ON TRIVIAL EXTENSIONS OF MONOMIAL ALGEBRAS

XIAO-WU CHEN

Abstract. We analyze the quivers and relations of trivial extensions of monomial algebras.

Let R be a commutative artinian ring with unit, and A be an $\operatorname{artin} R$-algebra. Denote by $D=\operatorname{Hom}_{R}(-, E)$ the Matlis duality functor, where E is the injective envelope of $R / \operatorname{rad}(R)$. We have the A - A-bimodule $D A$, whose actions are given by

$$
(a . f . b)(x)=f(b x a)
$$

for any $a, b, x \in A$ and $f \in D A$. We observe that R acts on $D A$ centrally.
The trivial extension $T A=A \oplus D A$ of A is defined such that

$$
(a, f)(b, g)=(a b, f . b+a . g)
$$

It is a symmetric artin R-algebra. We observe that $D A$ is a square-zero ideal of $T A$.
Lemma 1. We have $\operatorname{rad}(T A)=\operatorname{rad}(A) \oplus D A$ and then $\operatorname{rad}^{2}(T A)=\operatorname{rad}^{2}(A) \oplus$ $\{\operatorname{rad}(A) \cdot(D A)+(D A) \cdot \operatorname{rad}(A)\}$.

Consequently, we have the following two isomorphisms:

$$
\begin{align*}
T A / \operatorname{rad}(T A) & \simeq A / \operatorname{rad}(A) ; \\
\operatorname{rad}(T A) / \operatorname{rad}^{2}(T A) & \simeq \operatorname{rad}(A) / \operatorname{rad}^{2}(A) \oplus D A /\{\operatorname{rad}(A) \cdot(D A)+(D A) \cdot \operatorname{rad}(A)\} \\
& \simeq \operatorname{rad}(A) / \operatorname{rad}^{2}(A) \oplus D\left(\operatorname{soc}\left({ }_{A} A\right) \cap \operatorname{soc}\left(A_{A}\right)\right) \tag{0.1}
\end{align*}
$$

They are very useful in computing the Ext-quiver of $T A$.
In what follows, we concentrate on monomial algebras. We fix a field k. Let $A=k Q / I$ be a finite dimensional algebra given by a quiver Q and a monomial admissible ideal I.

A nonzero path in A means a path in Q which does not lie in I. These nonzero paths form a standard basis of A. Then $D A=\operatorname{Hom}_{k}(A, k)$ has the dual basis. The A - A-bimodule action on $D A$ is given by truncations of paths. More precisely, for two nonzero paths a and p, we have

$$
a \cdot p^{*}=\left\{\begin{array}{l}
b^{*}, \text { if } p=b a \text { for some nonzero path } b ; \\
0, \text { otherwise }
\end{array}\right.
$$

Similarly, we have

$$
p^{*} . a=\left\{\begin{array}{l}
c^{*}, \text { if } p=a c \text { for some nonzero path } c \\
0, \text { otherwise }
\end{array}\right.
$$

We say that a nonzero path p is maximal, if it is not a proper segment of any nonzero path in A. We observe that maximal paths form a basis for $\operatorname{soc}\left({ }_{A} A\right) \cap$

Date: November 3, 2021.
2010 Mathematics Subject Classification. 16G20, 16S99.
Key words and phrases. trivial extension, quiver with relations.
This paper belongs to a series of informal notes, without claim of originality.
$\operatorname{soc}\left(A_{A}\right)$. In view of (0.1), we expect that maximal paths are related to the Gabriel quiver of $T A$.

We define a new quiver $Q^{\text {te }}$, containing Q, as follows: $Q_{0}^{\text {te }}=Q_{0}$ and

$$
Q_{1}^{\mathrm{te}}=Q_{1} \cup\left\{p^{*} \mid p \text { maximal paths in } A\right\}
$$

we set $s\left(p^{*}\right)=t(p)$ and $t\left(p^{*}\right)=s(p)$.
We introduce three classes of new relations on $Q^{\text {te }}$:
(1) the truncation relation $y p^{*} x$, with x, y nonzero paths satisfying $t(x)=t(p)$ and $s(y)=s(p)$ and that $p \neq x z y$ for any nonzero path z;
(2) the square-zero relation $p^{*} x q^{*}$, with x any nonzero path satisfying $s(x)=$ $s(q)$ and $t(x)=t(p)$; moreover, q starts with x and p terminates with x.
(3) the overlap relation $y p^{*} x-z q^{*} w$, with x, y, z, w nonzero paths satisfying $s(x)=s(w), t(y)=t(z), t(x)=t(p), s(y)=s(p), t(w)=t(q)$ and $s(z)=$ $s(q)$; moreover, $p=x u y$ and $q=w u z$ for some nonzero path u.
We emphasize that the paths x, y, z, w and u above might be trivial paths. The new ideal $I^{\text {te }}$ of $k Q^{\text {te }}$ is defined to be generated by I and these new relations.

