A NOTE ON TORSION PAIRS

XIAO-WU CHEN

Abstract. For any given torsion pair in the module category over an artin algebra, we obtain an equation involving the cardinalities of indecomposable Ext-projectives andExt-injectives. The equation implies the following well-known result: the torsion class is functorially finite if and only if so is the torsionfree class.

Let A be an artin algebra over a commutative artinian ring k. We denote by A-mod the category of finitely generated left A-modules. By subcategories of A-mod, we always mean full additive subcategories which are closed under direct summands.

We identify modules if they are isomorphic. We denote by $n(A)$ the number of simple A-modules. For a module M, we denote by $\mu(M)$ the number of indecomposable modules, which are isomorphic to a direct summand of M.

Recall that a torsion pair in A-mod consists of a pair $(\mathcal{T}, \mathcal{F})$ of subcategories such that $\mathcal{T} = \{X | \text{Hom}_A(X,F) = 0 \text{ for all } F \in \mathcal{F}\}$ and $\mathcal{F} = \{Y | \text{Hom}_A(T,Y) = 0 \text{ for all } T \in \mathcal{T}\}$, where we call \mathcal{T} a torsion class and \mathcal{F} a torsionfree class. In this case, for each module M there is a canonical exact sequence

$$0 \longrightarrow t(M) \longrightarrow M \longrightarrow M/t(M) \longrightarrow 0$$

with $t(M) \in \mathcal{T}$ and $M/t(M) \in \mathcal{F}$. We observe that a subcategory is a torsion class if and only if it is closed under extensions and factor modules.

Let C be a subcategory and M an A-module. By a right C-approximation of M, we mean a morphism $f : C \rightarrow M$ with $C \in C$ such that any morphism $t : C' \rightarrow M$ with $C' \in C$ admits a factorization $t = f \circ t'$ for some $t' : C' \rightarrow C$. The subcategory C is contravariantly finite provided that each A-module has a right C-approximation.

Dually, one has the notions of a left C-approximation and a covariantly finite subcategory. A subcategory is functorially finite if it is both contravariantly finite and covariantly finite.

We observe that a torsion class \mathcal{T} is contravariantly finite, since the monomorphism $t(M) \rightarrow M$ in the canonical sequence is a right \mathcal{T}-approximation of M. Similarly, a torsionfree class is covariantly finite.

For a subcategory \mathcal{C} which is closed under extensions, an object $X \in \mathcal{C}$ is Ext-projective if $\text{Ext}^1_A(X, -)$ vanishes on \mathcal{C}. We denote by $\exp(\mathcal{C})$ the cardinality of indecomposable Ext-projective objects in \mathcal{C}. Dually, one has the notion of Ext-injective objects and the cardinality $\text{exi}(\mathcal{C})$.

The following result is implicitly contained in the proof of [8, Theorem], where the “if” part of the second statement is essentially due to [4, Theorem A.6].

Proposition 1. Let \mathcal{T} be a torsion class in A-mod. Then we have

$$\exp(\mathcal{T}) \leq \text{exi}(\mathcal{T}) \leq n(A).$$
Moreover, \(\exp(\mathcal{T}) = \text{exi}(\mathcal{T}) \) if and only if \(\mathcal{T} \) is covariantly finite.

For the proof, we make some preparation. We emphasize that the classical tilting theory is essentially used in the following argument.

For a module \(M \), we denote by \(\text{fac}(M) \) the subcategory formed by modules generated by \(M \), that is, factor modules of finite direct sums of copies of \(M \). A module \(M \) is \(\tau \)-rigid if \(\text{Hom}_A(M, \tau(M)) = 0 \), where \(\tau \) denotes the Auslander-Reiten translation.

Lemma 2. Let \(\mathcal{T} \) be a torsion class. Then the following statements are equivalent.

1. The subcategory \(\mathcal{T} \) is covariantly finite.
2. \(\mathcal{T} = \text{fac}(M) \) for some \(\tau \)-rigid module \(M \).
3. \(\mathcal{T} = \text{fac}(M) \) for some module \(M \).

