ON TRIVIAL EXTENSIONS OF MONOMIAL ALGEBRAS

XIAO-WU CHEN

Abstract. We analyze the quivers and relations of trivial extensions of monomial algebras.

Let R be a commutative artinian ring with unit, and A be an artin R-algebra. Denote by $D = \text{Hom}_R(\cdot, E)$ the Matlis duality functor, where E is the injective envelope of $R/\text{rad}(R)$. We have the A-A-bimodule DA, whose actions are given by

$$(a.f.b)(x) = f(bxa)$$

for any $a,b,x \in A$ and $f \in DA$. We observe that R acts on DA centrally.

The trivial extension $TA = A \oplus DA$ of A is defined such that

$$(a,f)(b,g) = (ab, f.b + a.g).$$

It is a symmetric artin R-algebra. We observe that DA is a square-zero ideal of TA.

Lemma 1. We have $\text{rad}(TA) = \text{rad}(A) \oplus DA$ and then $\text{rad}^2(TA) = \text{rad}^2(A) \oplus \{\text{rad}(A).(DA) + (DA).\text{rad}(A)\}$. \[\square\]

Consequently, we have the following two isomorphisms:

$$TA/\text{rad}(TA) \cong A/\text{rad}(A);$$

$$\text{rad}(TA)/\text{rad}^2(TA) \cong \text{rad}(A)/\text{rad}^2(A) \oplus DA/\{\text{rad}(A).(DA) + (DA).\text{rad}(A)\} \cong \text{rad}(A)/\text{rad}^2(A) \oplus D(\text{soc}(A^A) \cap \text{soc}(A_A)).$$

(0.1)

They are very useful in computing the Ext-quiver of TA.

In what follows, we concentrate on monomial algebras. We fix a field k. Let $A = kQ/I$ be a finite dimensional algebra given by a quiver Q and a monomial admissible ideal I.

A nonzero path in A means a path in Q which does not lie in I. These nonzero paths form a standard basis of A. Then $DA = \text{Hom}_k(A,k)$ has the dual basis. The A-A-bimodule action on DA is given by truncations of paths. More precisely, for two nonzero paths a and p, we have

$$a.p^* = \begin{cases} b^*, & \text{if } p = ba \text{ for some nonzero path } b; \\ 0, & \text{otherwise}. \end{cases}$$

Similarly, we have

$$p^*.a = \begin{cases} c^*, & \text{if } p = ac \text{ for some nonzero path } c; \\ 0, & \text{otherwise}. \end{cases}$$

We say that a nonzero path p is maximal, if it is not a proper segment of any nonzero path in A. We observe that maximal paths form a basis for $\text{soc}(A^A) \cap \text{soc}(A_A)$...
We emphasize that the paths new ideal I are as follows: we set $Q = Q_0$ and

$$Q^e_1 = Q_1 \cup \{ p^* | p \text{ maximal paths in } A \};$$

we set $s(p^*) = t(p)$ and $t(p^*) = s(p)$.

We introduce three classes of new relations on Q^e:

1. the truncation relation yp^*x, with x, y nonzero paths satisfying $t(x) = t(p)$ and $s(y) = s(p)$ and that $p \neq xzy$ for any nonzero path z;
2. the square-zero relation p^*xq^*, with x any nonzero path satisfying $s(x) = s(q)$ and $t(x) = t(p)$; moreover, q starts with x and p terminates with x.
3. the overlap relation $yp^*x - qz^*$, with x, y, z, w nonzero paths satisfying $s(x) = s(w), t(y) = t(z), t(x) = t(p), s(y) = s(p), t(w) = t(q)$ and $s(z) = s(q)$; moreover, $p = xuy$ and $q = wuz$ for some nonzero path u.

We emphasize that the paths x, y, z, w and u above might be trivial paths. The new ideal I^e of kQ^e is defined to be generated by I and these new relations.

The following result is well known.

Proposition 2. Let $A = kQ/I$ be a monomial algebra as above. Then the trivial extension TA is isomorphic to kQ^e/I^e.

Proof. For the Gabriel quiver of TA, one needs to analyze the quotient space $\text{rad}(TA)/\text{rad}^2(TA)$. The proof of the precise relations of TA are more subtle, using the explicit basis and A-A-bimodule actions of DA.

