ANTICHAIN-FINITENESS AND DICKSON'S LEMMA

XIAO-WU CHEN

Let $X = (X, \preceq)$ be a partially ordered set, a poset for short. Recall that X is noetherian, provided that any ascending chain of elements in X stabilizes. Dually, it is artianin if any descending chain of elements stabilizes. Denote by $\max(X)$ the subset consisting of maximal elements in X, and by $\min(X)$ the subset consisting of minimal elements in X. A subset S of X is called an *antichain* if any distinct elements in S are incomparable. For example, both $\max(X)$ and $\min(X)$ are antichains.

The poset X is said to be *antichain-finite* provided that any antichain in X is finite.

Proposition 1. Let X be an antichain-finite poset, which is both noetherian and artinian. Then X is finite.

Proof. We assume on the contrary that X is infinite. Set $X_0 = \min(X)$ and $X_1 = \min(X \setminus X_0)$. Inductively, we set

 $X_n = \min(X \setminus (X_0 \cup X_1 \cup \dots \cup X_{n-1})).$

Each X_n is an antichain, and thus finite. Moreover, each X_n is nonempty, since otherwise $X = X_0 \cup X_1 \cup \cdots \cup X_{n-1}$, which contradicts to the infiniteness of X.

The following fact will be useful. For any $x \in X_n$ and $y \leq x$, we have $y \in \bigcup_{i=0}^n X_n$. Otherwise, y belongs to $X \setminus (X_0 \cup X_1 \cup \cdots \cup X_{n-1})$. Since x is minimal in $X \setminus (X_0 \cup X_1 \cup \cdots \cup X_{n-1})$ and $y \leq x$, we have y = x.

Write $X' = \bigcup_{n \ge 0} X_n$, which is a disjoint union of finite nonempty subsets. In particular, the set $\overline{X'}$ is infinite. The subset $\max(X')$ is an antichain, and thus finite. Set $\max(X') = \{y_1, \dots, y_m\}$. Take n_0 sufficiently large such that each y_j belongs to $\bigcup_{0 \le n \le n_0} X_n$. For each element z in X', there exists some y_j satisfying $z \le y_j$. By the fact above, we infer that z belongs to $\bigcup_{0 \le n \le n_0} X_i$. This is impossible, since $\bigcup_{0 \le n < n_0} X_i$ is finite.

Let $Y = (Y, \preceq)$ be another poset. The product poset $X \times Y$ is defined such that $(x, y) \preceq (x', y')$ if and only if $x \preceq x'$ and $y \preceq y'$.

The following fact is immediate.

Lemma 2. Assume that both X and Y are noetherian. Then so is the product poset $X \times Y$.

In contrast, we have the following fact.

Example 3. The set \mathbb{Z} of integers is certainly antichain-finite. However, the product \mathbb{Z}^2 is not antichain-finite.

The following result can be found in [2, Chapter 2, Exercise 2.20].

Date: April 6, 2025.

²⁰¹⁰ Mathematics Subject Classification. 06A06, 06F10.

Key words and phrases. partially order set, antichain-finite, chain conditions.

This paper belongs to a series of informal notes, without claim of originality.

Proposition 4. Let X and Y be two posets, which are both noetherian and antichainfinite. Then so is the product poset $X \times Y$.

Proof. In view of Lemma 2, it suffices to prove the antichain-finiteness. Let $S \subseteq X \times Y$ be an antichain. Consider $X_S = \{x \in X \mid \text{there exists some } (x, y) \in S\}$. We claim that X_S is artinian.

For the claim, we assume on the contrary that there is a strictly descending chain

$$x_0 \succ x_1 \succ x_2 \succ \cdots$$

in X_S . For each $i \ge 0$, we take $y_i \in Y$ with $(x_i, y_i) \in S$. Since S is an antichain, we infer that these y_i 's are pairwise distinct; moreover, whenever i < j, the inequality $y_j \preceq y_i$ does not hold. Consider the following set.

 $Y' = \{y_i \mid i \ge 0, \text{ there exists no such } j > i \text{ with } y_j \succ y_i\}$

We infer that Y' is an antichain in Y, and thus finite. Take $m_0 = |Y'| + 1$. Then y_{m_0} does not belong to Y'. Therefore, we have some $m_1 > m_0$ with $y_{m_1} \succ y_{m_0}$. We iterate this process and obtain a strict ascending chain

$$y_{m_0} \prec y_{m_1} \prec y_{m_2} \prec \cdots$$

in Y, which leads to a contradiction.

We use the claim and Proposition 1 to infer that X_S is finite. Similarly, the set $Y_S = \{y \in Y \mid \text{there exists some } (x, y) \in S\}$ is also finite. It follows that S is finite, as required.

By duality, we have the following result.

Proposition 5. Let X and Y be two posets, which are both artinian and antichainfinite. Then so is the product poset $X \times Y$.

The following immediate consequence of Proposition 5 is due to [1, Lemma A].

Corollary 6. (Dickson's Lemma) For each $m \ge 1$, the product poset \mathbb{N}^m is antichainfinite.

Remark 7. Let k be any field. We mention that Dickson's Lemma can be proved directly by the following well-known fact: any monomial ideal in the polynomial algebra $k[x_1, \dots, x_m]$ is finitely generated.

Acknowledgements. The author thanks Shengjun Xu, from whom he learns the material.

References

- L.E. DICKSON, Finiteness of the odd perfect and primitive abundant numbers with distinct prime factors, Amer. J. Math. 35 (4) (1913), 413–422.
- [2] G.J. LEUSCHKE, AND R. WIEGAND, Cohen-Macaulay Representations, Math. Surveys Mono. 81, Amer. Math. Soc., Province Rhode Island, 2012.

Xiao-Wu Chen

School of Mathematical Sciences, University of Science and Technology of China No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China.

URL: http://home.ustc.edu.cn/ $^{\sim}xwchen,$ E-mail: xwchen@mail.ustc.edu.cn.