The following result is well known.
Proposition 2. Let $A=k Q / I$ be a monomial algebra as above. Then the trivial extension $T A$ is isomorphic to $k Q^{\mathrm{te}} / I^{\mathrm{te}}$.

Proof. For the Gabriel quiver of $T A$, one needs to analyze the quotient space $\operatorname{rad}(T A) / \operatorname{rad}^{2}(T A)$. The proof of the precise relations of $T A$ are more subtle, using the explicit basis and A - A-bimodule actions of $D A$.

Example 3. Let A be the path algebra of the following linear quiver.

$$
1 \xrightarrow{a}>2 \xrightarrow{b} 3
$$

The only maximal path is ba. Then $T A$ is given by the following quiver

with the relations given by all paths of length four.
Let us consider the special case where A is radical square zero, that is, the ideal I is generated by all paths in Q with length two. To avoid the trivial cases, we assume that Q has no isolated vertices. Then maximal paths are precisely arrows in Q. Consequently, $Q^{\text {te }}=\bar{Q}$ coincides with the double quiver of Q; the new relations are as follows:
(1) the truncation relation $\beta \alpha^{*}$, with $\beta, \alpha \in Q_{1}$ satisfying $s(\beta)=s(\alpha)$ and $\beta \neq \alpha$;
the truncation relation $\alpha^{*} \gamma$, with $\alpha, \gamma \in Q_{1}$ satisfying $t(\alpha)=t(\gamma)$ and $\alpha \neq \gamma$;
the truncation relation $\alpha \alpha^{*} \alpha$, with $\alpha \in Q_{1}$;
(2) the square-zero relation $\alpha^{*} \beta^{*}$, with $\alpha, \beta \in Q_{1}$ satisfying $s(\beta)=t(\alpha)$; the square-zero relation $\alpha^{*} \alpha \alpha^{*}$, with $\alpha \in Q_{1}$;
(3) the overlap relation $\alpha \alpha^{*}-\beta \beta^{*}$, with $\alpha, \beta \in Q_{1}$ satisfying $t(\alpha)=t(\beta)$ and $\alpha \neq \beta$;
the overlap relation $\alpha^{*} \alpha-\gamma^{*} \gamma$, with $\alpha, \gamma \in Q_{1}$ satisfying $s(\alpha)=s(\gamma)$ and $\alpha \neq \gamma$;
the overlap relation $\alpha^{*} \alpha-\eta \eta^{*}$, with $\alpha, \eta \in Q_{1}$ satisfying $s(\alpha)=t(\eta)$.
We observe that $I^{\text {te }}$ contains all paths of length three in \bar{Q}.

Example 4. Let A^{\prime} be the path algebra of the following bipartite quiver.

$$
1 \stackrel{\alpha}{\longleftrightarrow} 2 \stackrel{\beta}{\leftarrow} 3
$$

Then $T A^{\prime}$ is given by the following quiver

$$
1 \underset{\alpha^{*}}{\stackrel{\alpha}{\underset{~}{\longleftrightarrow}}} 2 \underset{\beta^{*}}{\stackrel{\beta}{\leftarrow}} 3,
$$

subject to the relations $\alpha^{*} \beta, \beta^{*} \alpha, \alpha \alpha^{*}-\beta \beta^{*}$. We observe that the set of the new relations listed above is usually not minimal.

Remark 5. By [1, Theorem 3.1 and Corollary 3.2], the above trivial extensions $T A$ and $T A^{\prime}$ in the examples are derived equivalent, and thus stably equivalent.

We end this note with the trivial extension of a non-monomial algebra. For a general result, we refer to [2, Theorem 3.9].

Example 6. Let A be the algebra given by the following quiver

with the relation $\beta \alpha-\gamma \delta$. Although A is not minimal, it still have a canonical basis given by paths. Denote by $c=\beta \alpha$ and by c^{*} the corresponding element in the dual basis. Then $T A$ is given by the following quiver

subject to the relations $\{\beta \alpha-\gamma \delta\} \cup\left\{\delta c^{*} \beta, \alpha c^{*} \gamma, c^{*} \beta \alpha c^{*}\right\}$.

References

[1] J. Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (1989), 303-317.
[2] E.A. Fernández, and M. Platzeck, Presentations of trivial xxtensions of finite dimensional algebras and a theorem of Sheila Brenner, J. Algebra 249 (2002), 326-344.

Xiao-Wu Chen
Key Laboratory of Wu Wen-Tsun Mathematics, Chinese Academy of Sciences School of Mathematical Sciences, University of Science and Technology of China No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China.
URL: http://home.ustc.edu.cn $/ \sim^{\sim}$ xwchen, E-mail: xwchen@mail.ustc.edu.cn.