Example 3. Let A be the path algebra of the following linear quiver.

![Linear quiver diagram]

The only maximal path is ba. Then TA is given by the following quiver

![Modified linear quiver diagram]

with the relations given by all paths of length four.

Let us consider the special case where A is radical square zero, that is, the ideal I is generated by all paths in Q with length two. To avoid the trivial cases, we assume that Q has no isolated vertices. Then maximal paths are precisely arrows in Q. Consequently, $Q^e = Q$ coincides with the double quiver of Q; the new relations are as follows:

1. the truncation relation $\beta\alpha^*$, with $\beta, \alpha \in Q_1$ satisfying $s(\beta) = s(\alpha)$ and $\beta \neq \alpha$;
2. the truncation relation $\alpha^*\gamma$, with $\alpha, \gamma \in Q_1$ satisfying $t(\alpha) = t(\gamma)$ and $\alpha \neq \gamma$;
3. the truncation relation $\alpha^*\alpha^*$, with $\alpha \in Q_1$;
4. the square-zero relation $\alpha^*\beta^*$, with $\alpha, \beta \in Q_1$ satisfying $s(\beta) = t(\alpha)$;
5. the square-zero relation $\alpha^*\alpha^*$, with $\alpha \in Q_1$;
6. the overlap relation $\alpha^*\alpha - \beta^*$, with $\alpha, \beta \in Q_1$ satisfying $t(\alpha) = t(\beta)$ and $\alpha \neq \beta$;
7. the overlap relation $\alpha^*\alpha - \gamma^*\gamma$, with $\alpha, \gamma \in Q_1$ satisfying $s(\alpha) = s(\gamma)$ and $\alpha \neq \gamma$;
8. the overlap relation $\alpha^*\alpha - \eta \eta^*$, with $\alpha, \eta \in Q_1$ satisfying $s(\alpha) = t(\eta)$.

We observe that I^e contains all paths of length three in Q.

Example 4. Let A' be the path algebra of the following bipartite quiver.

\[
\begin{array}{ccc}
1 & \alpha & 2 \\
\downarrow & \downarrow & \downarrow \\
\alpha^* & \beta & 3
\end{array}
\]

Then TA' is given by the following quiver

\[
\begin{array}{ccc}
1 & \alpha & 2 \\
\downarrow & \downarrow & \downarrow \\
\alpha^* & \beta & 3
\end{array}
\]

subject to the relations $\alpha^* \beta, \beta^* \alpha, \alpha \alpha^* - \beta \beta^*$. We observe that the set of the new relations listed above is usually not minimal.

Remark 5. By [1, Theorem 3.1 and Corollary 3.2], the above trivial extensions TA and TA' in the examples are derived equivalent, and thus stably equivalent.

We end this note with the trivial extension of a non-monomial algebra. For a general result, we refer to [2, Theorem 3.9].

Example 6. Let A be the algebra given by the following quiver

\[
\begin{array}{ccc}
1 & \alpha & 2 \\
\downarrow & \downarrow & \downarrow \\
\beta & \gamma & 4 \\
\downarrow & \downarrow & \downarrow \\
\delta & \gamma & 3
\end{array}
\]

with the relation $\beta \alpha - \gamma \delta$. Although A is not minimal, it still have a canonical basis given by paths. Denote by $c = \beta \alpha$ and by c^* the corresponding element in the dual basis. Then TA is given by the following quiver

\[
\begin{array}{ccc}
1 & \alpha & 2 \\
\downarrow & \downarrow & \downarrow \\
\beta & \gamma & 4 \\
\downarrow & \downarrow & \downarrow \\
\delta & \gamma & 3
\end{array}
\]

subject to the relations \{ $\beta \alpha - \gamma \delta$ \} $\cup \{ \delta c^*, \alpha c^* \gamma, c^* \beta \alpha c^* \}$.

References

Xiao-Wu Chen
Key Laboratory of Wu Wen-Tsun Mathematics, Chinese Academy of Sciences
School of Mathematical Sciences, University of Science and Technology of China
No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China.
URL: http://home.ustc.edu.cn/~xwchen, E-mail: xwchen@mail.ustc.edu.cn.