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Abstract This paper consists of three results on Frobenius categories: (1) we give sufficient
conditions on when a factor category of a Frobenius category is still a Frobenius category; (2)
we show that any Frobenius category is equivalent to an extension-closed exact subcategory
of the Frobenius category formed by Cohen–Macaulay modules over some additive category;
this is an analogue of Gabriel–Quillen’s embedding theorem for Frobenius categories; (3)
we show that under certain conditions an exact category with enough projective and enough
injective objects allows a natural new exact structure, with which the given category becomes
a Frobenius category. Several applications of the results are discussed.
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1 Introduction

Recently Ringel and Schmidmeier study intensively the classification problem in the (graded)
submodule category over the truncated polynomial algebra k[t]/(t p) [27]. Here, k is a field
and p ≥ 1 is a natural number. This problem goes back to Birkhoff and is studied by Arnold
and Simson. For an account of the history, we refer to [27]. The complexity of this classi-
fication problem depends on the parameter p. According to p < 6, p = 6 and p > 6, the
classification problem turns out to be finite, tame and wild, respectively. We denote by S( p̃)
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44 X.-W. Chen

the graded submodule category which is called the category of Ringel–Schmidmeier in [10].
It has a natural exact structure and becomes an exact category in the sense of Quillen [25];
moreover, it is a Frobenius category.

In more recent work [21], Kussin, Lenzing and Meltzer give a surprising link between the
category S( p̃) of Ringel–Schmidmeier and the category of vector bundles on the weighted
projective line of type (2, 3, p). To be more precise, let X be the weighted projective line
of type (2, 3, p) in the sense of Geigle and Lenzing [15]. Denote by vect X the category
of vector bundles on X. It has a natural exact structure such that it is a Frobenius category
[20]. Following [21] we denote by F the additive closure of the so-called fading line bun-
dles. Consider the factor category vect X/[F] of vect X modulo those morphisms factoring
through F . One of the main results in [21] states that there is an equivalence of categories
between vect X/[F] and S( p̃); also see Example 4.3. From this equivalence the authors
recover some major results in [27] via certain known results on vector bundles over the
weighted projective lines. Note that according to p < 6, p = 6 and p > 6 the weighted
projective line X is domestic, tubular and wild, respectively.

We have noted above that the category S( p̃) of Ringel–Schmidmeier is Frobenius. Hence
via the equivalence mentioned above one infers that the factor category vect X/[F] is also a
Frobenius category; see [21, Theorem A]. However a direct argument of this surprising fact
seems missing. More generally, one may ask when a factor category of a Frobenius category
is still Frobenius. This is one of the motivations of the present paper. Another motivation is
to understand the minimal monomorphism in the sense of Ringel–Schmidmeier [26], which
plays an important role in the study of Auslander–Reiten sequences in submodule categories.

The paper is organized as follows, which mainly consists of three results on Frobenius cat-
egories. We collect in Sect. 2 some basic facts and notions on exact categories and Frobenius
categories. In Sect. 3 we give sufficient conditions on when a factor category of a Frobenius
category is still Frobenius; see Theorem 3.1. We apply the obtained result to recover [21,
Theorem A], modulo a certain technical fact which is somehow hidden in [21]. We also apply
the result to the Frobenius category of matrix factorizations. In Sect. 4 we prove a general
result on Frobenius categories: each Frobenius category is equivalent, as exact categories, to
an extension-closed exact subcategory of the Frobenius category formed by Cohen–Macaulay
modules over some additive category; see Theorem 4.2. This can be viewed as an analogue of
Gabriel–Quillen’s embedding theorem for Frobenius categories. We observe that the category
S( p̃) of Ringel–Schmidmeier can be viewed as the category of Cohen–Macaulay modules
over some graded algebras [10]. Together with this observation and the result in Sect. 3, our
general result recovers a part of [21, Theorem C]. In Sect. 5 we give sufficient conditions
such that on an exact category with enough projective and enough injective objects there
exists another natural exact structure, with which the given category becomes Frobenius; see
Theorem 5.1. An application of this result allows us to interpret the minimal monomorphism
operation in [26] as a triangle functor, which is right adjoint to an inclusion triangle functor.

2 Preliminaries on exact categories

In this section we collect some basic facts and notions on exact categories and Frobenius
categories. The basic reference is [18, Appendix A]. For a systematical treatment of exact
category, we refer to [8].

Let A be an additive category. A composable pair of morphisms is a sequence X
i→Y

d→Z ;
such a composable pair is denoted by (i, d). Two composable pairs (i, d) and (i ′, d ′) are iso-
morphic provided that there are isomorphisms f : X → X ′, g : Y → Y ′ and h : Z → Z ′
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Three results on Frobenius categories 45

such that g◦ i = i ′ ◦ f and h◦d = d ′ ◦g. A composable pair (i, d) is called a kernel–cokernel
pair provided that i = Ker d and d = Cok i .

An exact structure on an additive category A is a chosen class E of kernel–cokernel pairs
in A, which is closed under isomorphisms and is subject to the following axioms (Ex0),
(Ex1), (Ex1)op, (Ex2) and (Ex2)op. A pair (i, d) in the chosen class E is called a conflation,
while i is called an inflation and d is called a deflation. The pair (A, E) is called an exact
category in the sense of Quillen [25]; sometimes we suppress the class E and just say that A
is an exact category.

Following [18, Appendix A], the axioms of exact category are listed as follows:

(Ex0) the identity morphism of the zero object is a deflation;
(Ex1) a composition of two deflations is a deflation;
(Ex1)op a composition of two inflations is an inflation;
(Ex2) for a deflation d : Y → Z and a morphism f : Z ′ → Z there exists a pullback

diagram such that d ′ is a deflation:

Y ′ d ′
��

f ′
��

Z ′

f

��
Y

d �� Z

(Ex2)op for an inflation i : X → Y and a morphism f : X → X ′ there exists a pushout
diagram such that i ′ is an inflation:

X
i ��

f

��

Y

f ′
��

X ′ i ′ �� Y ′

Let us remark that the axiom (Ex1)op can be deduced from the other axioms; see [18,
Appendix A].