Proof. The equivalence between (1) and (3) is contained in [2, Proposition 4.6(c)]. To see “(3)⇒(2)”, we may assume that \(M \) is minimal in the sense of [1, 1.2] and then apply [3, Propositions 5.5 and 5.8].

The second statement of the following result is due to [7, Lemma 4]; compare [4, Corollary A.4].

Lemma 3. Let \(\mathcal{T} \) be a torsion class, which contains all injective \(A \)-modules. Then the following facts hold.

1. An object \(X \) in \(\mathcal{T} \) is Ext-injective if and only if it is an injective \(A \)-module.
2. Any Ext-projective object in \(\mathcal{T} \) has projective dimension at most one.

Proof. For (1), we only prove the “only if” part. Take an exact sequence \(0 \to X \to I \to C \to 0 \) with \(I \) injective. Then \(C \) lies in \(\mathcal{T} \). Since \(X \) is Ext-injective, the sequence splits. It follows that \(X \) is injective.

Let \(Y \) be an Ext-projective object. For any module \(M \), we take an exact sequence \(0 \to M \to I' \to C' \to 0 \) with \(I' \) injective. Then we have \(C' \in \mathcal{T} \). By a dimension-shift, we have \(\text{Ext}_A^1(Y, M) \simeq \text{Ext}_A^1(Y, C') \), which equals zero by the Ext-projectivity of \(Y \). Then we are done.

An \(A \)-module \(T \) is partial tilting if \(\text{Ext}_A^1(T, T) = 0 \) and its projective dimension is at most one. A partial tilting module \(T \) is tilting if \(\mu(T) = n(A) \). This is equivalent to the original definition in [6] by [5, 2.1]. For a module \(X \), we denote by \(\text{add} X \) the subcategory consisting of direct summands of finite direct sums of \(X \).

Lemma 4. The following statements hold.

1. For any partial tilting \(A \)-module \(T \), we have \(\mu(T) \leq n(A) \).
2. For a faithful partial tilting module \(T \), there is a tilting module \(X = T \oplus T' \) with \(\text{fac}(X) = \text{fac}(T) \).
3. For a tilting \(A \)-module \(T \), we have \(\mathcal{T} = \text{fac}(T) = \{ M \mid \text{Ext}_A^1(T, M) = 0 \} \) and \(\exp(T) = \text{exi}(T) = n(A) \).

Proof. (1) is contained in [5, 2.1], and (3) is contained in [1, Lemma 1.6 and Corollary 1.8]. For (2), we take a monomorphism \(f: A \to T'' \) which is a left (add \(T' \))-approximation of \(A \). Set \(T' \) to be the cokernel. Then \(X = T \oplus T' \) is a tilting module; compare the last paragraph in the proof of [1, Lemma 3.1].

Proof of Proposition 1. We denote by \(\text{Ann}(\mathcal{T}) \) the ideal of \(A \), which is the intersection of the annihilators of all modules in \(\mathcal{T} \). Let \(A' = A/\text{Ann}(\mathcal{T}) \). We view \(\mathcal{T} \) as a subcategory in \(A' \)-mod.

We observe that \(\mathcal{T} \) contains a faithful \(A' \)-module. Indeed, there is some module \(M \in \mathcal{T} \), whose annihilator coincides with \(\text{Ann}(\mathcal{T}) \). Then \(M \) is a faithful \(A' \)-module.
It follows that M generates all injective A'-modules. In particular, \mathcal{T} contains all injective A'-modules. By Lemma 3(1), we have $\text{exi}(\mathcal{T}) = n(A') \leq n(A)$. Moreover, any Ext-projective object Y in \mathcal{T} is a partial tilting A'-module, and thus $\mu(Y) \leq n(A')$ by Lemma 4(1). It implies that $\exp(\mathcal{T}) \leq n(A')$.

It remains to prove the second statement. For the “only if” part, we assume that $\exp(\mathcal{T}) = \text{exi}(\mathcal{T})$, which equals $n(A')$. Take the direct sum $Y = \bigoplus_{i=1}^{n(A')} T_i$ of all the indecomposable Ext-projectives. Then Y is a tilting A'-module. We observe that $\text{fac}(Y) \subseteq \mathcal{T} \subseteq \{M \in A'\text{-mod} | \text{Ext}^1_{A'}(Y, M) = 0\}$. Then we have equalities by Lemma 4(3). Then \mathcal{T} is covariantly finite by Lemma 2.

