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A NOTE ON TORSION PAIRS

XIAO-WU CHEN

Abstract. For any given torsion pair in the module category over an artin
algebra, we obtain an equation involving the cardinalities of indecomposable

Ext-projectives and Ext-injectives. The equation implies the following well-

known result: the torsion class is functorially finite if and only if so is the
torsionfree class.

Let A be an artin algebra over a commutative artinian ring k. We denote
by A-mod the category of finitely generated left A-modules. By subcategories of
A-mod, we always mean full additive subcategories which are closed under direct
summands.

We identify modules if they are isomorphic. We denote by n(A) the number of
simple A-modules. For a module M , we denote by µ(M) the number of indecom-
posable modules, which are isomorphic to a direct summand of M .

Recall that a torsion pair in A-mod consists of a pair (T ,F) of subcategories
such that T = {X| HomA(X,F ) = 0 for all F ∈ F} and F = {Y | HomA(T, Y ) =
0 for all T ∈ T }, where we call T a torsion class and F a torsionfree class. In this
case, for each module M there is a canonical exact sequence

0 −→ t(M) −→M −→M/t(M) −→ 0

with t(M) ∈ T and M/t(M) ∈ F . We observe that a subcategory is a torsion class
if and only if it is closed under extensions and factor modules.

Let C be a subcategory and M an A-module. By a right C-approximation of M ,
we mean a morphism f : C → M with C ∈ C such that any morphism t : C ′ → M
with C ′ ∈ C admits a factorization t = f◦t′ for some t′ : C ′ → C. The subcategory C
is contravariantly finite provided that each A-module has a right C-approximation.

Dually, one has the notions of a left C-approximation and a covariantly finite
subcategory. A subcategory is functorially finite if it is both contravariantly finite
and covariantly finite.

We observe that a torsion class T is contravariantly finite, since the monomor-
phism t(M) → M in the canonical sequence is a right T -approximation of M .
Similarly, a torsionfree class is covariantly finite.

For a subcategory C which is closed under extensions, an object X ∈ C is Ext-
projective if Ext1A(X,−) vanishes on C. We denote by exp(C) the cardinality of
indecomposable Ext-projective objects in C. Dually, one has the notion of Ext-
injective objects and the cardinality exi(C).

The following result is implicitly contained in the proof of [8, Theorem], where
the “if” part of the second statement is essentially due to [4, Theorem A.6].

Proposition 1. Let T be a torsion class in A-mod. Then we have

exp(T ) ≤ exi(T ) ≤ n(A).
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Moreover, exp(T ) = exi(T ) if and only if T is covariantly finite.

For the proof, we make some preparation. We emphasize that the classical tilting
theory is essentially used in the following argument.

For a module M , we denote by fac(M) the subcategory formed by modules
generated by M , that is, factor modules of finite direct sums of copies of M . A
module M is τ -rigid if HomA(M, τ(M)) = 0, where τ denotes the Auslander-Reiten
translation.

Lemma 2. Let T be a torsion class. Then the following statements are equivalent.

(1) The subcategory T is covariantly finite.
(2) T = fac(M) for some τ -rigid module M .
(3) T = fac(M) for some module M .

Proof. The equivalence between (1) and (3) is contained in [2, Proposition 4.6(c)].
To see “(3)⇒(2)”, we may assume that M is minimal in the sense of [1, 1.2] and
then apply [3, Propositions 5.5 and 5.8]. �

The second statement of the following result is due to [7, Lemma 4]; compare [4,
Corollary A.4].

Lemma 3. Let T be a torsion class, which contains all injective A-modules. Then
the following facts hold.

(1) An object X in T is Ext-injective if and only if it is an injective A-module.
(2) Any Ext-projective object in T has projective dimension at most one.

Proof. For (1), we only prove the “only if” part. Take an exact sequence 0→ X →
I → C → 0 with I injective. Then C lies in T . Since X is Ext-injective, the
sequence splits. It follows that X is injective.

Let Y be an Ext-projective object. For any module M , we take an exact sequence
0→ M → I ′ → C ′ → 0 with I ′ injective. Then we have C ′ ∈ T . By a dimension-
shift, we have Ext2A(Y,M) ' Ext1A(Y,C ′), which equals zero by the Ext-projectivity
of Y . Then we are done. �

An A-module T is partial tilting if Ext1A(T, T ) = 0 and its projective dimension is
at most one. A partial tilting module T is tilting if µ(T ) = n(A). This is equivalent
to the original definition in [6] by [5, 2.1]. For a module X, we denote by add X
the subcategory consisting of direct summands of finite direct sums of X.