For an exact category A, a full additive subcategory B ⊆ A is said to be extension-closed

provided that for any conflation X
i→Y

d→Z with X, Z ∈ B we have Y ∈ B. In this case, the
subcategory B inherits the exact structure from A to become an exact category. We will call
such a subcategory an extension-closed exact subcategory. Observe that any abelian cate-
gory has a natural exact structure such that conflations are induced by short exact sequences.
Consequently, any full additive subcategory in an abelian category which is closed under
extensions has a natural exact structure and then becomes an exact category.

Recall that an additive functor F : B → A between two exact categories is called exact
provided that it sends conflations to conflations; an exact functor F : B → A is said to
be an equivalence of exact categories provided that F is an equivalence and there exists a
quasi-inverse of F which is exact.

From now on A is an exact category. We will need the following two facts. For the first
fact, we refer to the first step in the proof of [18, Proposition A.1]; for the second one, we
refer to the axiom c) in the proof of [18, Proposition A.1]

Lemma 2.1 Consider the diagram in (Ex2). Then the sequence

Y ′

(

d ′
− f ′

)

−→ Z ′ ⊕ Y
( f,d)−→Z
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46 X.-W. Chen

is a conflation and we have the following commutative diagram such that the two rows are
conflations.

X
i ′ �� Y ′ d ′

��

f ′
��

Z ′

f

��
X

f ′◦i ′ �� Y
d �� Z

Lemma 2.2 Let d be a morphism such that d ◦ e is a deflation for some morphism e. Assume
further that d has a kernel. Then d is a deflation. 
�

Recall that an object P in A is projective provided that the functor HomA(P,−) sends
conflations to short exact sequences; this is equivalent to that any deflation ending at P splits.
The exact category A is said to have enough projective objects provided that each object X
fits into a deflation d : P → X with P projective. Dually one has the notions of injective
object and having enough injective objects.

An exact category A is said to be Frobenius provided that it has enough projective and
enough injective objects, and the class of projective objects coincides with the class of injec-
tive objects [17, Section 3]. The importance of Frobenius categories lies in that they give rise
naturally to triangulated categories; see [16] and [18, 1.2].

The following notion will be convenient for us: for a Frobenius category A, an extension-
closed exact subcategory B ⊆ A is said to be admissible provided that each object B in B
fits into conflations B → P → B ′ and B ′′ → Q → B in B such that P, Q are projective
in A. Note that an admissible subcategory B of a Frobenius category A is still Frobenius;
moreover, an object B in B is projective if and only if it is projective viewed as an object
in A.

3 Factor category of Frobenius category

In this section we study a certain factor category of a Frobenius category. We give sufficient
conditions on when the factor category inherits the exact structure from the given Frobenius
category such that it becomes a Frobenius category. As an application, our result specializes
to [21, Theorem A] modulo certain technical results which are somehow hidden in [21]. We
give an example to apply our result to the category of matrix factorizations [12].

Let (A, E) be a Frobenius category. Denote by P the full subcategory consisting of pro-
jective objects. Let F ⊆ P be a full additive subcategory. For two objects X, Y in A denote
by [F](X, Y ) the subgroup of HomA(X, Y ) consisting of those morphisms which factor
through an object in F . Denote by A/[F] the factor category of A modulo F : the objects are
the same as the ones in A, for two objects X and Y the Hom space is given by the quotient
group HomA(X, Y )/[F](X, Y ) and the composition is induced by the one in A; compare [3,
p. 101]. Note that the factor category A/[F] is an additive category.

Denote by πF : A → A/[F] the canonical functor. Denote by EF the class of composable
pairs in A/[F] which are isomorphic to composable pairs (πF (i), πF (d)) for (i, d) ∈ E .

The case F = P is of particular interest, since the corresponding factor category, known
as the stable category of A and denoted by A, has a natural triangulated structure. In this
case the canonical functor πP : A → A sends conflations to exact triangles. For details, see
[16, Chapter I, Section 2].

We are interested in the following question: when the factor category A/[F] becomes a
Frobenius category such that its exact structure is given by EF ? Note that in general the case
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F = P will not meet the requirement. The aim of this section is to give a partial answer to
this question.

Recall that a pseudo-cokernel of a morphism f : X → Y is a morphism c : Y → C such
that c ◦ f = 0 and it satisfies that any morphism c′ : Y → C ′ with c′ ◦ f = 0 factors
through c. Dually one has the notion of pseudo-kernel; see [4, Section 2].

Recall that for a subcategory S of A, a morphism f : S → X is said to be a right
S-approximation of X provided that S ∈ S and any morphism from an object in S to X
factors through f . Dually one has the notion of left S-approximation; see [2, Section 1].

Our first result is as follows, which gives sufficient conditions on when the pair
(A/[F], EF ) is a Frobenius category.

Theorem 3.1 Let (A, E) be a Frobenius category and let P denote the subcategory of
projective objects. Suppose that F ⊆ P satisfies the following conditions:

(1) any object A in A fits into a sequence

A
i A−→FA

pA−→PA

such that i A is a left F-approximation of A, PA ∈ P and pA is a pseudo-cokernel
of i A;

(2) any object A in A fits into a sequence

P A i A−→F A pA

−→A

such that pA is a right F-approximation of A, P A ∈ P and i A is a pseudo-kernel
of pA.

Then the pair (A/[F], EF ) is a Frobenius category.