For the “if” part, we may assume that $\mathcal{T} = \text{fac}(M)$ for a faithful A'-module M which is τ-rigid; see Lemma 2. In particular, M is a partial tilting A'-module; compare [1, Lemma 1.5]. By Lemma 4(2), we have $\mathcal{T} = \text{fac}(T)$ for some tilting A'-module T. Then we are done by Lemma 4(3). □

We have the following dual of Proposition 1.

Proposition 5. Let \mathcal{F} be a torsionfree class in A-mod. Then we have
\[\text{exi}(\mathcal{F}) \leq \exp(\mathcal{F}) \leq n(A). \]
Moreover, $\text{exi}(\mathcal{F}) = \exp(\mathcal{F})$ if and only if \mathcal{F} is contravariantly finite. □

Let $(\mathcal{T}, \mathcal{F})$ be a torsion pair. An almost split sequence $0 \to \tau(X) \to E \to X \to 0$ of A-modules is connecting provided that $X \in \mathcal{T}$ and $\tau(X) \in \mathcal{F}$.

We denote by c the cardinality of connecting sequences. We denote by p the number of indecomposable projective A-modules contained in \mathcal{T}, and by i the number of indecomposable injective A-modules contained in \mathcal{F}.

We have the following main result, whose last statement is due to [8].

Theorem 6. Let $(\mathcal{T}, \mathcal{F})$ be a torsion pair in A-mod. Then we have
\[\text{exi}(\mathcal{T}) - \exp(\mathcal{T}) = \exp(\mathcal{F}) - \text{exi}(\mathcal{F}) = n(A) - p - i - c \geq 0. \]
In particular, \mathcal{T} is covariantly finite if and only if \mathcal{F} is contravariantly finite.

The essential argument is contained in the following result.

Lemma 7. Let $(\mathcal{T}, \mathcal{F})$ be a torsion pair. Then the following facts hold.

1. An indecomposable object X in \mathcal{T} is Ext-injective if and only if $X \simeq t(I)$ for an indecomposable injective A-module I, which is not contained in \mathcal{F}.

2. An indecomposable object Y in \mathcal{F} is Ext-projective if and only if $X \simeq P/\tau(P)$ for an indecomposable projective A-module P, which is not contained in \mathcal{T}.

3. There is a bijection between
\{indecomposable Ext-projectives in \mathcal{T}\} \leftrightarrow \{indecomposable Ext-injectives in \mathcal{F}\}

sending X to $\tau(X)$, which are in a bijection to the set of connecting sequences.

Proof. (1) and (2) are contained in [3, Propositions 3.1 and 3.2], and (3) follows from [3, Corollaries 3.4 and 3.7]; compare [1, Lemma 1.4]. □

The following counting argument resembles the ones in [7, Lemma 6] and [8, Theorem].

Proof of Theorem 6. By Lemma 7(1) and (2), we have $\text{exi}(\mathcal{T}) = n(A) - i$ and $\exp(\mathcal{F}) = n(A) - p$. By the bijections in Lemma 7(3), we have $\exp(\mathcal{T}) - p = \text{exi}(\mathcal{F}) - i = c$. Combining these equations, we deduce the required equation.

In view of Propositions 1 and 5, the last statement follows immediately. □
Acknowledgements. The result is obtained when the author was giving a series of lectures on the classical tilting theory in USTC, which is based on [1]. The author thanks Jie Li for pointing out the “only if” part of Proposition 1. The work is supported by National Natural Science Foundation of China (No. 11522113).

REFERENCES

Xiao-Wu Chen
School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, Anhui, PR China
Wu Wen-Tsun Key Laboratory of Mathematics, USTC, Chinese Academy of Sciences, Hefei 230026, Anhui, PR China.
E-mail: xwchen@mail.ustc.edu.cn.