Lemma 4. The following statements hold.

(1) For any partial tilting A-module T , we have µ(T ) ≤ n(A).
(2) For a faithful partial tilting module T , there is a tilting module X = T ⊕T ′

with fac(X) = fac(T ).
(3) For a tilting A-module T , we have T = fac(T ) = {M | Ext1A(T,M) = 0}

and exp(T ) = exi(T ) = n(A).

Proof. (1) is contained in [5, 2.1], and (3) is contained in [1, Lemma 1.6 and Corol-
lary 1.8]. For (2), we take a monomorphism f : A → Tn which is a left (add T )-
approximation of A. Set T ′ to be the cokernel. Then X = T ⊕ T ′ is a tilting
module; compare the last paragraph in the proof of [1, Lemma 3.1]. �

Proof of Proposition 1. We denote by Ann(T ) the ideal of A, which is the inter-
section of the annihilators of all modules in T . Let A′ = A/Ann(T ). We view T
as a subcategory in A′-mod.

We observe that T contains a faithful A′-module. Indeed, there is some module
M ∈ T , whose annihilator coincides with Ann(T ). Then M is a faithful A′-module.
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It follows that M generates all injective A′-modules. In particular, T contains all
injective A′-modules. By Lemma 3(1), we have exi(T ) = n(A′) ≤ n(A). Moreover,
any Ext-projective object Y in T is a partial tilting A′-module, and thus µ(Y ) ≤
n(A′) by Lemma 4(1). It implies that exp(T ) ≤ n(A′).

It remains to prove the second statement. For the “only if” part, we assume that

exp(T ) = exi(T ), which equals n(A′). Take the direct sum Y =
⊕n(A′)

i=1 Ti of all
the indecomposable Ext-projectives. Then Y is a tilting A′-module. We observe
that fac(Y ) ⊆ T ⊆ {M ∈ A′-mod | Ext1A′(Y,M) = 0}. Then we have equalities by
Lemma 4(3). Then T is covariantly finite by Lemma 2.

For the “if” part, we may assume that T = fac(M) for a faithful A′-module
M which is τ -rigid; see Lemma 2. In particular, M is a partial tilting A′-module;
compare [1, Lemma 1.5]. By Lemma 4(2), we have T = fac(T ) for some tilting
A′-module T . Then we are done by Lemma 4(3). �

We have the following dual of Proposition 1.

Proposition 5. Let F be a torsionfree class in A-mod. Then we have

exi(F) ≤ exp(F) ≤ n(A).

Moreover, exi(F) = exp(F) if and only if F is contravariantly finite. �

Let (T ,F) be a torsion pair. An almost split sequence 0→ τ(X)→ E → X → 0
of A-modules is connecting provided that X ∈ T and τ(X) ∈ F .

We denote by c the cardinality of connecting sequences. We denote by p the
number of indecomposable projective A-modules contained in T , and by i the
number of indecomposable injective A-modules contained in F .

We have the following main result, whose last statement is due to [8].

Theorem 6. Let (T ,F) be a torsion pair in A-mod. Then we have

exi(T )− exp(T ) = exp(F)− exi(F) = n(A)− p− i− c ≥ 0.

In particular, T is covariantly finite if and only if F is contravariantly finite.

The essential argument is contained in the following result.

Lemma 7. Let (T ,F) be a torsion pair. Then the following facts hold.

(1) An indecomposable object X in T is Ext-injective if and only if X ' t(I)
for an indecomposable injective A-module I, which is not contained in F .

(2) An indecomposable object Y in F is Ext-projective if and only if X '
P/t(P ) for an indecomposable projective A-module P , which is not con-
tained in T .

(3) There is a bijection between

{indec. non-proj. Ext-projectives in T } ↔ {indec. non-inj. Ext-injectives in F}
sending X to τ(X), which are in a bijection to the set of connecting se-
quences.

Proof. (1) and (2) are contained in [3, Propositions 3.1 and 3.2], and (3) follows
from [3, Corollaries 3.4 and 3.7]; compare [1, Lemma 1.4]. �

The following counting argument resembles the ones in [7, Lemma 6] and [8,
Theorem].

Proof of Theorem 6. By Lemma 7(1) and(2), we have exi(T ) = n(A) − i and
exp(F) = n(A) − p. By the bijections in Lemma 7(3), we have exp(T ) − p =
exi(F)− i = c. Combining these equations, we deduce the required equation.

In view of Propositions 1 and 5, the last statement follows immediately. �
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