Proof In the proof, we write πF as π . We will divide the proof into three steps.
Step 1 We will first show that the composable pairs in EF are kernel–cokernel pairs. It

suffices to show that for any conflation X
i→Y

d→Z in A we have π(i) = Ker π(d) and
π(d) = Cok π(i). We will only show that π(i) = Ker π(d), and the remaining equality is
shown by a dual argument.

To show that π(i) is mono, it suffices to show that any morphism a : A → X in A hav-
ing the property i ◦ a ∈ [F](A, Y ) necessarily lies in [F](A, X). Consider the sequence in
(1) for A. Since i ◦ a : A → Y factors through an object in F and i A : A → FA is a left
F-approximation, there is a morphism t : FA → Y such that i ◦ a = t ◦ i A. Using that pA

is a pseudo-cokernel of i A, we have a morphism s : PA → Z making the following diagram
commute.

A

a

��

i A �� FA

t

��

pA �� PA

s

��
X

i �� Y
d �� Z

Since PA is projective and (i, d) is a conflation, we may lift s to a morphism s′ : PA → Y
such that d ◦ s′ = s. Then we have

d ◦ (t − s′ ◦ pA) = d ◦ t − s ◦ pA = 0.
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48 X.-W. Chen

Since i = Ker d , there exists a′ : FA → X such that i ◦ a′ = t − s′ ◦ pA. Composing the
two sides with i A, we get i ◦ a′ ◦ i A = t ◦ i A = i ◦ a. Note that i is mono and FA ∈ F . Then
we have a = a′ ◦ i A and it lies in [F](A, X).

Having shown that π(i) is mono, it suffices to show that π(i) is a pseudo-kernel of π(d).
Then we have π(i) = Ker π(d). For this end, take a morphism a : A → Y such that
d ◦ a ∈ [F](A, Z). We will show that π(a) factors through π(i). Assume that d ◦ a factors

as A
x→F

y→Z with F ∈ F . Since F is projective and (i, d) is a conflation, we may lift y to
a morphism y′ : F → Y such that d ◦ y′ = y. Then we have

d ◦ (a − y′ ◦ x) = d ◦ a − y ◦ x = 0.

Hence there exists a morphism a′ : A → X such that a − y′ ◦ x = i ◦ a′. Note that F ∈ F .
Applying π we get π(a) = π(i) ◦ π(a′).

Step 2 We will show next that the pair (A/[F], EF ) is an exact category. Note that by
definition a morphism δ : π(Y ) → π(Z) is a deflation if and only if there exist morphisms
a : Y → Y ′ and b : Z ′ → Z such that π(a) and π(b) are isomorphisms, and a deflation
d : Y ′ → Z ′ in A such that we have a factorization δ = π(b)◦π(d)◦π(a). The axiom (Ex0)
is trivial.

To show (Ex1), assume that we are given two deflations δ : π(Y ) → π(Z) and γ : π(Z) →
π(W ) in A/[F]. We may assume that δ and γ factor as π(Y )

π(a)→ π(Y ′)π(d)→ π(Z ′)π(b)→ π(Z)

and π(Z)
π(x)→ π(Z ′′)π(e)→π(W ′)π(y)→ π(W ), respectively. Here d : Y ′ → Z ′ and e : Z ′′ → W ′

are deflations in A. Take a morphism z : Z ′′ → Z ′ such that π(z) = (π(x) ◦ π(b))−1. By
(Ex2) we have the pullback diagram in A

Y ′′ d ′
��

z′
��

Z ′′

z

��
Y ′ d �� Z ′

such that d ′ is a deflation. By Lemma 2.1 the sequence Y ′′
(

d ′
−z′

)

→ Z ′′ ⊕ Y ′(z,d)→ Z ′ is a conflation
in A. By the first step, applying π to this sequence we get a kernel–cokernel pair in the
factor category A/[F]. In particular, the diagram above is still a pullback diagram in A/[F].
Hence the fact that π(z) is an isomorphism implies that π(z′) is also an isomorphism. Take
a morphism a′ : Y ′ → Y ′′ in A such that π(a′) = π(z′)−1. Then γ ◦ δ factors as

π(Y )
π(a′ ◦ a)−→ π(Y ′′)π(e ◦ d ′)−→ π(W ′)π(y)−→π(W ).

By (Ex1) e ◦ d ′ is a deflation in A. Observe that both π(a′ ◦ a) and π(y) are isomorphisms.
Then we have that γ ◦ δ is a deflation in A/[F], proving the axiom (Ex1). Dually one shows
(Ex1)op.

To show (Ex2), take a deflation δ : π(Y ) → π(Z) and a morphism π( f ) : π(Z ′) → π(Z).
Without loss of generality we may assume that δ = π(d) for a deflation d : Y → Z in A.
Then we apply (Ex2) for A to get a pullback diagram in A. As above, using Lemma 2.1 and
the first step, the obtained diagram is also a pullback diagram in the factor category A/[F].
This proves the axiom (Ex2) for A/[F]. Dually one shows (Ex2)op.

Step 3 The exact category (A/[F], EF ) is Frobenius. Recall that up to isomorphism confla-
tions in A/[F] are given by the images of conflations in A. Then it follows immediately that
objects in P/[F] are projective and injective in the exact category (A/[F], EF ); moreover,
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each object π(X) in A/[F] admits a deflation π(P) → π(X) and an inflation π(X) → π(I )
with π(P), π(I ) ∈ P/[F]. From these, one concludes immediately that the exact category
(A/[F], EF ) is Frobenius. 
�
Remark 3.2 As shown in the third step above, the full subcategory of A/[F] consisting of
projective objects is equal to P/[F]. Using again the fact that up to isomorphism conflations
in A/[F] are given by the images of conflations in A, we have an identification A = A/[F]
of triangulated categories. 
�

We will apply Theorem 3.1 in two examples. We begin with our motivating example.
We will see that, modulo certain technical results in [21], Theorem 3.1 specializes to [21,
Theorem A].

