) − et(α) ⊗ α.

Proof. We only point out that d admits the following retract.

r :
⊕
i∈Q0

KQei ⊗ eiKQ −→
⊕
α∈Q1

KQet(α) ⊗Kα⊗ es(α)KQ(0.2)

p⊗ q 7−→
∑

p=p1αp2

p1 ⊗ α⊗ p2q

Here, p and q are paths satisfying s(p) = t(q). If p is trivial, r(p ⊗ q) is set to be
zero. We mention that r is a homomorphism of right KQ-modules. �

We mention the following universal derivation of the extension KQ0 → KQ.

∆: KQ −→
⊕
α∈Q1

KQet(α) ⊗Kα⊗ es(α)KQ

p 7−→
∑

p=p1αp2

p1 ⊗ α⊗ p2

Here, p is a path of positive length. We set ∆(ei) = 0 for each vertex i.
Let A = KQ/I be a quotient algebra of KQ with respect to a two-sided ideal

I. Denote by π : KQ→ A the canonical projection. By definition, we have a short
exact sequence of KQ-KQ-bimodules.

ξ : 0 −→ I
inc−→ KQ π−→ A −→ 0.(0.3)

Consider the following map

(
⊕
α∈Q1

π ⊗Kα⊗ π) ◦∆: I −→
⊕
α∈Q1

Aet(α) ⊗Kα⊗ es(α)A.
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It is a pleasant exercise to prove that it is a homomorphism of KQ-KQ-bimodules.
Since it vanishes on I2, we have the following induced homomorphism of A-A-
bimodules.

c : I/I2 −→
⊕
α∈Q1

Aet(α) ⊗Kα⊗ es(α)A

The following result is standard; see [2, (1.2)].

Proposition 2. We have the following exact sequence of A-A-bimodules.

0 −→ I/I2 c−→
⊕
α∈Q1

Aet(α) ⊗Kα⊗ es(α)A
d′−→

⊕
i∈Q0

Aei ⊗ eiA
µ′−→ A −→ 0(0.4)

Here, µ′ is given by the multiplication of A and d′ is induced from d.

Proof. Applying −⊗KQ A to (0.1), we obtain the following exact sequence of KQ-
A-bimodules.

η : 0 −→
⊕
α∈Q1

KQet(α) ⊗Kα⊗ es(α)A
d⊗KQA−→

⊕
i∈Q0

KQei ⊗ eiA
µ⊗KQA−→ A −→ 0

Consider the tensor bicomplex ξ ⊗KQ η. We obtain the following commutative
diagram with exact rows and columns.

0

��

0

��⊕
α∈Q1

Iet(α) ⊗Kα⊗ es(α)A

��

//⊕
i∈Q0

Iei ⊗ eiA

��

// I/I2 //

0

��

0

0 //⊕
α∈Q1

KQet(α) ⊗Kα⊗ es(α)A

��

d⊗KQA//⊕
i∈Q0

KQei ⊗ eiA //

��

A // 0

⊕
α∈Q1

Aet(α) ⊗Kα⊗ es(α)A

��

//⊕
i∈Q0

Aei ⊗ eiA

��

// A

��

// 0

0 0 0

Here, we identify I ⊗KQ A with I/I2. The desired sequence follows by applying
the Snake Lemma to the upper part. To obtain the map c, we recall (0.2) and
implicitly use the fact that r ⊗KQ A is a retract of d⊗KQ A. �

In what follows, we apply the general consideration above to preprojective alge-
bras.

Denote by Q the double quiver of Q, which is obtained from Q by adding an
arrow α∗ in the converse direction for each α ∈ Q1; we will later identify α with
(α∗)∗. For any arrow β ∈ Q1, we set ε(β) = 1 if β ∈ Q1; otherwise, we set
ε(β) = −1.

The preprojective algebra of Q is defined as follows.

Π(Q) = KQ/(Σα∈Q1
[α, α∗]) = KQ/(Σβ∈Q1

ε(β)ββ∗)

In what follows, we write Π for Π(Q).
Denote by I the defining ideal above. For each i ∈ Q0, we set

ρi =
∑

{β∈Q1 | t(β)=i}

ε(β)ββ∗.
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Since the set {ρi | i ∈ Q0} generates I, we have a surjective homomorphism of
bimodules. ⊕

i∈Q0

Πei ⊗ eiΠ −→ I/I2, ei ⊗ ei 7−→ ρi + I2

By connecting this homomorphism with the sequence (0.4), we obtain the following
exact sequence of Π-Π-bimodules.

⊕
i∈Q0

Πei ⊗ eiΠ
c′−→

⊕
β∈Q1

Πet(β) ⊗Kβ ⊗ es(β)Π
d′−→

⊕
i∈Q0

Πei ⊗ eiΠ
µ−→ Π −→ 0

(0.5)

Here, µ is given by the multiplication of Π. The homomorphism c′ is uniquely
determined by the following identity.

c′(ei ⊗ ei) =
∑

{β∈Q1 | s(β)=i}

ε(β∗)β∗ ⊗ β ⊗ ei +
∑

{β∈Q1 | t(β)=i}

ε(β)ei ⊗ β ⊗ β∗

The following result is fundamental; compare [1, Propositions 3.3 and 3.1], [3,
Lemma 1] and [4, Subsection 8.5]. Denote by D the usual K-duality.