Example 3.3 Let k be a field and p ≥ 1 be a natural number. Let X be the weighted projective
line of type (2, 3, p) in the sense of Geigle and Lenzing [15]. Denote by coh X the abelian
category of coherent sheaves on X and by O the structure sheaf on X. Denote by L the rank
one abelian group on three generators �x1, �x2, �x3 subject to the relations 2�x1 = 3�x2 = p�x3.
Recall that the group L acts on coh X. We denote the action of an element �x ∈ L on a sheaf
E by E(�x).

Denote by vect X the full subcategory of coh X consisting of vector bundles. Recall that
all the line bundles on X are given by O(�x) for �x ∈ L; moreover, O(�x)  O(�y) implies that
�x = �y. In other words, the Picard group of X is isomorphic to L; see [15, Proposition 2.1].
Recall that the subcategory vect X ⊆ coh X is closed under extensions and then it has a natural
exact structure. However with this exact structure the category vect X is not Frobenius.

Following [20] a short exact sequence η : 0 → E ′ → E → E ′′ → 0 of vector bundles
is distinguished provided that the sequences Hom(O(�x), η) are exact for all �x ∈ L . By
Serre duality this is equivalent to that the sequences Hom(η, O(�x)) are exact for all �x ∈ L .
Observe that the category vect X of vector bundles is an exact category such that conflations
are induced by distinguished short exact sequences; compare Lemma 5.2. We denote by A
this exact category. Moreover, the exact category A is Frobenius such that its subcategory P
of projective objects is equal to the additive closure of all line bundles. For details, see [20].

The following terminology is taken from [21]. A line bundle O(�x) is said to be fading
provided that �x /∈ Z�x3 ∪ �x2 + Z�x3. Take F ⊆ P to be the additive closure of these fading
line bundles. We claim that the subcategory F satisfies the conditions in Theorem 3.1. Then
it follows from Theorem 3.1 that the factor category A/[F] inherits the Frobenius exact
structure from the one of A; this is [21, Theorem A].

In fact, the proof of [21, Proposition 3.13] yields the following technical fact: for a vector
bundle E there is a short exact sequence 0 → E

α→C → P1 → 0 with C ∈ F and P1 ∈ P;
moreover, the morphism α is a left F-approximation (by [21, Lemma 3.12 (2)]). Here we
are consistent in notation with the proof of [21, Proposition 3.13]. Note that one has a dual
version of this result using the duality d : A → A in the proof of [21, Proposition 3.2]. 
�

The second example shows that a certain factor category of the category of matrix factor-
izations has a Frobenius exact structure.

Example 3.4 Let R be a commutative noetherian ring and let f ∈ R be a regular element.

Recall that a matrix factorization of f is a composable pair P0 d0
P→P1 d1

P→P0 consisting of
finitely generated projective R-modules such that d1

P ◦ d0
P = f IdP0 and d0

P ◦ d1
P = f IdP1 ;

a morphism ( f 0, f 1) : (d0
P , d1

P ) → (d0
Q, d1

Q) between matrix factorizations consists of two

123

Author's personal copy



50 X.-W. Chen

morphisms f 0 : P0 → Q0 and f 1 : P1 → Q1 of R-modules such that d0
Q ◦ f 0 = f 1 ◦ d0

P

and d1
Q ◦ f 1 = f 0 ◦ d1

P . Observe that since f is regular, the two morphisms d0
P and d1

P in a
matrix factorization are mono. For details, see [12, Section 5].

Denote by MFR( f ) the category of matrix factorizations of f . It has a natural exact struc-
ture such that a sequence (d0

P ′ , d1
P ′) → (d0

P , d1
P ) → (d0

P ′′ , d1
P ′′) is a conflation if and only

if the corresponding sequences 0 → P ′i → Pi → P ′′i → 0 of R-modules are short exact,
i = 0, 1. Moreover, with this exact structure MFR( f ) is a Frobenius category, and its projec-
tive objects are equal to direct summands of an object of the form (IdP , f IdP )⊕( f IdP , IdP )

for a projective R-module P; compare [16, Chapter I, 3.2] and [19, Example 5.3].
Denote byF the full subcategory of MFR( f ) consisting of objects of the form (IdP , f IdP )

for a projective R-module P . We claim that F satisfies the conditions in Theorem 3.1. Indeed,
for a matrix factorization (d0

P , d1
P ), the following two sequences

(d0
P , d1

P )
(d0

P ,IdP1 )−→ (IdP1 , f IdP1) −→ (0, 0)

and

(0, 0) → (IdP0 , f IdP0)
(IdP0 ,d0

P )−→ (d0
P , d1

P )

are the required sequences in (1) and (2), respectively. In this way, we get a factor Frobenius
category MFR( f )/[F]. 
�

4 Frobenius category and Cohen–Macaulay module

In this section we will show that any Frobenius category is equivalent, as exact categories,
to an admissible subcategory of the Frobenius category formed by Cohen–Macaulay mod-
ules over an additive category. This is an analogue of Gabriel–Quillen’s embedding theorem
for Frobenius categories; see [8,18]. In particular, our result suggests that the category of
Cohen–Macaulay modules serves as a standard model for Frobenius categories. We apply
the obtained result to recover a part of [21, Theorem C]. We also make an application to the
category of matrix factorizations.

Let C be an additive category. Denote by Mod C the (large) abelian category of additive
contravariant functors from C to the category of abelian groups; by abuse of terminology
these functors are called C-modules. Note that exact sequences of C-modules are given by
sequences of functors over C, which are exact taking values at each object C ∈ C.

For an object C in C, denote by HC = HomC(−, C) the corresponding representable
functor. This gives rise to the Yoneda functor H : C → Mod C. Yoneda Lemma says that
there exists a natural isomorphism HomMod C(HC , M)  M(C) for each object C ∈ C
and M ∈ Mod C. From these one infers that the Yoneda functor H is fully faithful and the
modules HC are projective for all C ∈ C. Recall that a C-module M is finitely generated
provided that there exists an epimorphism HC → M for some object C ∈ C. Observe that a
C-module is finitely generated projective if and only if it is a direct summand of HC for an
object C ∈ C. For details, we refer to [23].

Recall that a cochain complex P• = (Pn, dn : Pn → Pn+1)n∈Z consisting of finitely
generated projective C-modules is said to be totally acyclic provided that it is acyclic and
for each object C the Hom complex HomMod C(P•, HC ) is acyclic; compare [5, p. 400].
Following [7] and [6] a C-module M is said to be (maximal) Cohen–Macaulay provided that
there exists a totally acyclic complex P• such that the 0th cocycle Z0(P•) is isomorphic
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Three results on Frobenius categories 51

to M . In this case, the complex P• is said to be a complete resolution of M . Observe that a
finitely generated projective C-module P is Cohen–Macaulay, since we may take its complete

resolution as · · · → 0 → P
IdP→P → 0 → · · ·. Note that in the literature, Cohen–Macaulay

modules are also called modules of G-dimension zero [1], Gorenstein-projective modules [13]
and totally reflexive modules [5]. Let us remark that Cohen–Macaulay modules are closely
related to singularity categories [7,9,24].

Denote by CM(C) the full subcategory of Mod C consisting of Cohen–Macaulay C-mod-
ules. Note that since each Cohen–Macaulay module is finitely generated, the category CM(C)

has small Hom sets. Observe that CM(C) ⊆ Mod C is closed under extensions; compare [2,
Propositon 5.1]. Then it becomes an exact category such that conflations are induced by short
exact sequences with terms in CM(C).

The following result is well known; compare [6, Proposition 3.8(i)] and [9, Proposition
3.1(1)]. For the definition of an admissible subcategory, see Sect. 2.

Lemma 4.1 The exact category CM(C) is Frobenius; moreover, its projective objects are
equal to finitely generated projective C-modules. Consequently, any admissible subcategory
of CM(C) is a Frobenius category.

Proof Observe first that for a Cohen–Macaulay C-module M and a finitely generated pro-
jective C-module P we have ExtiMod C(M, P) = 0 for i ≥ 1; compare [11, Lemma 2.1].
Hence the object P is injective in CM(C); while it is clearly projective in CM(C). Observe
from the definition that for each Cohen–Macaulay module M with its complete resolution
P•, we have two conflations Z−1(P•) → P−1 → M and M → P0 → Z1(P•). These two
conflations imply that the exact category CM(C) has enough projective and enough injective
objects; moreover, from these one infers that the class of projective objects coincides with
the class of injective objects, both of which are equal to the class of finitely generated pro-
jective C-modules. This shows that the category CM(C) is a Frobenius category, and the last
statement follows immediately; see Sect. 2. 
�

Let (A, E) be a Frobenius category. Denote by P the full subcategory of its projective
objects. Consider the category Mod P of P-modules. For each object A in A denote by h A

the P-module obtained by restricting the functor HA = HomA(−, A) on P . This yields a
functor h : A → Mod P sending A to h A; such a functor is known as the restricted Yoneda
functor. Observe that for an object P ∈ P we have h P = HP .

Recall from Lemma 4.1 that an admissible subcategory of the category of Cohen–
Macaulay modules is Frobenius. In fact, all Frobenius categories arise in this way. This is our
second result, which is an analogue of Gabriel–Quillen’s embedding theorem for Frobenius
categories; see [18, Proposition A.2] and [8, Theorem A.1].

Theorem 4.2 Use the notation as above. Then the restricted Yoneda functor h : A → Mod P
induces an equivalence of exact categories between A and an admissible subcategory of
CM(P).

Proof We will divide the proof into four steps. First observe that the functor h sends con-
flations in A to short exact sequences of P-modules, and sends projective objects in A to
representable functors over P , in particular, finitely generated projective P-modules.

Step 1 We will show that for each object A ∈ A the P-module h A is Cohen–Macaulay.
For this, take conflations ηi : Ai → Pi → Ai+1 such that A0 = A and Pi ’s are projective
for i ∈ Z. Applying h to these conflations we get short exact sequences 0 → h Ai → h Pi →
h Ai+1 → 0. Splicing these short exact sequences we get an acyclic complex h P• of finitely
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generated projective P-modules which satisfies that Z0(h P•)  h A. It remains to show that
the complex h P• satisfies that for each object P ∈ P the Hom complex HomMod P (h P• , HP )

is acyclic. Here HP denotes the representable functor corresponding to P . Using Yoneda
Lemma this Hom complex is isomorphic to the Hom complex HomA(P•, P). Here the
complex P• in A is constructed by splicing the conflations ηi together. Then the Hom com-
plex HomA(P•, P) is acyclic, since it is constructed by splicing the short exact sequence
HomP (ηi , P) together; here we use the fact that the object P is injective in A. Consequently
the complex h P• is totally acyclic and then the P-module h A is Cohen–Macaulay.

Step 2 We will show that the functor h is fully faithful. This is indeed fairly standard; com-
pare the argument in [3, p. 102]. We will only show the fullness, and by a similar argument
one can show the faithfulness.

For an object A ∈ A, we obtain from the conflations η−1 and η−2 in the first step a
cokernel sequence P−2 → P−1 → A → 0. This sequence induces a projective presentation
HP−2 → HP−1 → h A → 0 of P-modules. Similarly for another object A′ we get a pro-
jective presentation HP ′−2 → HP ′−1 → h A′ → 0. Given a morphism θ : h A → h A′ , there
exists a commutative diagram

HP−2

θ−2

��

�� HP−1

θ−1

��

�� h A ��

θ

��

0

HP ′−2 �� HP ′−1 �� h A′ �� 0

Observe that by Yoneda Lemma there exist morphisms μ−i : P−i → P ′−i such that hμ−i =
θ−i ; moreover, these two morphisms make the left side square in the following diagram
commute.