Proposition 3. Let M and N be finite dimensional Π-modules. Then we have a
functorial isomorphism

Ext1
Π(M,N) ' DExt1

Π(M,N).

Proof. By (0.5), we have the following exact sequence of left Π-modules.⊕
i∈Q0

Πei ⊗ eiM
f−→

⊕
β∈Q1

Πet(β) ⊗Kβ ⊗ es(β)M
g−→

⊕
i∈Q0

Πei ⊗ eiM −→M −→ 0

Here, f is induced by c′ and g is induced by d′. Consequently, Ext1
Π(M,N) is

isomorphic to the middle cohomolgy of the following complex.⊕
i∈Q0

(eiM, eiN)
g∗−→

⊕
β∈Q1

(Kβ ⊗ es(β)M, et(β)N)
f∗−→

⊕
i∈Q0

(eiM, eiN)(0.6)

Here, we write (−,−) for HomK(−,−). In particular, Ext1
Π(M,N) is finite dimen-

sional. By interchanging M and N and taking duality, we infer that DExt1
Π(N,M)

is isomorphic to the middle cohomology of the following complex.

⊕
i∈Q0

D(eiN, eiM)
D(f∗)−→

⊕
β∈Q1

D(Kβ ⊗ es(β)N, et(β)M)
D(g∗)−→

⊕
i∈Q0

D(eiN, eiM)

(0.7)

For the desired result, it suffices to show that the two complexes (0.6) and (0.7)
are isomorphic. To this end, we recall that for each vertex i, we have the following
canonical isomorphism

φi : (eiM, eiN)
∼−→ D(eiN, eiM), θ 7−→ (θ′ 7→ TreiM (θ′ ◦ θ)).

Here, θ : eiM → eiN and θ′ : eiN → eiM are linear maps, and Tr denotes the trace.
Similarly, for each arrow β ∈ Q1, we have an isomorphism

ψβ : (Kβ ⊗ es(β)M, et(β)N)
∼−→ D(Kβ∗ ⊗ es(β∗)N, et(β∗)M),

which sends θ : Kβ ⊗ es(β)M → et(β)N to the following map

θ′ 7−→ Tres(β)M (θ′(β∗ ⊗ θ(β ⊗−))).

Here, the blank takes values in es(β)M . We use the fact that t(β∗) = s(β).
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It remains to verify that the following two squares⊕
i∈Q0

(eiM, eiN)
g∗ //

⊕
i∈Q0

φi

��

⊕
β∈Q1

(Kβ ⊗ es(β)M, et(β)N)

⊕
β∈Q1

ε(β)ψβ

��⊕
i∈Q0

D(eiN, eiM)
D(f∗) //⊕

β∈Q1
D(Kβ ⊗ es(β)N, et(β)M)

and ⊕
β∈Q1

(Kβ ⊗ es(β)M, et(β)N)

⊕
β∈Q1

ε(β)ψβ

��

f∗ //⊕
i∈Q0

(eiM, eiN)

⊕
i∈Q0

φi

��⊕
β∈Q1

D(Kβ ⊗ es(β)N, et(β)M)
D(g∗) //⊕

i∈Q0
D(eiN, eiM)

commute.
We only verify the commutativity of the second square. For this, we fix α ∈ Q1,

j ∈ Q0, and two linear maps θ : Kα ⊗ es(α)M → et(α)N and h : ejN → ejM . The
linear function (

⊕
i∈Q0

φi) ◦ f∗(θ) sends h to

δs(α),j ε(α
∗)TrejM (h ◦ α∗θ(α⊗−)) + δt(α),j ε(α)TrejM (h ◦ θ(α⊗ α∗−)).

Here, the blank takes values in ejM . On the other hand, the linear function D(g∗)◦
(
⊕

β∈Q1
ε(β)ψβ) sends h to

δs(α∗),j ε(α)Tres(α)M (α∗h ◦ θ(α⊗−))− δt(α∗),j ε(α)TrejM (h ◦ α∗θ(α⊗−)).

Using the well-known symmetric property of trace maps, we infer that the two
elements above coincide. �

Remark 4. (1) Recall that the symmetric bilinear form

(−,−) : ZQ0 × ZQ0 −→ Z
is defined such that (x,y) =

∑
i∈Q0

2xiyi−
∑
β∈Q1

xs(β)yt(β). Consider the complex

(0.6). The isomorphism between (0.6) and (0.7) above implies that the rightmost
cohomology of (0.6) is isomorphic to DHomΠ(N,M). The leftmost cohomology is
clearly isomorphic to HomΠ(M,N). Combining these facts, we infer the following
identity in [3, Lemma 1].

(dimM,dim N) = dim HomΠ(M,N) + dim HomΠ(N,M)− dim Ext1
Π(M,N)

(2) Assume that Q is connected. It is well known that Π(Q) is finite dimensional
if and only if Q is Dynkin. In this situation, the isomorphism in Proposition 3
implies that Π(Q) is selfinjective and stably 2-Calabi-Yau.
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