P−2

μ−2

��

�� P−1

μ−1

��

�� A ��

μ

��

0

P ′−2 �� P ′−1 �� A �� 0

Since the two rows in the diagram above are cokernel sequences, one infers that there exists
μ : A → A′ making the diagram commute. It is direct to see that hμ = θ and this proves
that the functor h is full.

Step 3 Denote by Im h the essential image of the functor h. We have shown that Im h ⊆
CM(P). We will now show that it is extension-closed. Note that the functor h sends projective
objects to projective modules, and sends conflations to short exact sequences. This will imply
that Im h is an admissible subcategory of CM(P); see Sect. 2.

Take a conflation h X → M → hY in CM(P) with X, Y ∈ A. We will show that M lies in

Im h. For this, take a conflation X → Q
d→X ′ with Q projective. Then we have the following

commutative exact diagram.

h X �� M ��

��

hY

θ

��
h X �� HQ

hd �� h X ′

Here we use that hQ = HQ is injective in CM(P); see Lemma 4.1. From this diagram we have

a conflation M → hY ⊕ HQ
(θ,hd )→ h X ′ in CM(P). By the second step there exists a morphism
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μ : Y → X ′ such that hμ = θ . By Lemma 2.1 there exists a conflation Z → Y ⊕ Q
(μ,d)→ X ′

in A for some object Z . Applying h to this conflation we get an isomorphism M  hZ .
Step 4 We will show that the functor h induces an equivalence of exact categories between

A and Im h. Then we are done with the proof. What remains to show is that the functor

h reflects exactness, that is, any sequence η : X
i→Y

d→Z in A is a conflation provided that
hη is a conflation in Im h. View the functor h as a full embedding. Since hi = Ker hd , we
have i = Ker d . For each projective object P , we have an isomorphism HomA(P, η) 
HomCM(P)(HP , hη) of sequences, and hence they are both exact. In particular, for a chosen

deflation P
d ′→Z with P projective, there exists a morphism t : P → Y such that d ◦ t = d ′.

Now we apply Lemma 2.2 to the morphism d . Then d is a deflation and as its kernel, i is an
inflation. Consequently, the sequence η is a conflation in A, completing the proof. 
�

We will apply Theorem 4.2 to recover a part of [21, Theorem C], which gives a surpris-
ing link between the category of vector bundles on weighted projective lines and a certain
submodule category.

Example 4.3 Consider the factor Frobenius category A′ = vect X/[F] in Example 3.3. The
full subcategory P ′ consisting of projective objects is equal to P/[F]. Then Theorem 4.2
implies that the associated restricted Yoneda functor h : A′ → Mod P ′ induces an equiva-
lence of exact categories between A′ and an admissible subcategory of CM(P ′). This might
be viewed as a part of [21, Theorem C].

In this situation, a highly nontrivial result is that the corresponding admissible sub-
category is CM(P ′) itself; compare [21, Propositon 3.18]. Finally observe that the cate-
gory CM(P ′) of Cohen–Macaulay P ′-modules is equal to the submodule category S( p̃)

of Ringel–Schmidmeier (by combining [21, Lemma B] and a graded version of [10,
Lemma 4.3]). From these we conclude that there is an equivalence of exact categories
between the factor category vect X/[F] and the category S( p̃) of Ringel–Schmidmeier;
this is [21, Theorem C]. 
�

In the next example, we apply Theorem 4.2 to the factor Frobenius category obtained in
Example 3.4.

Example 4.4 Let R be a commutative noetherian ring and let f ∈ R be a regular element. We
consider the factor Frobenius category A = MFR( f )/[F] in Example 3.4. Observe that its
full subcategory P of projective objects is the additive closure of the object T := ( f IdR, IdR);
moreover, the endomorphism ring of T (in A) is isomorphic to the quotient ring S := R/( f ).
By a version of Morita equivalence we have an equivalence Mod P  Mod S of module
categories; here Mod S denotes the category of S-modules. Furthermore, this equivalence
restricts to an equivalence CM(P)  CM(S). Here, CM(S) is the category of (maximal)
Cohen–Macaulay S-modules [6,7]. Together with this equivalence we apply Theorem 4.2
to A. Then the restricted Yoneda functor

h : MFR( f )/[F] −→ CM(S)

identifies MFR( f )/[F] as an admissible subcategory of CM(S). We will describe this admis-
sible subcategory of CM(S). For this end, we will first give another description of the
functor h.

Consider the following functor

Cok : MFR( f ) −→ CM(S)

123

Author's personal copy



54 X.-W. Chen

which sends a matrix factorization (d0
P , d1

P ) to Cok d1
P and which acts on morphisms natu-

rally. Observe that Cok d1
P is indeed a Cohen–Macaulay S-module; compare [12, Proposition

5.1]. Note that the functor Cok is exact and vanishes on F . Then we have an induced func-
tor Cok : MFR( f )/[F] → CM(S). We claim that there is a natural isomorphism between
h and Cok. In fact, to see this isomorphism, it suffices to note the natural isomorphisms
HomA(T, (d0

P , d1
P ))  Cok d1

P for all matrix factorizations (d0
P , d1

P ).
Denote by B the full subcategory of CM(S) consisting of modules which, when viewed

as R-modules, have projective dimension at most one. Observe that B is an extension-closed
exact subcategory of CM(S). Recall that in a matrix factorization (d0

P , d1
P ) both morphisms

d0
P and d1

P are mono. It follows that the image of the functor Cok lies in B. We claim that
any module in B lies in the image of the functor Cok. To see this, for an S-module M in

B we take an exact sequence 0 → P1 d1
P→P0 π→M → 0 such that Pi are finitely generated

projective R-modules, i = 0, 1. Since f vanishes on M , then π ◦ f IdP0 = 0 and then f IdP0

factors uniquely through d1
P . In this way, we obtain a morphism d0

P : P0 → P1 such that
(d0

P , d1
P ) is a matrix factorization. Observe that M  Cok d1

P . This shows the claim. Recall
that the two functors h and Cok are isomorphic. Then we conclude that the essential image of
h is B. In particular, the subcategory B ⊆ CM(S) is admissible. Hence the restricted Yoneda
functor induces an equivalence of exact categories MFR( f )/[F]  B. One might compare
this with [12, Corollary 6.3] and [24, Theorem 3.9].

The situation is particularly nice if we assume that the ring R is regular, that is, R has finite
global dimension. In this case, the quotient ring S is Gorenstein. Observe that each Cohen–
Macaulay S-module has projective dimension at most one, when viewed as an R-module (by
[22, Lemma 18.2(i)]), that is, B = CM(S). Then the restricted Yoneda functor h induces an
equivalence of exact categories MFR( f )/[F]  CM(S). 
�

We introduce the following notion: a Frobenius category A is standard provided that the
associated restricted Yoneda functor h : A → CM(P) is an equivalence of exact categories;
this is equivalent by Theorem 4.2 to that the functor h is dense. For example, one can show
that a Frobenius abelian category is standard; Example 4.3 claims that the factor Frobenius
category A′ is standard; Example 4.4 implies that for a regular ring R and a regular element
f ∈ R, the factor Frobenius category MFR( f )/[F] is standard.

In general, it would be very nice to have an intrinsic criterion on when a Frobenius category
is standard.

5 Frobenius category from exact category

In this section we give sufficient conditions such that on an exact category with enough pro-
jective and enough injective objects there exists another natural exact structure, with which
the given category becomes Frobenius. We apply the result to the morphism category of a
Frobenius abelian category; it turns out that this morphism category has a natural Frobenius
exact structure. This observation allows us to interpret the minimal monomorphism operation
in [26] as a triangle functor, which is right adjoint to an inclusion triangle functor.

Let (A, E) be an exact category with enough projective and enough injective objects. We
denote by P and I the full subcategory of A consisting of projective and injective objects,
respectively. Note that the exact category A might not be Frobenius. The aim is to show that
under certain conditions there is a new exact structure E ′ on A such that (A, E ′) is a Frobenius
category.
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Recall that a full additive subcategory S of A is said to be contravariantly finite provided
that each object in A has a right S-approximation. Dually one has the notion of covariantly
finite subcategory [4, Section 2]. For two full subcategories X and Y of A, denote by X ∨ Y
the smallest full additive subcategory of A which contains X and Y and is closed under
taking direct summands.

Recall that for a full additive subcategory S of an exact category A, a conflation η : X →
Y → Z is right S-acyclic provided that the sequences HomA(S, η) are short exact for all
S ∈ S. Dually one has the notion of left S-acyclic conflation.

Here is our third result, which gives sufficient conditions such that there is a natural (and
new) exact structure on A, with which A becomes a Frobenius category.

Theorem 5.1 Use the notation as above. Assume that P ′ and I ′ are two full additive sub-
categories of A subject to the following conditions:

1. P ′ ∨ I = I ′ ∨ P;
2. P ′ ⊆ A is covariantly finite and I ′ ⊆ A is contravariantly finite;
3. the class of right I ′-acyclic conflations coincides with the class of left P ′-acyclic con-

flations.

Denote the class of conflations in (3) by E ′. Then the pair (A, E ′) is a Frobenius exact
category.

The proof of this result is quite direct, once we notice the following general observation.

Lemma 5.2 Let (A, E) be an exact category. For a full additive subcategory S ⊆ A, denote
by E ′ the class of right S-acyclic conflations. Then the pair (A, E ′) is an exact category.

Proof For a conflation (i, d) in E ′, we will temporarily call i an E ′-inflation and d an
E ′-deflation. We verify the axioms for the pair (A, E ′). Recall that the axiom (Ex1)op can be
deduced from the others; see [18, Appendix A]. So we only show the remaining four axioms.
The axiom (Ex0) is clear. Recall that a deflation d : Y → Z is an E ′-deflation if and only if
every morphism from an object in S to Z factors through d . This observation yields (Ex1)
immediately.

Consider the pullback diagram in the axiom (Ex2); see Sect. 2. Assume that d : Y → Z
is an E ′-deflation. We will show that d ′ : Y ′ → Z ′ is also an E ′-deflation. Take a morphism
s : S → Z ′ with S ∈ S. Since d is an E ′-deflation, the morphism f ◦ s lifts to Y , that is,
there exists s′ : S → Y such that d ◦ s′ = f ◦ s. Using the universal property of the pullback
diagram, we infer that there exists a unique morphism t : S → Y ′ such that d ′ ◦ t = s and
f ′ ◦ t = s′. In particular, the morphism s factors through d ′, proving that d ′ is an E ′-deflation.

It remains to verify (Ex2)op. Consider the pushout diagram in (Ex2)op; see Sect. 2. We
assume that i : X → Y is an E ′-inflation. We will show that i ′ is an E ′-inflation. We apply
the dual of Lemma 2.1 to get the following commutative diagram such that the two rows are
conflations.

X
i ��

f

��

Y

f ′
��

d �� Z

X ′ i ′ �� Y ′ d ′
�� Z

Here d = d ′ ◦ f ′. The fact that i is an E ′-inflation implies that d is an E ′-deflation. Consider
any morphism s : S → Z with S ∈ S. Then s factors through d . Since d = d ′ ◦ f ′, we infer
that the morphism s factors through d ′. This shows that d ′ : Y ′ → Z is an E ′-deflations and
then i ′ is an E ′-inflation. We are done. 
�
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Proof of Theorem 5.1 By Lemma 5.2 the pair (A, E ′) is an exact category. We will call a
conflation in E ′ an E ′-conflation. Note by the condition (3) that the objects in P ′ ∨I = I ′ ∨P
are projective and injective in the exact category (A, E ′).

Observe from the condition (3) that a conflation X
i→Y

d→Z is an E ′-conflation if and
only if any morphism from an object in I ′ to Z factors through d , if and only if any mor-
phism from X to an object in P ′ factors through i . For an object Z in A, take a conflation
d : P → Z with P ∈ P and a right I ′-approximation s : I ′ → Z . By Lemma 2.1 the mor-

phism (d, s) : P ⊕ I ′ → Z is an deflation. It induces a conflation η : X → P ⊕ I ′(d,s)→ Z . From
the observation just made, we obtain that the conflation η is an E ′-conflation. This proves that
the exact category (A, E ′) has enough projective objects and the class of projective objects
is equal to I ′ ∨ P . Dually one shows that the exact category (A, E ′) has enough injective
objects and the class of injective objects is equal to P ′ ∨ I. Then we conclude that the exact
category (A, E ′) is Frobenius, completing the proof. 
�

We apply Theorem 5.1 to the morphism category of a Frobenius abelian category. This
allows us to interpret the minimal monomorphism operation [26] as a right adjoint to an
inclusion triangle functor.

Example 5.3 Let A be an abelian category. Denote by Mor(A) the morphism category of
A: its objects are given by morphisms α : X → Y in A, and morphisms ( f, g) : α → α′ are
given by commutative squares in A, that is, two morphisms f : X → X ′ and g : Y → Y ′
such that α′ ◦ f = g ◦ α. It is an abelian category; a sequence α → α′ → α′′ in Mor(A) is
exact if and only if the corresponding sequences of domains and targets are exact in A; see
[14, Corollary 1.2].

Assume that the abelian category A is Frobenius. In general the abelian category Mor(A) is
not Frobenius. In fact, the category Mor(A) has enough projective and injective objects; pro-

jective objects are equal to objects of the form (0 → P)⊕(Q
IdQ→Q) for some projective objects

P, Q ∈ A; dually injective objects are equal to objects of the form (P → 0)⊕ (Q
IdQ→ → Q)

for some injective objects P, Q ∈ A; compare [26, Section 2]. Denote by P and I the full
subcategory consisting of projective and injective objects in Mor(A), respectively.

Take P ′ ⊆ P to be the full subcategory consisting of objects of the form 0 → P . Take
I ′ ⊆ I to be the full subcategory consisting of objects of the form P → 0. We will verify
the conditions in Theorem 5.1.

The condition (1) is clear. To see (2), take an object α : X → Y in Mor(A) and con-
sider its cokernel π : Y → Cok α and a monomorphism i : Cok α → P with P injective.
Then the morphism (0, i ◦ π) : α → (0 → P) is a left P ′-approximation. This proves that
P ′ ⊆ Mor(A) is covariantly finite. Dually I ′ ⊆ Mor(A) is contravariantly finite. For (3),
observe that a short exact sequence 0 → α → α′ → α′′ → 0 in Mor(A) is left P ′-acyclic
if and only if the corresponding sequence of cokernels is exact; by Snake Lemma this is
equivalent to that the corresponding sequence of kernels is exact, and then equivalent to that
the sequence is right I ′-acyclic.

We apply Theorem 5.1 to obtain a Frobenius exact structure on Mor(A). Note that the
corresponding conflations are given by short exact sequences in Mor(A) such that the asso-
ciated sequences of kernels and cokernels are exact in A; moreover, projective objects are

equal to objects of the form (0 → P) ⊕ (Q
IdQ→Q) ⊕ (R → 0) for some projective objects

P, Q, R ∈ A. Denote by Pnew the full subcategory of Mor(A) formed by these objects. We
denote by Mor(A) the stable category of Mor(A) modulo Pnew; it is a triangulated category
[16,18].
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Recall that Mon(A) is the extension-closed exact subcategory of Mor(A) consisting of
monomorphisms in A; it is called the monomorphism category of A. In fact, it is a Frobenius

category such that its projective objects are equal to objects of the form (0 → P)⊕ (Q
IdQ→Q)

for projective objects P, Q ∈ A. Denote by Mon(A) the stable category. For details, see [10].
Hence we have an inclusion triangle functor inc : Mon(A) ↪→ Mor(A). It is remarkable that
this functor admits a right adjoint incρ : Mor(A) → Mon(A): for each object α : X →
Y , consider a monomorphism iX → I (X) such that I (X) injective, and set incρ(α) =
(

α
iX

) : X → Y ⊕ I (X); the action of incρ on morphisms is defined naturally. In particular,
the functor incρ is a triangle functor; see [19, Section 8].

Suppose that the abelian category A has injective hulls. For an object α : X → Y in
Mor(A), consider its kernel i : K → X and an injective hull j : K → I (K ). Then there
exists a morphism ī : X → I (K ) such that ī ◦ i = j . Note that

(α
ī

) : X → Y ⊕ I (K ) is a
monomorphism; it is called the minimal monomorphism associated to α [26, Sections 2,4].
Denote the minimal monomorphism by Mimo(α). It is remarkable that there is a natural
isomorphism between the object incρ(α) and Mimo(α) in the stable category Mon(A); com-
pare [26, Section 4, Claim 2]. Then the minimal monomorphism operation Mimo(-) becomes
naturally a triangle functor. 
�

We would like to point out that the Frobenius category Mor(A) in the above example is
standard, that is, the associated restricted Yoneda functor yields an equivalence Mor(A) 
CM(Pnew) of exact categories; see Sect. 4. Indeed, both exact categories are equivalent to
the category of left exact sequences in A with the obvious exact structure. This observation
and its generalization will be treated elsewhere.
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